Intraluteal Administration of a Nitric Oxide Synthase Blocker Stimulates Progesterone and Oxytocin Secretion and Prolongs the Life Span of the Bovine Corpus Luteum (44514)

JERZY JAN JAROSZEWSKI² AND WILLIAM HANSEL¹

Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana 70803

Abstract. To test the role of nitric oxide (NO) in secretory functions of bovine corpora lutea (CL), two groups of four Holstein helfers each were treated as follows: Group 1, Nω-Nitro-L-Arginine Methyl Ester (L-NAME), an inhibitor of nitric oxide synthase (NOS), on Day 11 or 12 of the cycle and Group 2, L-NAME on Days 17 and 18 of the cycle. All treatments were administered by an intraluteal microdialysis system (MDS). Drugs were infused for 4-hr periods on the designated days, and the treatment periods were preceded and followed by 4-hr control periods. Perfusate and jugular blood samples were collected at half-hour intervals. Perfusate samples were analyzed for progesterone (P4), oxytocin (OT), prostaglandin $F_{2\alpha}$ (PGF_{2 α}), and leukotriene C₄ (LTC₄); jugular plasma samples were analyzed for P₄, OT, and LH. Perfusion of L-NAME on Day 11 or 12 consistently increased P_4 concentration in the perfusate, but had no effect on the life span of the CL. Perfusion of L-NAME on Days 17-18 also elevated P4 levels in the perfusate, and in addition, maintained P4 levels in the plasma of three of the four treated animals through Day 25 of the cycle. L-NAME perfusion also increased OT release concomitant with P4 into the perfusate at both the mid- and late-luteal phase treatments. For the most part, concentrations of LH, OT, and P_4 in the jugular plasma samples collected during the perfusions were unaffected by treatments. L-NAME perfusion caused small, but significant (P < 0.05) increases in perfusate PGF_{2 α} and LTC₄ at Days 17 and 18 and in LTC₄ on Day 11 or 12. These data indicate that NO plays a direct luteolytic role in regression of the bovine CL. [P.S.E.B.M. 2000, Vol 224:50-55]

he current concept that luteolysis in cattle is brought about by $PGF_{2\alpha}$ of uterine origin secreted in response to OT released by the CL is inadequate to explain many of the events that actually occur at the time of

Supported by a grant provided by the Gordon and Mary Cain Foundation. Parts of these data were presented at the 32nd annual meeting of The Society for the Study of Reproduction, July 31-August 3, 1999.

Received October 4, 1999. [P.S.E.B.M. 2000, Vol 224] Accepted January 19, 2000.

0037-9727/00/2241-0050\$15.00/0
Copyright © 2000 by the Society for Experimental Biology and Medicine

regression (1). Although luteolytic in vivo, PGF_{2a} in vitro does not inhibit basal P₄ production by the large luteal cells (LLC) and actually stimulates P₄ production by small luteal cells (SLC). There is very little OT present in the CL at the time of luteolysis, and several recent studies indicate that luteolysis can occur after depletion of luteal OT (2) and in the absence of measurable OT release from the luteal tissue (3). A number of studies indicate that the products of the lipoxygenase pathway of the arachidonic acid (AA) cascade, particularly LTC₄ play major roles in luteolysis. Intrauterine infusions of a blocker of the lipoxygenase pathway prolong the functional life of the CL (4), and lipoxygenase products, including LTC₄, markedly inhibit P₄ production in vitro. In a previous microdialysis study, leukotriene B₄ (LTB₄) and LTC₄ were found in the perfusate and rose prior to the decline in progesterone during luteolysis (3).

