MINIREVIEW

Alpha-fetoprotein Structure and Function: Relevance to Isoforms, Epitopes, and Conformational Variants

GERALD J. MIZEJEWSKI¹

Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York 12201

Mammalian alpha-fetoprotein (AFP) is classified as a member of the albuminoid gene superfamily consisting of albumin, AFP, vitamin D (Gc) protein, and alpha-albumin. Molecular variants of AFP have long been reported in the biomedical literature. Early studies identified isoelectric pH isoforms and lectin-binding variants of AFP, which differed in their physicochemical properties, but not in amino acid composition. Genetic variants of AFP, differing in mRNA kilobase length, were later extensively described in rodent models during fetal/perinatal stages, carcinogenesis, and organ regeneration. With the advent of monoclonal antibodies in the early 1980s, multiple antigenic epitopes on native AFP were detected and categorized, culminating in the identification of six to seven major epitopes. During this period, various AFP-binding proteins and receptors were re-Ported to inhibit certain AFP immunoreactions. Concomittantly, human and rodent AFP were cloned and the amino acid sequences of the translated proteins were divulged. Once the amino acid composition of the AFP molecule was known, en-Zymatic fragments could be identified and synthetic peptide segments synthesized. Following discovery of the molten globule form in 1981, the existence of transitory, intermediate forms of AFP were acknowledged and their physiological significance was realized. In the present review, the various isoforms and variants of AFP are discussed in light of their potential biologi-[Exp Biol Med Vol. 226(5):377-408, 2001]

Key words: alpha-fetoprotein; isoforms; epitopes; variants; conformation; structure; function

0037-9727/01/2265-0377\$15.00 Copyright © 2001 by the Society for Experimental Biology and Medicine

lpha-fetoprotein (AFP), a tumor-associated fetal protein, has long been employed as a serum fetal .defect/tumor marker to monitor distress/disease progression (1-3). Similar to albumin, serum AFP is known to bind and transport a multitude of ligands such as bilirubin, fatty acids, retinoids, steroids, heavy metals, dyes, flavonoids, phytoestrogens, dioxin, and various drugs (4, 5). High concentrations of some of the hydrophobic ligands (i.e., fatty acids and estrogens) have been reported to induce a conformational change in the tertiary structure of AFP (see Ref. 6 for review). Altered serum AFP levels have been observed concurrent with aberrant growth manifestations, but it was usually assumed that these levels were a coincident effect rather than the cause of such changes. Although AFP may not be the direct cause of the altered growth manifestations observed in birth defects and cancer, it is conceivable that some shock/stress-induced conformational (variant) forms of this fetal protein may influence or contribute to such events. In the last decade, reports have emerged that some of these AFP forms may serve as dual regulators of growth, capable of both enhancement and inhibition (7, 8).

Molecular variants of mammalian AFP have been reported in the scientific literature since the 1970s. Initially, some of the variant forms were attributed to carbohydrate microheterogeneity and alterations in isoelectric points (9, 10). Additional AFP isoforms were genetic variants and lectin glycoforms that were detected and isolated by isoelectric focusing, electrophoresis, and chromatography (11, 12). Further isoforms were detected following high-pressure liquid chromatography (HPLC), and from lectin, heavy metal, and hydrophobic solid phase separation methods. The advent of monoclonal antibodies further permitted the

¹ To whom requests for reprints should be addressed at Wadsworth Center, New York State Department of Health, Box 509, Empire State Plaza, Albany, NY 12201. E-mail: mizejewski@wadsworth.org

detection and analysis of the epitopic domains and subdomains that comprise the total antigenic sites of this fetal protein (13, 14). Finally, the recent discovery and characterization of the molten globule form (MGF) have provided a new level of understanding regarding the various intermediate transition forms of proteins such as AFP (15).

Presently, there is no catalogue of the multiple isoforms and epitopic and conformational variants of AFP in the literature. Hence, the aims of the present review are 3-fold. First, the myriad of molecular forms of AFP found in human biological fluids and tissues, and in animal models, will be presented. Second, the various AFP isolates and isoforms that can be induced and purified in the laboratory from in vivo sources or from in vitro cell culture models will be described. Third, the relationship of AFP's biological activity to both naturally occurring and experimentally induced variant forms of AFP will be presented. The multiple names and classifications of the molecular variants of AFP in this rapidly advancing field justify a review that attempts to link structural findings with physiological effects. Finally, this review is intended to serve as an extension and update of a review on AFP as a biologic response modifier previously published in this journal (7). The present review is not intended to be all-inclusive for AFP, therefore the reader is directed to consult earlier reviews. (16, 17).

The Albuminoid Gene Family

AFP is classified as a member of an albuminoid gene family, which consists of four members to date: albumin (ALB), vitamin D-binding (Gc) protein (DBP), AFP, and alpha-ALB (αALB), termed afamin in humans (18, 19). This family is structurally characterized by cysteine residues that are folded into layers that form loops dictated by disulfide bridging, resulting in a triplet domain, U-shaped molecular structure (see Fig. 1). The three domains of these gene family members have been confirmed by X-ray crystallography (20, 21) (Figs. 1 and 2). The ALB gene family members display structural similarities, homologous amino acid sequence stretches, and similar cysteine disulfide bridge clusters (Fig. 1 and Table I). In humans, the four albuminoid genes lie in tandem on chromosome 4 within the 4q11-q22 region, encompassing 15 exons and 14 introns (22). DBP alone is truncated in the third domain (see Fig. 1) and contains only 13 exons, which results in a protein with a smaller molecular mass (23). The newest member of this gene family, \alpha-ALB, was discovered in both rodent and human, and was cloned in the last 6 years (24, 25). All gene members are capable of ligand/carrier transport function, but display a vast array of other functions, including chemotaxis, oxygen free radical scavenging, esterase activity,

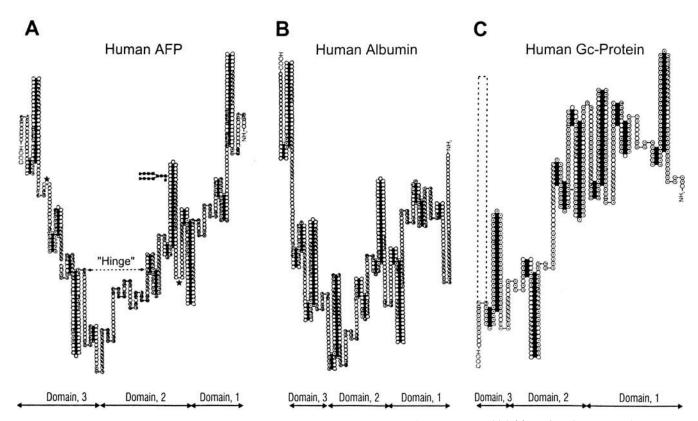


Figure 1. Molecular configurations of HAFP (left), human ALB (center), and human Gc DBP protein (right) based on the predicted secondary structures (See Ref. 117). Stars indicate predicted beta-turns and branched dark squares signify the sole carbohydrate side chain of HAFP. The dashed arrow indicates the proposed "hinge" region (lack of disulfide bridging) that is present in AFP, but absent in the other two gene family members. Note the truncated third domain of the Gc protein, representing a lack (dashed line) of a carboxy terminal amino acid chain compared with AFP and ALB. This figure was derived from composite diagrams redrawn from Refs. 117, 22, and 6.

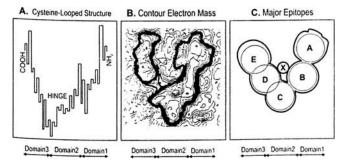


Figure 2. A three-panel diagrammatic mapping of the tri-domain structure of HAFP. (A) represents the cysteine-loop configuration, while (B) shows the electron dot contour mass map of HAFP. In comparison, (C) predicts an epitopic map of HAFP derived from 30 or more MoAbs (Refs. 14, 161). The precise epitope domain locations have been detected, but have yet to be localized. The three-panel diagram represents a composite redrawn from Refs. 6, 117, 21, 14, and 161.

leukocyte adherence, copper stimulated lipid peroxidation, and fatty acid, heavy metal, and actin binding, among others (26–28). Although the function of the recently discovered αALB remains obscure, it may play a role (ligand binding and immunoregulation) similar to its counterpart in lower vertebrates, a 74-kD ALB-like molecule found in fishes and amphibians (29, 30).