Bovine ovaries are richly supplied by adrenergic and

¹ To whom requests for reprints should be addressed at the Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Road, Baton Rouge, LA 70808. E-mail: HanselW@mhs.pbrc.edu

² Present address: Warmia and Masuria University in Olsztyn, Faculty of Veterinary Medicine, Department of Pharmacology, Oczapowskiego 13, 10-957 Olsztyn, Poland.

peptidergic nerves (5) as well as nerves synthesizing NO (6). Neuropeptides such as neuropeptide Y, substance P, vasoactive intestinal peptide (7), and norepinephrine (2, 8) act on P4 secretion in bovine CL. NO, a highly reactive free radical acts as an important regulator of many physiological events, including blood pressure, neurotransmission, and host defense (9, 10). NO is synthesized via the oxidation of L-arginine by nitric oxide synthase (NOS). This enzyme catalyzes the mixed function oxidation of a guanidino nitrogen atom of L-arginine to yield L-citrulline and NO (9). The presence of NO has been shown in ovaries of many mammalian species (11-20) including bovine cumulus cells (21). In rats and rabbits, NO influences follicular development, rupture, and atresia (11, 13-15, 20), and participates in the regulation of CL function (17, 19). In women undergoing in vitro fertilization, a positive correlation was found between circulating and follicular fluid nitrite/nitrate concentrations and follicular development (22, 23). Moreover, it was shown that the cells obtained from rat ovaries at all stages of follicular development (preantral, Graafian, ovulatory, and atretic) and luteinization synthesized NO in a linear manner over time, but the basal production of NO was 6- to 14-fold higher in cells obtained from luteinized ovaries than from cells obtained from ovaries at all other stages (16).

In vitro experimental evidence indicates that NO negatively regulates estradiol (E2) and P4 secretion in human granulosa cells (12) and rat luteinized ovarian cells (16), whereas inhibition of NOS activity significantly increases E₂ secretion without changes in P₄ production (12, 16). Furthermore, it was shown that NO increased PG production in perfused rabbit ovaries (20), and addition of NOS inhibitors to incubated luteal tissue from late pseudopregnant rats significantly diminished PGF_{2n} production (19). These in vitro studies suggest that NO functions as an important autocrine and/or paracrine agent in ovarian secretion, but there is little or no information about its actions in vivo, especially in ruminant animals in which the uterus plays a key role in luteolysis. Therefore, the aim of these experiments was to determine the role of NO in the secretory function of bovine CL during the middle and late luteal phases of the estrous cycle.

Materials and Methods

MDS Implantation. Normally cycling Holstein heifers (n = 8) were injected intramuscularly (i.m.) with 25 mg of PGF_{2 α} (Lutalyse; Pharmacia and Upjohn, Bridgewater, NJ) during the luteal phase to induce luteolysis and estrus. The MDS was implanted, as described by Blair *et al.* (3), into the CL on Days 10 or 11 (n = 4) and 16 (n = 4) of the subsequent estrous cycle (Day 0 = estrus). The animals were premedicated with xylazine, 50 mg/animal i.m. (Rompun; Miles, Shawnee Mission, KS) and local anesthesia (epidural and at the site of incision), using 2% lidocaine hydrochloride (Lidocaine 2% injectable; Butler, Columbus, OH), was induced immediately prior to surgery. The ovaries

were exteriorized through a flank laparotomy, and the MDS was threaded through the CL such that the dialysis tubing (Fresenius SPS 960; Frankfurt, Germany; MW cutoff = 1,000,000 Da; o.d. = 500 μ m; i.d. = 340 μ m) was localized within the CL. The MDS was fixed to the surface of the CL at the points of entrance and exit by tissue glue, and the ovary was replaced into the peritoneal cavity. The connecting tubes were exteriorized through a puncture in the paralumbar fossa and connected to Teflon tubing. One end of the Teflon tubing was connected to a syringe pump (KDS Scientific Model 100; Cole Palmer, Vernon Hills, IL), whereas the other was connected to a fraction collector (Model 2110; Bio Rad, Hercules, CA). Animals were kept in individual stalls in a temperature-controlled room, and the CL was perfused with Ringer's solution immediately after surgery. All infusions were at a flow rate of 3 ml/hr. All animal procedures were approved by the Cornell University Institutional Animal Care and Use Committee.

The recovery rates of hormones across the MDS were measured as previously described (24) and amounted to \approx 0.1% for OT and LTC₄, 0.3% for PGF_{2 α}, and 1% for P₄.

Schedule of Experiments. Experiment 1. The CL of 4 animals were perfused on Day 11 or 12 of the cycle for 4 hr with 100 mg of Nω-Nitro-L-Arginine Methyl Ester (L-NAME; Cayman Chemical Co., Ann Arbor, MI), an inhibitor of NOS. Perfusate and jugular blood samples were collected every 30 min before, during, and after L-NAME infusion. Each 4-hr treatment period was preceded and followed by 4-hr control periods during which physiological saline solution was perfused at the same rate (3 ml/ hr). Blood samples were collected through catheters implanted into the jugular vein. Additional blood samples were taken once daily by jugular venipuncture through Day 22 of the estrous cycle to determine the functional life of the CL.

Experiment 2. The CL of 4 animals were perfused on Day 17 and again on Day 18 of the estrous cycle for 4 hr with 100 mg of L-NAME. As in Exp. 1, treatment periods were preceded and followed by 4-hr control periods. The perfusate and blood samples were collected with the same frequency as in Exp. 1. Moreover, blood samples were taken once daily by jugular venipuncture from Days 19–25 of the estrous cycle to determine the functional life of the CL.

All samples were stored at -80°C until hormone determinations were made.

Hormone Determinations. P_4 concentrations in perfusate and plasma samples were determined by radioimmunoassay (RIA) as previously described (25). The P_4 antiserum used had 11.64% cross-reaction with 5β-dihydroprogesterone, 1.97% with 5α-dihydroprogesterone, 2.64% with 20β-OH-progesterone, 1.90% with 20α-OH-progesterone, 3.22% with 17α-OH-progesterone, 0.03% with pregnenolone, 0.96% with corticosterone, 0.03% with testosterone, 0.01% with cortisol, and less than 0.01% with estrone, 17β-estradiol, 17α-estradiol, estriol, androstendione, 5α-dihydrotestosterone, dehydroepiandrostendione, and cholesterol. The assay sensitivity was 0.15 ng/ml, and

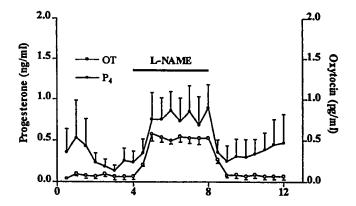
the intra- and interassay coefficients of variation (CVs) were 5.30% and 9.44%, respectively.

OT concentrations in perfusate and plasma samples were measured by RIA as previously described (26, 27). The detection limit of the assay was 0.34 pg/ml, and intraand interassay CVs were 4.6% and 9.5%, respectively.

LH concentration in plasma samples was determined by RIA as described by Thompson *et al.* (28). The assay sensitivity was 0.44 ng/ml and intra- and interassay CVs were 3.7% and 9.6%, respectively.

LTC₄ and PGF_{2 α} concentrations were determined in perfusate samples using commercially available enzyme immunoassay kits (Cayman Chemical Co.) according to instructions of the manufacturer. The assay sensitivities were 9.81 pg/ml for LTC₄ and 4.51 pg/ml for PGF_{2 α}, respectively. The intra- and interassay CVs were 4.1% and 9.0% for LTC₄ and 5.4% and 8.7% for PGF_{2 α}, respectively.

Data Analysis. Experimental data are shown as mean \pm SEM. Treatment differences in each experiment were assessed by one-way analysis of variance (ANOVA) using Bonferroni's Multiple Comparison Test (Graph Pad Prism). Differences with P < 0.05 were regarded as statistically significant.