Genetic Variants. The genetic variants of mammalian AFP have been studied primarily in the rodent and to a lesser extent in humans (Table II). However, it is in mouse and rat that multiple gene expression has been described in greatest detail, including phase-specific expression of AFP mRNAs and their differential regulation during fetal and adult life, liver regeneration, and tumorogenesis (31-34). Although all of the AFP mRNA variants have been translated into proteins in vitro, not all have been detected in vivo. The major fetal- and tumor-derived AFP mRNA consists of a 2.2 -kb transcript that translates to a 69,000 to 73,000 molecular form in human and rodents, depending on its carbohydrate content (35, 36). The fetal rat liver primarily expresses the 2.2-kb transcript, but produces a 1.7-kb moiety that translates into a 50- to 65-kD protein that appears in the last quarter of the rat gestation period (37, 39) (Table II). In the neonatal rat liver, a 1.5-kb message (in addition to the 2.2 and 1.7 kb) is detected, which gives rise to a 48-kD protein present for only 4 to 8 weeks following birth. In contrast, the adult liver AFP mRNA transcripts contain only traces of the 2.2-kb moiety with low amounts of the 1.7- and 1.5-kb transcripts and a more recently detected 1.35-kb transcript (37 kD)(39, 40). This latter 1.35-kb form lacks one-third of the amino terminal first-domain of rat AFP (41, 42). Finally, the hepatoma and liver regeneration forms of rat AFP display largely the 2.2-kb form and lesser amounts of the 1.7-kb variant (35, 36).

The 1.35-kb AFP mRNA found in adult rat liver and kidney deserves special mention in that a similar transcript has been detected in human embryonal carcinomas transplanted into nude mice (43). In both species, a 1.35-kb form is retained intracellularly as a non-secreted form first reported in uterine and cancer cells (44, 45). This variant represented only 40% of the normal human AFP molecule translated from the 2.2-kb mRNA; it lacked the entire first domain and one-third of the second domain. It may be of interest that orphan steroid receptors, which dimerize with other nuclear receptors, have a similar truncated structure (46–48). Thus, truncated AFP forms could potentially bind to steroid receptors as previously proposed (49).

The adult form of human AFP, like the rat form, might also be derived from multiple RNA transcripts (i.e., 2.2, 1.7, and 1.6 kb). It is well established that the human form of AFP detected in most radioimmunoassays (RIAs) and enzyme-immunoassays (EIAs) represents the 69,000- to 70,000-kD (2.2 kb) polypeptide. It is highly probable that other AFP mRNA transcripts are present and are translated in serum and/or tissues, but are undetectable by present immunologic assays. Isolation and characterization of these predicted forms would be even more difficult since their concentrations would be vanishingly small (i.e., nanogram to picogram levels).

An interesting composite can be drawn when the genetic variants of the rat, and presumably human, are considered. As discussed above, the genetic variants of rat AFP mRNA consist of sizes ranging from 2.2 to 1.35 kb, representing translated proteins ranging from 72 kD down to 37 kD, respectively (41, 42). The smaller protein forms are found to be truncated from the amino-terminal end. This indicates that truncation eliminates domain 1 (amino-

Table I. Biochemical and Structural Properties of the Four Known Protein Members of the Human Albuminoid Gene Family

Member name (protein)	Molecular weight (kD)	Sediment coefficient (s)	N-Glys sites (n)	Carbohydrate content (%)	Peptide domains	Total amino acids	Messenger RNA (kb)	Chromosome location	Organ of synthesis	Serum concentration (µg/ml)
Serum albumin	66	4.5	0	0.5	3	585	2.1	4	Adult liver	30,000
Alpha-albumin	82	5.3	4	21.0	3	608	2.3	4	Adult liver	20
Alpha-fetoprotein	69	4.5	1	3.0-5.0	3	590	2.2	4	Fetal liver and yolk sac, (newborn liver)	3,000 (50)
Vit-D-binding protein (GC)	58	4.1	1	5.0	2.6	458	1.7	4	Adult liver	400

Note. N-Glys, N-linked glycosylation sites. Parentheses indicates a quantitative difference in liver secretion. Data compiled from Refs. 5, 6, 7, and 63.

Table II. Expression Patterns^a of Encoded Rat Alpha-Fetoprotein (AFP) mRNAs and Their Translated Proteins During Developmental and Adult Stages

MRNA (kb)	2.2	1.7	1.5	1.35	References
Translated protein (kD)	73, 69	65, 59	50, 48	44, 37	34-42
Development stages		Presence o	or absence of expre	ssion of variants	
Fetal	++	+	+	_	37, 38, 42
Perinatal	++	+	-	-	38, 39
Postnatal	+	+	+	_	39, 34
Adult	±	+	+	+	40, 41
Cancer presence	++	+	•••	+	35, 36, 43
Regeneration	++	+	_	_	34, 36, 39

Note. The trend of reduced presence of the 2.2-kb form as development to the adult proceeds (read down the column) and in reduced size of the translated message at the perinatal and adult stages. ++, copious amounts; +, moderate amounts; ±, trace amounts; and -, none detected.

terminus) and a portion (up to one-third) of domain 2 of the rat AFP molecule as in the extreme case of the 1.35-kb form. As demonstrated in a previous phylogenetic review of AFP (6), it is the amino-terminal portion (domain 1) that distinguishes rat AFP from other mammalian forms (i.e., human AFP). In that review it was shown that domain 3 exhibits greater amino acid sequence identity among the various mammals than do domains 1 and 2. Domain 3 is also known to contain a major hydrophobic-binding site on human (H) AFP and a proposed dimerization motif (7, 49), now supported by experimental evidence (50). Domains 1 and 2 contain binding sites for both fatty acids and bilirubin; however, domain 2 also displays amino acid sequences related to cellular and extracellular matrix (ECM) adherence regions and bears sites for the carbohydrate attachment via asparagine. It may be more than coincidence that the truncated 1.35 kb (third domain) is retained within the cell as a nonsecreting form, since it bears no carbohydrate side chains (for blood circulation) and might be capable of heterodimerization to other intracellular proteins as do the truncated steroid nuclear receptors (47, 48). It is germane to this discussion that most commercial companies utilize as their capture antibody, monoclonal antibodies (MoAbs) directed to the first domain of AFP, and use for detection labeled secondary antibodies to the less specific second and/or third domain of AFP. If this is the case, most assay kits would contain antibodies directed largely against the 2.2-kb translated protein (72 kD); hence, the other truncated forms would never be detected.

Regulation and Expression. The genetic regulation and expression of mammalian AFP is a highly complex area of study, and space does not permit adequate coverage in the present review. The reader is referred to recent reviews by Chiu and by Lazarevich (51, 52) for excellent detailed descriptions and overviews of this exciting field. Other papers using derivatives of DNA or mRNA for AFP as a genetic vector, as antisense, and as mRNA and cDNA isolates will only be briefly mentioned. For example, the presence or absence of HAFP mRNA in peripheral blood has been employed as a predictor of outcome in patients

with hepatocellular carcinoma (53). Another study employed the AFP gene promoter for gene therapy against high AFP-secreting hepatoma cells using a retrovirus vector carrying a herpes simplex thymidine kinase gene (54). These same investigators then used a variant of the AFP gene promoter for gene therapy against a low AFP-producing hepatoma (55). In other studies, an AFP antisense strategy was employed to inhibit the growth of human liver cells in culture (56). Two further genetic immunization schemes were developed using AFP as a target for T-cell immune responses. In one study, dendritic cells were engineered to express AFP-produced potent AFP-specific cytotoxic Tlymphocytes directed against hepatoma cells (57, 58). Studies were also reported in which HAFP was employed as a recombinant reporter to target proteins to the plasma membrane of cells (59). Potential uses of this technique may include vaccine development, tissue engineering, genetic research, bioseparations, and disease treatment. This latter study served to show that high levels of monomeric and dimeric proteins could be targeted to the cell membrane by the proper selection of a transmembrane domain attached to a reporter protein (AFP). Also, reports of additional AFP gene promoters and repression of the AFP gene continue to emerge (60-62). Finally, an AFP transcription factor has also been described that is a nuclear receptor related to the Drosophila FTZ-F1 gene family (326).

Free and Bound Molecular Forms

As stated above, many genetic variants of AFP mRNA have been reported in both human and rodent. Some of these translated AFP products are present in both bound and free forms. The reader is directed to previous reviews by the author, which detail the various bound forms of mammalian AFP in both serum and tissues (7, 63). Although elusive and difficult to detect, AFP complexed to binding proteins has a documented history dating back to the original observation by Norgaard-Petersen in 1976 (64). Since that time, sufficient articles describing AFP-binding proteins and receptors

^a Presence (+) or absence (-) of expression.

have been reported to validate their existence and justify their place in the scientific literature (65–69).