Results

Experiment 1. Perfusion of L-NAME on Day 11 or 12 of the cycle caused marked synchronous increases in P_4 and OT (P < 0.001) in the perfusate samples (Fig. 1). L-NAME perfusion also caused a relatively small, but significant (P < 0.001) increase in LTC₄ concentration, but did not change the PGF_{2 α} level (P > 0.05) in the perfusate samples (Fig. 1). No changes were observed in P_4 , OT, and LH concentrations in plasma samples collected during perfusion (Fig. 2). Plasma P_4 concentrations of all treated animals declined between Days 18 and 22 (Fig. 3).

Experiment 2. L-NAME perfusion on Days 17 and 18 also caused increases in P_4 concentrations (P < 0.001) in perfusate samples on both Days 17 and 18 (Fig. 4a), even though the level of P_4 in the plasma decreased slightly on both Day 17 (P < 0.05) and Day 18 (P < 0.01; Fig. 4b). The concentrations of P_4 in plasma samples collected during Days 19–25 of the estrous cycle were maintained above 3 ng/ml in three of the four treated animals (Fig. 5). Increased levels of both LTC₄ (P < 0.01) and PGF_{2 α} (P < 0.05) were found in the perfusate samples (Fig. 6). As was the case at Day 11 or 12, L-NAME perfusions increased OT concentrations (P < 0.001) in the perfusate samples (Fig. 7) on Days 17 and 18 of the cycle, but did not affect the concentration of OT or LH in the plasma samples (unpublished data).

Discussion

The abilities of infused L-NAME to cause marked increases in P_4 release at Day 11 or 12 and at Days 17 and 18, and to prolong the functional life of the CL to at least 25 days, when administered at Days 17 and 18, indicate that

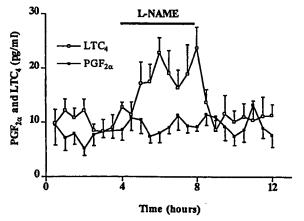


Figure 1. Concentrations of progesterone (P_4), oxytocin (OT), prostaglandin $F_{2\alpha}$ ($PGF_{2\alpha}$), and leukotriene C_4 (LTC_4) in perfusate samples during L-NAME infusion on Day 11 or 12 of the estrous cycle.

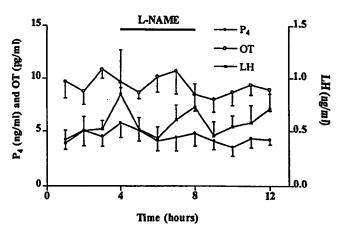
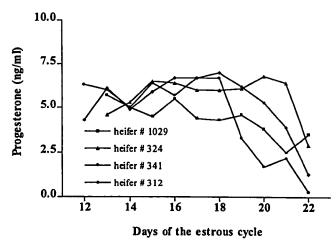
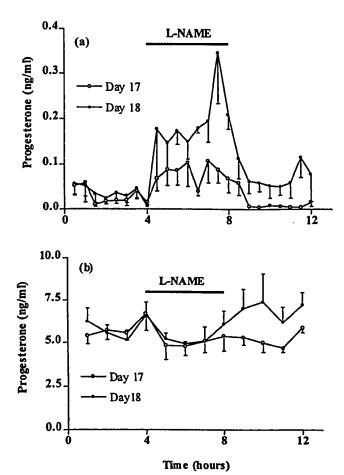




Figure 2. Concentrations of progesterone (P_4), oxytocin (OT), and luteotropic hormone (LH) in plasma samples collected during L-NAME infusion on Day 11 or 12 of the estrous cycle.

NO plays an important role at the ovarian level in inhibiting P_4 production and initiating luteal regression. NO inhibited both P_4 and E_2 secretion in human granulosa cells (12) and luteinized rat ovarian cells (16) and inhibited P_4 secretion in cultured bovine luteal cells (29). NO has also been shown to inhibit several P450 steroidogenic enzymes (30). It is also known that NO activates heme-containing enzymes, among them a cyclooxygenase (COX) which is rate-limiting in the

Figure 3. Plasma progesterone concentrations in samples collected once daily after L-NAME infusion on Day 11 or 12 to Day 22 of the estrous cycle.

Figure 4. Concentration of progesterone in (a) perfusate and (b) blood plasma samples during L-NAME infusion on Days 17 and 18 of the estrous cycle.

biosynthesis of prostaglandins, tromboxane A_2 , and prostacyclin (9, 31). A most interesting feature of these data is the precise coincidence of the changes in secretion of P_4 and OT into the perfusate before, during, and after L-NAME administration at mid- (Day 11 or 12) and late (Days 17-18) luteal phases of the cycle. A linkage between P_4 secretion

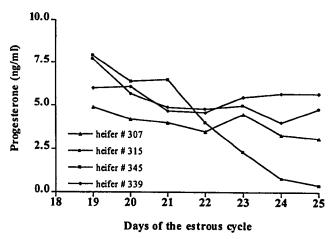
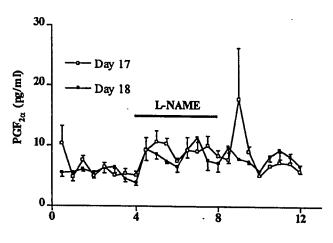
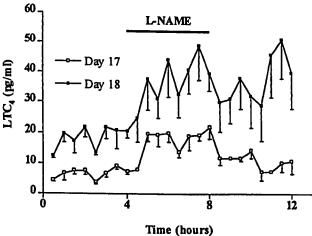




Figure 5. Concentration of progesterone in plasma samples collected once daily after L-NAME infusion on Days 17 and 18 of the estrous cycle.

Figure 6. Concentrations of prostaglandin $F_{2\alpha}$ (PGF_{2 α}) and leukotriene C₄ (LTC₄) in perfusate samples during L-NAME infusion on Days 17 and 18 of the estrous cycle.

and secretory granule exocytosis from the LLC was first reported for the ewe in 1974 (32) and later for the cow (33). Since the secretory granules of the LLC are known to contain OT (34), it would appear that L-NAME, through NO inhibition, may act primarily on the LLC. However, it

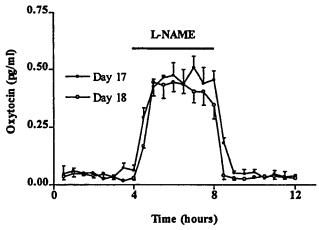


Figure 7. Concentration of oxytocin (OT) in perfusate samples during L-NAME infusion on Days 17 or 18 of the estrous cycle.

should be noted that SLC secrete P₄ in response to LH, even though they contain few, if any secretory granules.

The fact that infusion of L-NAME on Days 17 and 18 elevated P_4 and prevented luteolysis at the normal time, despite the fact that it increased both $PGF_{2\alpha}$ and LTC_4 in the perfusate, suggests that NO exerts its luteolytic effects directly on the CL. This local luteolytic effect might involve direct effects on the luteal cells, a mobilization of endothelin which has been shown to have luteolytic properties (35), or a combination of both. Activation of endothelial nitric oxide synthase (eNOS) by endothelins results in release of NO that mediates the vasorelaxing effects of bovine endothelial cells, which are numerous in bovine luteal tissue.

The administration of L-NAME may reduce or abolish the vasorelaxing effect of NO and endothelin. However, the marked increases in P_4 and OX in the present study were precisely limited to the period of L-NAME infusion, and it seems unlikely that they were influenced by previous accumulations due to vasoconstriction. Blood flow alterations play important roles in luteal regression. A marked decline in blood flow occurs during both normal and $PGF_{2\alpha}$ -induced luteolysis (1). Sclerotic changes involving hypertrophy and hyperplasia of cells in the walls of small arterioles leading to a reduced blood flow have been associated with luteal regression in cattle (1).