Soluble Forms. Some of the bound forms of AFP in solution can be detected directly by immunological methods, while others can only be observed following use of physical separation solutions such as 0.4 M KCl or even more harsh organic chemical exposure (urea, guanidine-HCl, etc.). Some of the reported candidates for AFP-binding proteins include IgG, IgM, actin, TGF- β , osteonectin, and protease substrates and inhibitors (reviewed in Ref. 7). It has also been well documented that AFP undergoes self-aggregation to form dimers, trimers, and oligomers (70, 71) in vitro, and at least dimers have been detected in vivo (72). The latter investigators (in vivo study) also reported that the dimeric form of AFP may contribute to its function regarding E₂-stimulated growth.

Membrane Receptors. Four cell surface receptors for AFP have been described that might bind various forms of AFP in addition to the native protein. These receptors have been described as both endothelial components and epithelial cell surface membrane receptors (73-76). Eighteen-, 31-, and 60-kD cell surface receptors (73) have been found in the vascular endothelium of many tissues (heart, lung, epididymus, etc.). The 18- and 31-kD binding proteins represent scavenger receptors that bind chemically modified or denatured albumin and AFP, while the 60-kD form is an endothelial cell surface sialoglycoprotein found only on continuously lined (not sinusoidal) endothelium. However, a canonical AFP cell surface receptor has been localized on monocytic, reproductive, immunologic, and tumor cells, notably, hepatomas and MCF-7 breast cancer cells (74-76, 338). This AFP receptor is a 62- to 67-kD protein first detected on human breast cancer cells (77) and later purified from monocyte cell membrane preparations (74). In summary, the field of AFP-binding proteins and receptors is in the early stages of discovery and these receptors have yet to be scrutinized and subjected to cloning, chemical characterization, and physiological study.

AFP Fragments

Plasma proteins such as ALB and AFP could possibly serve as circulating protein reservoirs of biological response-modifying peptide fragments. Many proteins are known to serve as precursor molecules and to contain multiple modular sequences or cassette segments generated by proteolytic processing to produce smaller biologically active peptides (78-81). Limited proteolysis of larger proteins appears to be a general mechanism for in situ generation of a variety of regulatory peptides in the circulation (clotting, bleeding, and complement fixation) (69). In many cases, a simple, large polypeptide serves as the precursor proprotein (pre-proprotein) for a host of biologically active peptides that function in the gastrointestinal, endocrine, cardiovascular, and nervous systems. The peptidic and short amino acid segments (fragments) cleaved from the substrate often display biological effects that differ from the "parent"

protein. One such example would be the angiogenic peptides developed by Judah Folkman et al. (82) such as angiostatin and endostatin, which are fragments derived from collagen and plasminogen, respectively. Endostatin, for example, is cleaved from the collagen protein by elastase (83). Such peptidic fragments may participate in a host of biologic roles, including biochemical antagonism and agonism. hemostasis, feedback control, and hormonal modulation/ regulation. It has been previously reported that short amino acid sequences of ALB and AFP demonstrate sequence similarity with cleaved fragments from neurotensin and neuromedin (84). These peptides were cleaved from a kinetensin "parent" protein, which generated peptides capable of modulating biological responses in the endocrine, cardiovascular, digestive, reticuloendothelial, and central nervous systems (see below and Table III). It is of interest in this discussion that excessive placental secretions of neurokinin have recently been associated with pre-eclampsia in the third trimester of pregnancy (333). It has long been known that pre-eclampsia is associated with elevated AFP levels (334, 335).

Enzymatic Fragments. The ALB molecule has been repeatedly subjected to enzymatic digestion using trypsin, pepsin, chymotrypsin, and others to determine ligand-binding sites (85). In contrast, few studies employing enzymatic digestion of AFP have been reported, other than those using mass spectrometric analysis of the fetal protein (86). However, a recent study by Dudich et al. (50) subjected HAFP to time-limited (mild) peptic hydrolysis using charcoal stripped ligand-free preparations. These investigators obtained and characterized two major AFP peptide fragments, 38 and 32 kD, which were further hydrolyzed to two proteolytic resistant moieties of 23 and 26 kD, respectively. These latter two fragments retained reactive secondary, tertiary, and antigenic structure and were representative of the compact, rigid forms of domains 1 and 3. In contrast, the chemical behavior of the interconnecting domain 2 demonstrated a secondary structure, but lacked a rigid tertiary structure, a form consistent with the "molten globule" state. When subjected to tests of biological activity employing apoptosis, it was determined that both P23 and P26 (domains 1 and 3) in a dimer state, together with participation of domain 2 were required for apoptotic signaling in a Raji cell line. Both full-length AFP and its fragments have been implicated in both apoptosis and tumor cytotoxity.

Synthetic Peptide Fragments. The first biologically active synthetic peptide derived exclusively from HAFP was reported by the author's laboratory for a segment that regulated estrogen-induced growth (87). In that report, an amino acid segment from HAFP 445 to 480 was synthesized by F-Moc chemistry, purified by reverse phase (C-18) HPLC, and structure-confirmed by electrospray mass spectroscopy and amino acid sequence analysis. Subjection to circular dichroic spectroscopy and Fourier infra-red spectroscopy revealed a secondary structure consisting of 10% alpha-helix, 50% beta sheets and turns, and 40% random

Table III. Human Alpha-Fetoprotein (HAFP)-Derived Peptides Listed According to Domain, Amino Acid Location, and Proposed/Observed Functional Activity

			<u></u>	
Peptide name	Amino acid ^a sequence/number	Domain location	Functional activity	References
38-kD	~1–250	1	Apoptosis related peptide	50, 284
23-kD	~1–50	1		,
32-kD	~400–590	3	Apoptosis-related polypeptide	50, 289
26-kD	~500–590	3		•
Predicted leucine heptad repeats	496-533	3	Protein-to-protein interaction site	49
•	534-588		·	
Kinetensin-like segments	146 IARRHPFLY	1	Neurotensin-related	7, 84
•	339 MSRRHPQLA	2	cardiovascular events	
	536 LVKQKPQIT	3		
Growth inhibitory peptide (P149)	447 LSEDKLLACGEG	3	E ₂ Receptor-Binding	63, 30
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	459 AADIIIGHLCIRH	3	E ₂ -Binding Non-E ₂	
	472 EMTPVNPG	3	Growth Inhibitor	
Insulin-like segment	13 LDSYQC	1	Glucose uptake mediator	88
Epidermal growth factor-like segment	13 LDSYQCT	1	Overcoming drug resistance	89, 90
Histocompatability segment	522 GVALQTMKQ	3	HLA-class-l peptide	57, 58
Extracellular matrix motifs	252 RGD	2	Cellular adhesion tripeptide	7, 97
	194 LRE	1	• •	•
Major fatty acid-binding site	209 KNFGTRTFQAIT VTKLSQK	2	Fatty acid-binding interface	116, 139
Estrogen-binding site (rodent)	423 APELIDLTGKMVS IASTCCLSEE	3	E ₂ - and E ₁ -binding (mouse) interface	314, 315
Predicted actin-binding site	375 DKGEEELQ	2	Possible actin-binding interface	7, 109
Human milk peptide segment	398 GLF	2	Binds to macrophages	7, 316
Predicted Zn++-binding site	244 VAHVHEHC	2	Possible heavy metal-binding site	312, 313
Proline-rich motif	AAA: 110, KKPTPASIPL- FQVALPEPV	1	Possible SH3 ligand	7, 317
Plasminogen activator-like segment	552-590	3	Growth regulation of transformed cells	7, 79
Segment lacking ALB identity	38–119	1	HAFP-specific monoclonals	6
Segments showing ALB identity	145–160	2	HAFP receptor crossreactivity	311
	488-504	3	•	

Note. HLA = histocompatability locus; SH3 = SHr protein-to-protein interaction.

coil. The peptide, numerically designated synthesis No. P149, was capable of inhibiting both steroid-dependent and -independent growth events, including thyroid-induced frog metamorphosis (30). Computer modeling of the P149 peptide revealed a largely hydrophilic linear peptide with a right angle beta-turn in the last third of the carboxy-terminus. Subsequent studies have shown that the peptide was capable of growth suppression in both estrogen-dependent and -independent tumors (173).

The use of other AFP-derived peptides has increased in the last 5 years (Table III and Fig. 3). These studies have involved peptides located near the carboxy-terminus of domain 3 and some located near the amino-terminal side of domain 1. A synthetic peptide from domain 1, LDSYQC, was studied to determine its influence on glucose uptake by human erythrocytes (RBCs). The LDSYQC peptide was found to stimulate the entry of glucose into RBCs from insulin-dependent diabetic children after a 1-hr treatment in 10^{-8} M to 10^{-6} M peptide in vitro (88). It was of interest that the peptide effect mimicked that of insulin at 10^{-9} M to 10^{-7} M concentrations. An amino acid sequence in insulin (amino acids 17–21) was found to be homologous to the

AFP peptide. It was this same sequence on AFP (LDSYQCT) that also increased the antiproliferative potency of the drug "Cytozar" on cultured lymphocytes from chronic lymphoid leukemia patients (89). The LDSYQCT peptide at 10⁻⁸ M to 10⁻⁷ M significantly increased the suppression of lymphocyte proliferation in cells from patients experiencing drug resistance. Further, sequence matching of the AFP amino acids 13 to 19 by these investigators showed amino acid identity/similarity not only to the insulin alpha-chain (see above), but also to epidermal growth factor (amino acids 26–32) and glycodelin (amino acids 67–67 and 114–120) (See Ref. 90).

An AFP-derived peptide has also been identified as a potential HLA-A2.1-restricted peptide epitope obtained from a computer analysis of the HAFP complete sequence. Amino acid sequence 542 to 550 from the third domain of HAFP (GVALQTMKQ) was found to bind with low affinity to CD8 dendritic T-cells bearing HLA-A2.1 class I alleles, and displayed slow dissociation kinetics (58). The No. 542 to 550 HAFP peptide generated the induction of human lymphocyte T-cell clones in culture; this peptide in transgenic mice recognized AFP-transfected targets in both cy-

^a Amino acid single letter code.

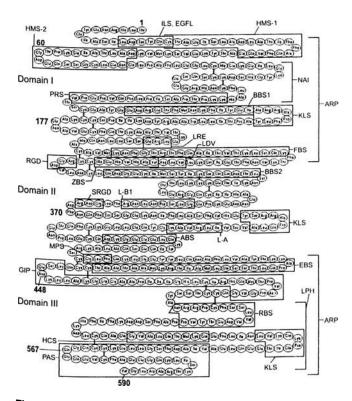


Figure 3. Amino acid peptide sequences of HAFP with known or proposed biological (physiological) activities. Sequences include both enzyme-derived fragments and synthetic segments. ABS, (proposed) actin-binding site; ARP, apoptosis-related peptide; BBS 1,2, (predicted) bilirubin-binding sites; EBS, (documented) estrogenbinding site (in rodents); EGFL, epidermal growth factor-like segment; FBS, (confirmed) fatty acid-binding site; GIP, (documented) growth inhibitory peptide; HCS, histocompatability Class II (confirmed) segment; HMS 1,2, (predicted) heavy metal-binding sites; ILS, (GenBank derived) insulin-like segment; KLS, kinesin-like segments; LPH, leucine predicted heptads; L-A, (GenBank derived) laminin-A segment; L-B1, laminin-B1 segment; LRE, LDV, and RGD, (documented) cell adhesion sequences (one-letter amino acid code); MPS, (documented) milk casein peptide segment; NAI, nonALB identity site (confirmed); PAS, (GenBank derived) plasminogen activator segment; PRS, proline-rich sequence; RBS, (proposed) HAFP receptor-binding site; SRGD, segment reversed RGD site; ZBS, (proposed) zinc-binding site. Data obtained from Refs. 7, 49, 63, 87 through 94, 96, and 97.

totoxicity and cytokine release assays. These studies demonstrated that AFP-reactive clones have not been deleted from the human T-cell repertoire, and that AFP is a potential target for T-cell-based immunotherapy using peptide-based specific strategies.

Cellular Adhesion Sequences

The present discussion concerns features unique to the second domain of AFP, which has short peptide sequences common to ECM proteins bearing cellular adhesion motifs (CAMs). This finding distinguishes AFP from ALB, αALB, and DBP, which do not include short peptide sequence similarities to the ECM protein family (laminin, fibronectin, collagen, vitronectin, thrombospondin, etc.) of adhesion macromolecules (91). Adhesive macromolecules have potential utility in developmental and disease states involving growth, differentiation, cell migration, and tumor metasta-

sis. Using synthetic peptides derived from the ECMs, the functional significance of such short signal peptide sequences has been identified from one or more domains of these molecules (92-94). Some of the CAM-derived synthetic peptides have been found to block cell differentiation, tumor growth, and angiogenesis. Some ECM proteins (laminin, collagen, and fibronectin) contain multiple biologically active peptide sequences with differing activities specific to cell type (95). Also, the various cellular receptors for a particular active site sequence may differ slightly among specific cells, permitting a large diversity of biological functions and cell regulatory roles. Mammalian AFP, especially the second domain, contains short peptide sequences that are common to the ECM proteins. Further, AFP appears to possess a multiplicity of such peptide sequences, which suggests involvement in a diverse range of biological activities.

A variety of cell attachment peptide sequence sites from ECM proteins (see Refs. 91–108) have been listed in Table IV (left column) together with mouse AFP, and HAFP, ALB, α ALB, and DBP numbered peptide sequences. On inspection of the matched peptide sequences, it is observed that frequent amino acid matches of AFP with CAM-like sequences occur in the second domain of AFP (amino acids 190-394). Exact amino acid matches appear less frequently on human ALB and DBP molecules. The physiological functions of the adhesion sequences of the CAMs and the cell types involved are listed in the right hand column of Table IV. It becomes apparent that a large number of diverse cellular adhesion activities might be involved and that AFP shares short sequence similarities with a variety of the different CAM segments identified to date. Such a diverse array of peptide recognition signals suggests that AFP might share functional properties with adhesion molecules, as previously suggested (7). However, such capabilities of AFP might ultimately depend on its ligandbound state and extracellular localization during growth.

It is of special interest that a periodic spacing of the signal recognition peptides is readily observed in the second domain of AFP. The first of the known peptide signals, LRE, is positioned at the amino-terminal side of domain two on the HAFP molecule (amino acids 194-196). There follows a gap of approximately 40 amino acids before a second signal peptide (LDV) occurs at HAFP amino acids 241 to 243. It is at this point that a pattern of regularity arises. The next four signals (including LDV) occur approximately every 10 amino acid sequences from amino acids 240 to 270. including LDV (fibronectin), RGD (fibronectin), DGEK (collagen I, IV), and YICSQ (laminin B1). The RGD sequence on AFP may be positioned on a tight turn of an exposed loop, as seen on the crystal structure of ALB. which is similar to AFP (20) (Fig. 2). The next proposed signal peptide at AFP amino acid 309 (PNLDR) is similar to laminin B1, followed by a scrambled RGD at amino acid 316, and a sequence at amino acid 351 (ILRVK) comparable with laminin-A. Scrambled RGD is known to be a growth inhibitor sequence (97).

Table IV. Cell Adhesion Sequences in Extracellular Matrix Proteins Compared With Sequences on Alpha-Fetoprotein, Albumin, Vitamin-D-Binding Protein, and Alpha-Albumin

Molecule and sequence number	Amino acid* recognition sequences	Proposed action	Reference	
Laminin-S	LRE	Promotes adhesion of ciliary ganglia	91	
HAFP 194	LRE			
MAFP 189	LRE			
HALB 189	LRD			
HDBP 184	LKE			
Fibronectin	LDV	Promotes cell adhesion and spreading in neural crest	99, 100	
HAFP 241	LDV	cells and lymphocytes		
MAFP 234	LDV			
HALB 235	TDL			
HDBP 233	EDV			
Fibronectin	RGD	Promotes cell adhesion, inhibits tumor metastases,	97, 98, 100, 106, 105	
HAFP 252	CRGD	reduces fibrinogen-platelet aggregation and affects		
MAFP 247	CQGD	differentiation angiogenesis		
HALB 247	CHGD			
HDBP 251	CGSA			
Collagen I and IV	DGEA	Blocks platelet adhesion to collagen, but not	110, 111	
HAFP 261	DGEK	fibronectin and laminin and blocks cancer cell		
MAFP 256	DGEK	adhesion to collagen		
HALB 256	DRAD	•		
HDBP 257	DCMA			
Laminin B1	YIGSR	Not reactive with neural cells, inhibits tumor	93, 95, 103	
HAFP 268	YICSQ	metastases (growth and angiogenesis), and		
MAFP 263	YICSQ	promotes cell migration		
HALB 263	YICSQ	•		
HDBP 268	KLCDN			
Laminin B1	PDSGR	Inhibits tumor growth and metastases, angiogenesis	108	
HAFP 309	PNLNR	on chorio-allantoic membranes		
MAFP 304	PSQFL			
HALB 303	PSLAA			
HDBP 305	PELPD			
Scrambled RGD	LGDR	RGD inhibitor/antagonist; MHC Class II-related	97	
HAFP 316	LGDR			
MAFP 311	LGDR			
HALB 311	VESK			
HDBP 314	PTNK			
HAAB 308	REGK			
Laminin A	SIKVAV	Reactive with neural cells and increases tumor	92	
HAFP 351	ILRVAK	metastasis, plasminogen activation, and		
MAFP 345	ILAVSV	collagenase activity		
HALB 346	LLRLAK	•		
HDBP 345	LSKVLE			
HAAB 355	LLRIVQ			

Note. Letters indicate the single-letter amino acid code. HAFP, human alpha-fetoprotein; MAFP, mouse alpha-fetoprotein; HALB, human serum albumin; HDBP, human vitamin-binding protein; and HAAB, human alpha-albumin.