The increase in $PGF_{2\alpha}$ and LTC_4 in the perfusate after L-NAME administration was a surprising result. However, accumulating evidence suggests that NO, and endothelin-1 as well, exert their effects by enhancing or mediating the effects of $PGF_{2\alpha}$ and LTC_4 rather than by controlling their production (36, 37). The ability of $PGF_{2\alpha}$ to cause an initial increase in P_4 production in vivo after intraluteal administration of $PGF_{2\alpha}$ by microdialysis was recently demonstrated (38), and $PGF_{2\alpha}$ is known to increase P_4 production by bovine luteal cells in vitro.

For the most part, concentrations of LH, OT, and P₄ in the jugular plasma were not affected by changes in concentrations in the perfusate samples, although the functional life of the CL was prolonged after L-NAME administration on Days 17 and 18, as indicated by continued high plasma P_4 levels until Day 25. Plasma P_4 concentrations in normal Holstein heifers begin to decline on about Day 18 of the cycle and are usually less than 1 ng/ml by Day 20 (1, 4). P_4 plasma concentrations had clearly declined in all of the animals treated with L-NAME by Day 22 (Fig. 2). The small but significant (P < 0.05) decline in plasma P_4 levels during L-NAME perfusion on Days 17 and 18 did not appear to be due to decreased LH secretion. It is known that NO increases LHRH release in rats (39, 40) and that LH stimulates P_4 secretion by the bovine CL (1, 41).

In summary, intraluteal infusion of the NOS inhibitor, L-NAME at either mid- or late phases of the estrous cycle increased the secretion of both P_4 and OT in the perfusate samples, and L-NAME administered on Days 17–18 of the cycle prolonged the functional life of the CL. Moreover, L-NAME perfusion marginally increased LTC₄ in both phases and PGF_{2 α} in the late luteal phase. The levels of OT, LH, and P_4 in the plasma samples, for the most part, were unaffected by the intraluteal treatments of L-NAME. These data are the first to show that NO acts as a significant auto/paracrine factor in the mid- and late luteal phases and plays an important local role in the initiation of luteal regression in a ruminant.

The cooperation of Dr. Joanne Fortune, who provided the surgical facilities at Cornell University where the experiments were conducted and the P₄ antiserum used, is gratefully acknowledged. The assistance of R.A. Saatman, Cornell University, with the surgical procedures is also acknowledged. The laboratory assistance of Dr. Shuenn Liou and Meng Wang is gratefully acknowledged. The OT antiserum was kindly supplied by Dr. D. Schams, Technical University of Munich, Germany and the LH antiserum by Dr. D.L. Thompson, Louisiana State University.

- Hansel W, Blair RM. Bovine corpus luteum: A historic overview and implications for future research. Theriogenology 45:1267-1294, 1996.
- Jaroszewski J, Kotwica J. Reduction of ovarian oxytocin content from early luteal phase does not affect the corpus luteum secretory function in cattle. Reprod Nutr Dev 34:175-182, 1994.
- Blair RM, Saatman R, Liou SS, Fortune JE, Hansel W. Roles of leukotrienes in bovine corpus luteum regression: An in vivo microdialysis study. Proc Soc Exp Biol Med 216:72-80, 1997.
- Milvae RA, Alila HW, Hansel W. Involvement of lipoxygenase products of arachidonic acid metabolism in bovine luteal function. Biol Reprod 35:1210-1215, 1986.
- Kaleczyc J, Majewski M, Lakomy M, Sienkiewicz W. Occurrence and coexistence of some neuropeptides in nerve fibers supplying the bovine ovary and its extrinsic blood vessels. Folia Histochem Cytobiol 33:163-169, 1995.
- Majewski M, Sienkiewicz W, Kaleczyc J, Mayer B, Czaja K, Lakomy M. The distribution and co-localization of immunoreactivity to nitric oxide synthase, vasoactive intestinal polypeptide, and substance P within nerve fibers supplying bovine and porcine female genital organs. Cell Tissue Res 281:445-464, 1995.
- Miyamoto A, Brückmann A, von Lützov H, Schams D. Multiple effects of neuropeptide Y, substance P, and vasoactive intestinal polypeptide on progesterone and oxytocin release from bovine corpus luteum in vitro. J Endocrinol 138:451-458, 1993.
- 8. Skarzynski D, Kotwica J. Mechanism of noradrenaline influence on

- the secretion of ovarian oxytocin and progesterone in conscious cattle. J Reprod Fertil 97:419-424, 1993.
- Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109-142, 1991.
- Nathan CF. Nitric oxide as a secretory product of mammalian cells. FASEB J 6:3051-3064, 1992.
- Ben-Shlomo I, Kokia E, Jackson MJ, Adashi EY, Payne DW. Interleukin-1β stimulates nitrite production in the rat ovary: Evidence for heterologous cell-cell interaction and for insulin-mediated regulation of the inducible isoform of nitric oxide synthase. Biol Reprod 51:310– 318, 1994.
- Van Voorhis BJ, Dunn MS, Snyder GD, Weiner CP. Nitric oxide: An autocrine regulator of human granulosa-luteal cell steroidogenesis. Endocrinology 135:1799–1806, 1994.
- Chun S-Y, Eisenhauer KM, Kubo M, Hsueh AJW. Interleukin-1β suppresses apoptosis in rat ovarian follicles by increasing nitric oxide production. Endocrinology 136:3120-3127, 1995.
- Shukovski L, Tsafriri T. The involvement of nitric oxide in the ovulatory process in the rat. Endocrinology 135:2287-2290, 1995.
- Bonello N, Mickie K, Jasper M, Andrew L, Ross N, Braybon E, Brännström M, Norman RJ. Inhibition of nitric oxide: Effects on interleukin-1β-enhanced ovulation rate, steroid hormone, and ovarian leukocyte distribution at ovulation in the rat. Biol Reprod 54:436-445, 1996.
- Olson LM, Jones-Burton CM, Jablonka-Shariff A. Nitric oxide decreases estradiol synthesis of rat luteinized ovarian cells: Possible role for nitric oxide in functional luteal regression. Endocrinology 137:3531-3539, 1996.
- Zackrisson U, Mikuni M, Wallin A, Delbro D, Hedin L, Brännström M. Cell-specific localization of nitric oxide synthases (NOS) in the rat ovary during follicular development, ovulation, and luteal formation. Hum Reprod 11:2667-2673, 1996.
- Jablonka-Shariff A, Olson LM. Hormonal regulation of nitric oxide synthases and their cell-specific expression during follicular development in the rat ovary. Endocrinology 138:460-468, 1997.
- Motta AB, Gimeno MAF. Nitric oxide participates in the corpus luteum regression in ovaries isolated from pseudopregnant rats. Can J Physiol Pharmacol 75:1335-1339, 1997.
- Yamauchi J, Miyazaki T, Iwasaki S, Kishi I, Kuroshima M, Tei C, Yoshimura Y. Effects of nitric oxide on ovulation and ovarian steroidogenesis and prostaglandin production in the rabbit. Endocrinology 138:3630-3637, 1997.
- Lim JM, Hansel W. Improved development of in vitro-derived bovine embryos by use of a nitric oxide scavanger in a cumulus granulosa cell culture system. Mol Reprod Dev 50:45-53, 1998.
- Rosselli M, Imthurm B, Macas E, Keller PJ, Dubey RK. Circulating nitrite/nitrate levels increase with follicular development: Indirect evidence for estradiol-mediated NO release. Biochem Biophys Res Commun 202:1543-1552, 1994.
- Anteby EY, Hurwitz A, Korach O, Revel A, Simon A, Finci-Yeheskel Z, Mayer M, Laufer N. Human follicular nitric oxide pathway: Relationship to follicular size, oestradiol concentrations, and ovarian blood flow. Hum Reprod 11:1947-1951, 1996.
- Jarry H, Einspanier A, Kanngie\u00e3er L, Dietrich M, Pitzel L, Holtz W, Wittke W. Release and effects of oxytocin on estradiol and progesterone secretion in porcine corpora lutea as measured by an in vivo microdialysis system. Endocrinology 126:2350-2358, 1990.