Functional Significance of CAMs. Functional subdomains of the CAMs have been described and their biological significance has been realized and delineated (9, 13, 28, 91). Multiple studies of CAM recognition signals have shown that they modulate an array of critical biological activities (See Refs. 98–105). Some of these activities include cell adhesion, migration, differentiation, growth, neurite outgrowth, tumor spread, enzyme activity, angiogenesis, and heparin, fibrin, collagen interaction (Table IV). The CAMs located in the ECM interact with a vast array of cell/tissue types, which include epithelial, muscle, fat, peripheral neural, fibrous connective, platelet, endothelial, and tumor cells (melanoma and adenocarcinoma cells) (91).

This interaction involves binding of the CAM to cell surface integrins.

The native adhesion proteins (i.e., laminin, collagen, fibronectin, etc.) are found primarily in basement membranes, often tethered to collagen and fibrillar networks. Since each of these proteins contains multiple biologically active adhesion signal peptides, they collectively exert a growth regulatory function on cell migration, spreading, and differentiation. Modulation at these control levels is also a crucial factor in tumor growth and metastasis. Some adhesion proteins are known to contain two signals of opposing activities (YIGSR and SIKVAV of laminin), demonstrating that additional fine-tuning controls are in place on the same

molecule to even further regulate adhesion activities (106). Two such sites may not be simultaneously available on a protein due to ligand and/or conformational masking and could be progressively unveiled during a cascade such as the clotting/anticlotting network. Although the integrin cell receptors for a particular adhesion peptide are distinct for specific cell types, it is known that some integrins can recognize multiple sites on CAMs such as the YIGSR, RGD, and SIKVAV sequences for laminin (96).

Cell Adhesion During Development. These adhesion peptides have also been studied during various developmental stages and have been shown to influence cell differentiation, tissue elongation, cell migration of mesenchyme and neural crest cells, and specific stages of embryonic development (100, 107). Specific peptide sequences (YIGSR) can determine basement membrane cellular attachment, Sertoli cell cord formation, endothelial and salivary cell alignment on basement membranes (SIKVAV), cell adhesion and spreading, and angiogenesis on chorio-allantoic membranes (100, 108). In neural growth, active synthetic peptides can regulate neurite outgrowth, promote the adhesion of ciliary ganglia, recognize various neuronal cells, and influence tyrosine hydroxylase activity in neural transmitter precursors (96). In cancer growth, active site peptides can block adenocarcinoma cell adhesion to collagen and/or laminin or enhance melanoma cell adhesion to such proteins (100, 101). Finally, in hemostasis, adhesion peptides can regulate angiogenesis, plasminogen activation, collagenase IV activity, platelet adhesion, and sites for heparin binding. Most cells use the various integrin-receptor systems as a basis for such activities (109, 110). These data suggest that AFP might be capable of binding to the integrin-receptor system and should prompt further binding studies (111).

Proposed Significance for AFP. From the teleologic standpoint, it would be reasonable that a fetal protein with reported growth regulatory activities would display an array of adhesion peptides sites in its primary structure (See review in Ref. 111). It would be logical that a serum fetal protein, which ontogentically precedes ALB formation and synthesis, could possess an extensive armamentarium of adhesion site signals that might influence growth and cell differentiation. However, the similarity on AFP of such a diverse multitude of sequence signals common to a variety of adhesion macromolecules may be more than coincidence. This suggests that AFP may play a role in fine-tuning the architectural interstitial growth patterns in developing organisms.

Following the aforementioned logic, it appears that AFP could be armed with pairs of adhesion peptide signal sequences, some of which are known to function with opposing activities. Thus, AFP might possess an array of peptide sequences that differ slightly from the CAM sequence and thus serve as inhibitor sequences (see Table I, GDR versus RGD). As alluded to above, all adhesion sites may not be concurrently accessible since AFP is thought to ex-

press different functions at various developmental stages (4). Some sites may be unmasked or made conformationally available during progressive stages of embryonic and fetal development. As in the case of RGD, it appears that the peptide sequences and tertiary structure surrounding that particular peptide site could be important for its eventual activity or its competition in the native AFP molecule, as was shown for the cyclic peptide CRGDCL (112). It is also known that several upstream (amino terminal) sequences in fibronectin function as synergistic cohorts regarding RGD activities (113, 114). It is of interest that AFP binding of fatty acids, bilirubin, and various drugs occurs in the second domain of the molecule (7). In fact, fatty acids are known to be bound at amino acids 209 to 227, in a region lacking CAM sites (115, 116).

The proposed activity of these adhesion peptides in AFP must of course await experimental verification. The peptides are easily synthesized; however, suitable experimental models to assay their biological activity are not as readily available. Such cell adhesion models do exist and efforts to document their activities might prove rewarding for therapeutic and diagnostic purposes. Undoubtedly, there are additional active peptide sequences in AFP, especially in the non-CAM peptide region (amino acids 197-240) described above or in other domains. The use of synthetic AFP-associated CAM peptides could more clearly delineate and possibly unravel developmental mechanisms concerning growth, differentiation, and tissue architecture. Such AFP peptides may find utility as therapeutic, diagnostic, or screening (marker) agents in diseases such as cancer and hematological disorders. Others might find uses in biotechnology procedures such as cell cloning and hybridization, matrigel cell culture assays, coating of artificial transplants/ implants, and adsorption to prosthetic devices (91). Finally, it is conceivable that cells or proteins armed with adhesion peptides could be targeted to areas of chronic or acute inflammation to possibly accelerate wound healing, inhibit metastases, and minimize the formation of scar tissue at lesion sites.

Molecular Microheterogeneity

Carbohydrate Isoforms. In contrast to ALB, AFPs are glycoproteins containing carbohydrate moieties in one to three N-linked glycans. While HAFP contains only one N-linked glycan at Asn 232 on domain 2, mouse AFP displays three sites at Asn 232, Asn-310 on domain 2, and Thr 483 on domain 3, and rat AFP possesses three sites at Asn 232, Ser 96 (domain 1), and Asn 310 on domain 2 (117, 6, 7). In human, the structure of the glycan on AFP produced by a hepatoma differed from that produced by a yolk sac tumor (11). The AFPs produced in cells from different organs and under various pathological conditions have the same sequence and are immunologically the same (2.2-kb form); thus microheterogeneity is displayed by AFP's reaction to different lectins and to pH environments (see below).

Different isoforms can be demonstrated by electropho-

retic, chromatographic, and isoelectric techniques in combination with methods employing lectins (See Refs. 118-126). Therefore, most researchers denote AFP variants as binding (reactive) or not binding (nonreactive) with their respective lectins (Table V). The three lectins that have been most useful for studies of AFP are concanavalin-A (Con A), Lens culinaris agglutinin (LCA), and Vicia faba agglutinin (VFA) with a d-mannose specificity (11, 118). Lectin specificity for d-galactose is also demonstrable with Ricinus communis agglutinin-1 (RCA), and Viscum album agglutinin-1 (VAA), both of which react and bind to the carbohydrates of HAFP. The galactose-specific lectins are thought to react with the penultimate galactose of the biantennary AFP glycan chain. The lack of reactivity with other lectins permits one to determine the structure of the glycan of all AFP variants (126, 127). However, the mannose-specific lectins require the presence of one fucose bound to the glycosyl-N-acetyl (GlcNAc) next to the Asn residue. Studies have shown that most molecules of HAFP possess a biantennary glycan substituted with two sialic acid residues (11). Some lectins such as phytohemagglutinin can be induced to bind to HAFP following removal of sialic acid residues (123). Wheat germ agglutinin, which does not bind to HAFP, requires an additional fucose adjacent to the GlcNAc next to the Asn residue (125).

The sugar chains are not genetically encoded, but are dependent on the set of glycosylation enzymes present in the endoplasmic reticulum (ER) and the Golgi complex of the host cell. However, these enzymes have different tissue distributions, and the variants of AFP are due to the various tissue specific pathways involved (128–131). Thus, yolk sac-derived AFP differs from AFP of hepatic origin. However, AFP in amniotic fluid consists of a mixture of these

two types in different ratios, depending on gestational age. Differences encountered in various tumor types also suggest quantitative as well as qualitative differences in the glycosylation enzymes from each tumor (Table V).

The carbohydrate heterogeneity of HAFP has spurred the use of lectin-affinity separation techniques for use in the diagnosis of specific fetal defects and for distinguishing between different tumor types. It was first shown in 1979 that isoforms in amniotic fluid AFP contained Con-Abinding and Con-A-nonbinding variants as a mixture from both yolk sac- and liver-derived origins (128). The nonbinding variant is decreased in pregnancies with neural tube defects, and can be separated and quantitated by column chromatography. By 1981 it was already obvious that determination of AFP-branched sugar heterogeneity would be a useful tool in the differential diagnosis of cancer (132, 133). Yolk sac tumors and gastrointestinal cancers could be distinguished from hepatomas based on LCA reactivity, and from benign liver disorders (nonreactive LCA) employing imaging procedures (134). The addition of lectin affinity chromatography and affinity electrophoresis in conjunction with autoradiography, indirect enzyme-linked immunoabsorbant assay (ELISA), and blotting techniques has since amplified the detection of a multitude of AFP glycoforms. These techniques have added a new dimension to identification since variants can be detected not only as binding and nonbinding bands, but also as gel retardation moieties.

Using combined lectin affinity-based procedures, i.e., crossed affinity immunoelectrophoresis, at least 10 HAFP glycoforms have now been identified and characterized (126). Lectins have been found to be specific not only for sugar residues, but also for the whole carbohydrate molecule. More recently, inclusion of additional lectins such as

Table V. Specificity Reaction or Nonreaction of Selected Lectins With Human Alpha-Fetoprotein (HAFP) IsoForms and Their Clinical Utility as Biomarkers in the Differential Diagnosis of Cancer and Fetal Defects

Type of lectin	HAFP reactivity	Sugar specificity	Isoforms detected	Clinical utility	Reference
Concanavalin A	Reactive	d-mannose	2	PRG, HCC, YCT, MHC	118, 119
Lens culinaris agglutinin	Reactive	d-mannose (I-fucose)	2	HCC, LCH, BLC, MHC	134, 118
Pisum sativum agglutinin	Reactive	d-mannose (I-fucose)	3	HCC, BLD	11, 125
Ricinus communis agglutinin 1	Reactive	d-galactose	3	HCC, YST	128
Viscum album agglutinin 1	Reactive	d-galactose	4		132
Peanut agglutinin	Nonreactive	d-galactose-1-3dgalNAc	NA	NA	122, 123
Phaseolus vulgaris erythroagglutin	Reactive	Complex biantenary glycan	5	HCC, YST, MHC	124, 125
Phaseolus vulgaris leucoagglutinin	Nonreactive	Complex tri- and tetranary glycan	NA	NA	125, 127
Wheat germ agglutinin	Nonreactive	GlcNAc (NeuAc)	NA	NA	120, 125
Soybean agglutinin	Nonreactive	d-galNAc	NA	NA	126
Griffonia simplicifolia 1	Nonreactive	d-galNAc	NA	NA	127
Dolichos biflorus agglutinin	Nonreactive	d-galNAc	NA	NA	123
Jackfruit agglutinin	Nonreactive	d-galNAc	NA	NA	11
Griffonia simplicifolia 2	Nonreactive	d-glcNAc	NA	NA	133
Ulex europeus agglutinin	Nonreactive	I-fucose	NA	NA	126

Note. PRG, pregnancy isoforms detected in amniotic fluid, umbilical cord serum, and maternal serum; HCC, primary hepatocellular carcinoma; MHC, metastatic (hepatoid) hepatocellular carcinoma found in extra hepatic tissues; YCT, yolk sac tumors; NA, nonapplicable to alphafetoprotein; LCH, liver cirrhosis; and BLC, benign liver disorder.

Phytohemagglutin-A (E-PHA), allomyrina dichotoma lectin (ALLO-A), and Datura stromonium agglutinin (DSA) has increased sensitivity and specificity of lectin reactivity with AFP (127). With the use of the new lectins and novel methodologies, the glycoforms of maternal serum AFP were found to be similar to those from umbilical cord serum AFP. This finding may be useful for evaluating the developmental state of the fetus by examining the nature of the AFP sugar chain. Initially, the use of MoAbs specific to AFP variants seemed to be unsuccessful. These early negative results may have occurred because the biantennary glycans of HAFP may be a self-antigen for mice, and because of the use of fetal calf serum, which may contain bovine AFP, with similar glycoforms as HAFP. However, recent studies using LCA-reactive and -nonreactive AFP demonstrated that LCA inhibited the binding of two MoAbs to HAFP, showing that a competition existed between the antibodies and LCA for the AFP sugar chain (12).

The present review was not intended to be all-inclusive for the carbohydrate microheterogeneity of AFP glycoforms. Therefore, the reader is referred to the extensive reviews on this topic published by Breborowicz, Lamerz, and Taketa (11, 126, 127, 337). Regarding the physiology of the microheterogenetic carbohydrate forms, rat AFP subjected to lectin columns shared higher estradiol binding affinities with less carbohydrate ($K_A = 10^{-8}$ M with 0.1–0.5 binding sites), while the high carbohydrate forms bound E_2 with lower affinity ($K_A = 10^{-7}$ M and 0.5 site) (135). Also, purified mouse AFP devoid of carbohydrate had very highaffinity binding sites for estradiol ($K_A = 0.7 \times 10^8$ M, W = 3) (136). Finally, studies showed that human peripheral lymphocytes were inhibited by AFP in the blast transformation assay in response to PHA and Con-A stimulation, but not pokeweed mitogen (137).

Isoforms of pH Heterogeneity. Isoforms of AFP have also been identified and characterized following exposure to changes in the pH environment. An early study by Alpert et al. (138) ascertained that HAFP could be separated into two major molecular forms by isoelectric focusing followed by classical chromatographic separation procedures. The two forms, found in both hepatoma and fetal sera, displayed isoelectric points of pH 4.8 and 5.2. The authors reported that a single homogeneous form (pH 5.2) could be produced after treatment with neuraminidase. Two subsequent reports followed in which another group of investigators demonstrated that the two isoelectric isotypes (pH 4.8 and 5.2) could be distinguished by their fatty acid content (139, 140). The pH 4.8 material contained 2.4 mol of fatty acids/mol of protein, while the pH 5.2 form contained no fatty acid. Removal of the fatty acids by treatment with charcoal converted all the AFP into material displaying an isoelectric point of pH 5.2. Addition of fatty acid to this HAFP solution again restored the protein to an isoelectric point of 4.8. More recent studies employing isochromatofocusing of HAFP in cord blood revealed the presence of three isoelectric variants (141). These pH isotypes included

a pH 4.5 (52%); a pH 4.7 (43%); and an isovariant (at <pH 4.0) that could be eluted from the column by a 1.0 M NaCl solution. In this report, a pH 5.2 variant was not reported using cord blood as the AFP source. Conformational transition forms can also be induced in AFP by changes in pH as discussed later. AFP molecular transition forms have been reported at both acid and base extremes of the pH range (142). The conformational changes are reversible and gradual, indicating the presence of multiple transition forms of AFP. The authors of this latter paper reported that both rodent and HAFP had a remarkable hydrophilic exposed molecular surface at neutral pH and possess extensive hydrophobic segments hidden in molecular crevices as discussed in both the peptide fragment and epitope sections.

Antigenic Variants

AFP, as a member of the albuminoid gene family, displays 38% to 40% amino acid sequence identity to ALB (6, 117). Although unreactive in their native folded states, RIA utilizing reduced and carboxymethylated (CM) proteins as antigens reveal a serological cross-reactivity between AFP and ALB (143). Unfolding of the polypeptide chains by reduction of the disulfide bonds followed by CM produces derivatives that differ from the native state and crossreact in an RIA between AFP and ALB. It was further observed that ALBs from different animal species were equally crossreactive as HALB; overall, the AFP crossreactivity assays were found to lack species specificity (144). Although most serum proteins unrelated to AFP or ALB reacted little if any in the RIAs, transferrin (TRF) unexpectedly demonstrated a crossreactivity. No crossreactivity of TRF with AFP in its native states was observed; however, antisera to CM-AFP reacted with CM-TRF at high titers. Interestingly, the Gc DBP showed only moderate reactivity in this study. All the above RIA associations were further confirmed using Western blotting procedures. These results suggested that both TRF and Gc protein were structurally related to both AFP and ALB. Although Gc protein has been classified as an albuminoid family member, TRF is seemingly unrelated and these findings remain to be explained.