- Kotwica J, Skarzynski D, Jaroszewski J. The coccygeal artery as a route for the administration of drugs into the reproductive tract of cattle. Vet Rec 127:38-40, 1990.
- 26. Abdelgadir SE, Swanson LE, Oldfield JE, Stormshak F. Prostaglandin $F_{2\alpha}$ -induced release of oytocin from bovine corpora lutea *in vitro*. Biol Reprod 37:550-555, 1987.
- Orwig KE, Bertrand JE, Ou B-R, Forsberg NE, Stormshak F. Involvement of protein kinase-C, calpains, and calpastatin in prostaglandin F_{2α}-induced oxytocin secretion from the bovine corpus luteum. Endocrinology 134:78-83, 1994.
- Thompson DL, Godke GR, Squires EL. Testosterone effects on mares during synchronization with altrenogest: FSH, LH, estrous duration, and pregnancy rate. J Anim Sci 56:678-686, 1983.
- Skarzynski DJ, Okuda K. Different actions of noradrenaline and nitric oxide on the output of prostaglandins and progesterone in cultured bovine luteal cells. Prostaglandins Other Lipid Mediat 60:35-47, 2000.
- Hanke CJ, Drewett JG, Myers CR, Campbell WB. Nitric oxide inhibits aldosterone synthesis by a guanyl cyclase-independent effect. Endocrinology 139:4053–4060, 1998.
- Salvemini D, Misko TP, Masferrer JL, Seibert K, Currie MG, Deedleman P. Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci U S A 90:7240-7244, 1993.
- Gemmell RT, Stacy BD, Thorburn GD. Ultrastructural study of secretory granules in the corpus luteum of the sheep during the estrous cycle. Biol Reprod 11:447-462, 1974.
- Quirk SJ, Willcox DL, Parry DM, Thorburn GD. Sub-cellular location of progesterone in the bovine corpus luteum: A biochemical, morphological, and cytochemical investigation. Biol Reprod 20:1135-1146, 1979.
- Fields MJ, Fields PA. Morphological characteristics of the bovine corpus luteum during the estrous cycle and pregnancy. Theriogenology 45:1295-1325, 1996.
- Girsh E, Wang W, Mamkek R, Ardoti F, Friedman A, Milvae RA, Meiden R. Regulation of endothelin-1 expression in the bovine corpus luteum: Elevation by prostaglandin F_{2α} Endocrinology 137:5191– 5196, 1996.
- 36. Girsch E, Milvae RA, Wang W, Meiden R. Effect of endothelin-1 on bovine luteal cell function: Role in prostaglandin $F_{2\alpha}$ -induced antisteroidogenic action. Endocrinology 137:1306–1312, 1996.
- 37. Jaroszewski JJ, Hansel W, Okuda K, Gawronska B, Sharzynski D. The role of nitric oxide (NO) in bovine corpus luteum (CL) function: In vivo and in vitro studies. Proc International Conference on the Female Reproductive Tract, Frauenchiemsee, Germany, May 26-29, 2000.
- Ohtani M, Kobayashi S, Takemoto K, Fukui Y, Miyamoto A. Direct action of PGF_{2α}, TPA, and ionophore A23187 on progesterone release from the microdialyzed corpus luteum in cows. Proc 13th Internat Congr Anim Reprod, Abstract 2:P7-P17, 1996.
- McCann SM, Kimura M, Karanth S, Yu WH, Rettori V. Nitric oxide controls the hypothalamic-pituitary response to cytokines. Neuroimmunomodulation 4:98-106, 1997.
- Rettori V, McCann SM. Role of nitric oxide and alcohol on gonadotropin release in vitro and in vivo. Ann N Y Acad Sci 840:185-193, 1998.
- Hansel W, Convey EM. Physiology of the estrous cycle. J Anim Sci 57:404-424, 1983.