Immune Tolerance. AFP, when injected into a foreign species, produces a strong immune response, as does ALB. However, neither ALB nor AFP elicits an immune response in the species in which the proteins originated (145). Moreover, AFPs from different mammalian species are crossreactive and antibodies to HAFP induced in chickens recognized all mammalian species tested (146). Breakage of tolerance to autologous AFP can only be achieved using chemically modified or desialylated AFP injected with complete Freund's adjuvant into animals (147-149). Thus, the tolerance can be terminated by immunizing either with heterologous or hapten-modified homologous AFP. which results in production of antibodies that react with native host AFP (150). These antibodies crossreact with AFP in its native state, and the unfolded (reduced and CM) forms of AFP also show immunologic crossreactivity. The

antibodies produced in this fashion were found to diminish the AFP levels normally measurable in the host serum (151, 152). Such antibodies also diminish the elevation of serum AFP seen in hepatoma-bearing rodents, but do not protect against such tumors. In comparison, heterologous immunizations of mouse AFP into rats and vice versa have induced fetal death in pregnant animals (148, 153). The passive immunization of heterologous antibodies into hepatomabearing mice was found to induce pathological changes and suppress overall growth of these tumors (154). Furthermore, in vitro studies of such heterologous antibodies were found to be cytotoxic to murine hepatoma cells (155, 156).

Antigenic Determinant Sites. Serum ALB has been extensively used as an antigen. AFP is also a prime antigen when used as a foreign protein in a host species. The multiple antigenic determinant sites on proteins, lipoglycoproteins, and polysaccharides are termed epitopes, which are specific, limited parts of an antigen molecule that serve as inducers of antibody formation. When an antigen is employed to raise antibodies, the nature of the antigenic specificity should be considered for optimal usage. Induction of antibodies by an antigen molecule depends on rigidity of the molecule, presence of functional groups, size of the determinant sites, and the tertiary structure of the immunogen. Within an epitope, there is one area that is usually more dominant than the others even though the total determinant group may cover a large region. This area is known as the immunodominant site and often protrudes the farthest, but is not necessarily the terminal group (157). The immunodominant site comprises the major region of an epitope that confers individual and species variability and may even vary within an individual. In accordance with reported calculations and observations, the major epitopic site has a molecular size of about 10,000 Daltons; therefore, a molecule such as AFP (65 to 70 kD) should predictively display six to seven major epitopes (158). However, upon denaturation, as many as three internal minor sub-epitopes can be exposed per major epitope. The major epitopes are referred to as the functional valence of the molecule, while the internal sites exposed by denaturation are termed the nonfunctional valence (NFV). Hence, AFP should display at least six major epitopes (valence = 6) and possibly up to 12 additional minor epitopes (NFV = 12) for a possible total of 18 antigenic sites.

Epitope Analysis. A summary of the epitope analysis of HAFP with an array of MoAbs was reported at an international workshop in 1998 (159). Previous reports using polyclonal antibodies had inferred that HAFP indeed displayed at least six major epitopes (160). A summary of the findings of the 1998 workshop was published in a series of four consecutive reports. Using 30 different antibody clones against HAFP, two reports confirmed the presence of five to six major epitope clusters and identified several additional minor epitopes (161, 14). One of the major epitopes did apparently contain carbohydrate as part of the immunodominant site specificity as reported in these studies (12).

Another of the epitopes identified in the HAFP molecule demonstrated both open and cryptic (hidden) forms (13). An overall survey of the literature including both mono- and polyclonal antibodies to AFP was in agreement that four to eight distinct epitopes are present on the AFP molecule (162–171) (Table VI).

Epitope Mapping. A study described at the international workshop by Norwegian investigators reported six major epitopes and an additional seven sites of low antibody-binding activity, suggestive of minor epitopic sites (161). The six major epitopes were labeled A, B, C, D, E, and X (a partially hidden site) and were represented by antibodies of high binding affinity (Fig. 2C). A second group led by Russian and Dutch scientists (14) reported at least 11 antigenic clusters, which were categorized into six distinct major epitopes (A-F) derived from 30 HAFP MoAbs. These MoAbs to HAFP exhibited four means by which cross-reactivity occurred: full competition; partial competition; full independence, and enhancement of binding. Additional complexity was encountered when some MoAbs reacted with AFP in solution while others reacted only with AFP adsorbed to a solid surface. Thus, some epitopes were hidden or cryptic in nature and were expressed only on partially denatured AFP adsorbed to plastic or nitrocellulose membranes (NCM). Finally, it was observed that the MoAbs reacted similarly with the major epitopes whether HAFP was derived from umbilical cord serum, placental extracts, or tumor tissue. However, minor epitopic differences between cord sera and placental extracts were found, suggesting conformational alterations in AFP forms from the different tissues (14).

Studies presented by Russian investigators at the workshop (see above) found additional MoAbs reacting against subfractions of native HAFP, suggesting the presence of at least four additional minor epitopic variants (13). These subfractions of AFP displayed similar molecular weights to the native AFP molecule, but showed different serological reactivity when conformationally altered by fixation on NCMs. These epitopes existed in two forms on the native AFP molecule: an open and a cryptic form. Since the hidden sites could be revealed after partial denaturation, these subfractions represented conformational variants that lie partially buried in the compactly folded, intact molecule. Recently, cryptic epitopes on HAFP have been reported to induce spontaneous immune responses in human patients suffering with hepatomas, cirrhosis, and chronic hepatitis (172). The physiological significance of hidden subdomain epitopes on HAFP has emerged as a fertile field for both basic and clinical investigations of AFP-regulated ontogenic and oncogenic growth.

One such hidden epitope on the AFP molecule (P149 peptide) did not react in commercial radioimmunologic, immunoenzymatic, or chemiluminescent assays designed to measure HAFP levels in pregnant and tumor-bearing patients. In contrast, polyclonal antibodies produced in rabbits using keyhole limpet hemocyanin conjugates produced a

Table VI. The Major and Minor Epitopes on Human Alpha-Fetoprotein Are Categorized in Accordance With Immunoglobulin-(Ig) Subclass, Number of Cell Clones, and Scientific Utility

Group	Hybridoma clones	Major epitopes	Minor ^a epitopes	lg class	Scientific utility	Reference
Ruoshahti (1980) Mayumi (1982)	22 11	4 1 determinant major group	NS 1 determinant minor group	IgG (kappa) NS	Serum, amniotic fluid RIAs Reduced and alkylated forms; ascites fluid and cord sera AFP	162 163
Brock (1982)	12	(5 total) 3	NS	IgG, IgA	Pregnancy sera RIAs	164
Micheel (1983)	7	2 4	NS	IgG ₁ IgG _{2a} IgG _{2b}	Solid phase immunofluorescence MoAbs	165
Kaplan (1984)	6	4	NS	lgG ²	Isoelectric focusing isoforms variants	166
Moreno (1988)	8	6-7 (Group 1)	1 (Group 2) 4 (Group 3)	lgG₁ lgG₂	Cord blood isoform variants	167
Alpert (1989)	Polyclonal antisera	6	NS /	Total IgG	Experimental epitope calculation	159
Yazova (1990)	12	6	6	IgG _{2a} IgG _{2b} IgG₁	Present in normal and malignant condition	168
Novo (1990)	5	NS (5?)	NS	IgG ₁	Cord serum analysis hydrophobic affinity	169
Chakraborty (1991)	14	I, II, III, IV, V	NS	lgG₁, lgG₂a lgG₂ь, lgA lgM	Cord serum analysis, avidity measurement	170
Christiansen (1994)	24	6 (A, B, C, D, E, F)	NS	lgG₁ lgG₂₅ lgG₂ь	HAFP epitope mapping	160
Abelev (1994)	Mo Abs and poly Abs	4	4 (subfraction analysis)	IgG	Immuno-affinity on Porous membranes	171
Nustad (1998); ISOBM workshop	30	6 (A, B, C, D, E, X) (high affinity)	9 –2 low binding, –7 very low binding	lgG (Non- specific)	RIAs from pools of cord and tumor sera	161
Yakimenko (1998); ISOBM Workshop	28	6 (including one cryptic site)	4 (non-native; low binding)	lgG₁ lgG₂₅ lgG₂ь	Studies of epitope mapping from cord and placental AFP	14
KARMORA (1998); ISOBM Workshop	30	6	4	lgG	Study of conformational variants, denaturated forms (molecular weight)	13
Taketa (1998): ISOBM workshop	30	2 (LCA and con-A associated)	0	lgG	MoAb studies of lectin interaction	12

All antibodies demonstrated binding affinities between 10⁻⁶ M to 10⁻⁹ M. Note the increase in major detection of epitopes with chronological time. NS, Not stated; Ig, Immunoglobulin; LCA, Lens culinaris agglutinin; ConA, Concanavalin-A; MoAb, Monoclonal Antibodies; and ISOBM, International Society of Oncodevelopment Biology and Medicine.

Conformational variants

moderately high-titered P149-peptide antiserum (1:10,000), which was subsequently adapted to direct and indirect ELISA employing an alkaline phosphatase labeled antibody. By means of the peptide-ELISA it was demonstrated that the antibodies could not detect the amino acid peptide sequence on intact, native HAFP that had been purified from term cord serum (173). However, the immunoreactivity of the peptide antiserum was demonstrable following treatment of native HAFP with high concentrations of estrogen or by solid-phase adsorption of HAFP to the microtiter plate surface. The antiserum also was capable of detecting the peptide in amniotic fluid during pregnancy and in the serum of patients with AFP-secreting tumors.

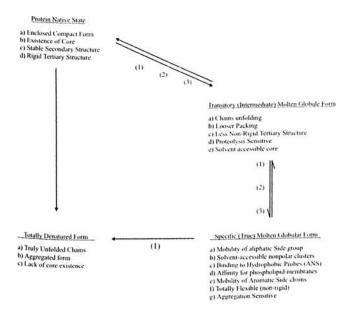
In summary, knowledge of the antigenic structure of AFP is both important and necessary for several reasons. First, knowledge of the major and minor epitopes on HAFP

could lead to more rational designs of monoclonal/ polyclonal antibodies for immunoassay kits produced by the various pharmaceutical companies. Such designs might include both the major epitopes on the native AFP molecule and the minor (hidden and exposed) epitopes observed in the conformational variants of AFP. It may also be important to know the ratio of conformationally transformed to native AFP in the serum to determine whether it may relate to disease states and/or cancer stages. Such information might prompt further comparative studies among the various kit manufacturers, as well as analysis of specific functional groups on the AFP molecule itself. Such information might also be employed to identify AFP domains or motifs responsible for some of its functions such as ligand binding/ transport, cell receptor interactions, growth regulation, and immunoregulatory activities. Finally, these findings could

aid in characterizing and distinguishing the variant states of the AFP molecule such as the compact native form, denatured intermediates, conformational variants, and the MGF (see next section).

Denatured Intermediates and the MGF

Proteins that reside in living cells are thought to assume a conformational state unlike that of the native, secreted molecules found circulating and/or stored in biological fluids (15). The highly variable environments of the different intracellular compartments dictate that a protein exist in a mildly denatured (unfolded) state, which has been termed the MGF (15). As discussed below, the MGF has now been implicated in a variety of physiological activities including protein translocation, insertion into membranes, heat shock protein (HSP; chaperone) binding and recognition, and protein degradation by lysosomes and/or the ubiquitin system. First discovered in 1981 (174), the MGF represents an intermediate folded state of a protein induced by mild denaturing conditions in contrast to harsh exposure to strong ionic solutions, detergents, and extreme pH values, which cause aggregation. This slightly unfolded state of a protein has now been demonstrated for many different naturally occurring proteins including HAFP (175–196) (see Table VII).


Although the MGF can be induced *in vitro* by low pH, moderate ionic strength solutions (guanidinium chloride [GnCl], urea, etc.) and high temperatures, the MGF can also be produced in physiological environments by point mutations, removal of ligands, and disruption of disulfide bonds (15, 176, 177). The MGF can readily be studied using low and high pH or moderate organic solution concentrations with techniques such as near and far ultraviolet circular dichroism, infrared spectra, and nuclear magnetic resonance (NMR). Extremes of the conditions stated above produce a completely unfolded state, which is the totally denatured or aggregated form (Fig. 4 and Table VII). However, it must be noted that not all proteins have been shown to form stable molten globule states or to fold through MG intermediates.

Characteristics of the MGF. The MGF is thought to represent a third thermodynamic state of protein molecules induced by mild denaturation (15, 197) (Fig. 4). Formation of the MGF proteins are proposed to occur in a four step sequence as follows: the native-like state; a transitory unfolded form; the true MGF; and the denatured form (see Fig. 4). The MGF, once considered to be an equilibrium state at mild denaturing conditions, is now viewed as a kinetic intermediate in the protein folding process (197). Thus, the properties of the MGF are its relaxed compact-

Table VII. Alpha-Fetoprotein and Other Proteins That Form Molten Globule Intermediate States Are Listed (see Fig. 4)

Protein name	Molecular weight (KDa)	Denaturing agents	Assay methods	References
Human alpha-fetoprotein	70	Acid pH, urea, ligand removal, temperature	Far to near CD, trp Fluor, scan MCA viscom	50, 175–178
Human serum albumin	65	Temperature, urea, ligand removal, ionic changes	CD, Fluor, spectroscopy scanning micrcalorimetry	176, 186
Alpha-lactalbumin	14	Acid pH, ionic changes, ligand removal	Differential scanning microcalorimetry, CD	179–182
Beta-lactoglobulin	18	Alcohols, DMFA, dioxane	Far to near CD, Trp Fluor, Fluor decay	183
Type C lysozyme	14	Temperature, amino acid mutation	Glycosidase enzyme activity	184
Transthyretin	15	Acid pH, amino acid mutation	Far to near CD, Fluor, SANC, SDS-PAGE	187
Bovine serum fetuin	48	Temperature, GNHCI	Differential scanning, Microcalorimetry trp Fluor, GF	185
Retinol-binding protein	21	Acid pH	Far to near CD, trp Fluor, NMR viscosity	188
Cytochrome-C	13	Acid pH, alcohol	Far to near CD, trp Fluor, MCAL, diffusion	189
FK506-binding protein	12	Urea, aqueous buffers	Far to near CD, NMR	190
Dihydrofolate reductase	17	Temperature, urea	Stopped-flow Fluor, ligand binding	191
Carbonic anhydrase	30	GNHCl, pH, temperature	CD, Fluor, ANS binding	193, 194
Steroid reg-protein	37	pH, urea, temperature	CD, Fluor, proteolysis	192 [°]
Colcin-A	50	Temperature, pH, acid, site-directed mutations	Microcalorimetry, CD, ion channels	195, 196

Note. Fluor, fluorescence; NMR, nuclear magnetic resonance; CD, circular dichroism; PAGE, polyacrylamide gel electrophoresis; Trp, tryptophan; GNHCl, guanidine hydrochloride; Mut, mutagenesis; SANC, small angle neutron scattering; MCAL, microcalorimetry; and ANS, fluorescent hydrophobic dye.

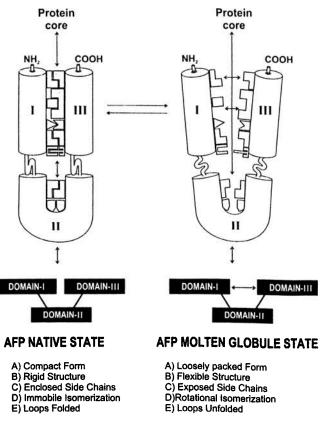


Figure 4. Flow diagram showing the properties and progression of a native protein (see Table 7) to the MGF derived from *in vitro* studies (Refs. 178–186). Directional arrows indicate biand unidirectional flow reactions. The numbered parentheses signify predicted multiple intermediate steps in the progression toward the MGF.

ness, stable secondary structure, nonrigid tertiary structure, and ability to bind hydrophobic probes due to its less rigid tertiary structure.

It is surprising that the MGF, rather than the classical native protein, has been proposed as the common form within the cell for various physiological purposes (15, 198). The cytoplasm of the living cell is teeming with high concentrations of proteins, nucleic acids, and organelles at low pH (4.5-5.0), which commonly encounter heat and osmotic shock, variable electrostatic fields, and a myriad of membrane interfaces (199). Although intracellular environments might not represent the extreme denaturation conditions that can be produced in vitro (urea, GnCl), cytoplasmic proteins do endure mild denaturation states, which probably alter their overall molecular structure (198, 199). In this more flexible form, a protein can readily adapt itself to changing cell conditions such as interaction with chaperones, membranes, stress/shock extremes, and encounters with other intercellular components and organelles. As hypothesized in Fig. 4, AFP (as example protein) in its intact, native form would embody a compact, rigid molecule with an inaccessible central core (Fig. 5). When exposed to a stress/shock microenvironment (i.e., high serum estrogen levels from the mother), the fetal AFP molecule might progress through one or more intermediate forms (representing molecules exposed to slightly increased increments of denaturation) to arrive at a transitory MGF with slightly looser packing and unfolding chains (Fig. 4, top right). This transitory (intermediate) MGF of AFP would be further characterized by a slightly less rigid tertiary form with a central core accessible to solvents. This transitory AFP form, upon continued exposure to the stress/shock state, might then pass through one or more stages toward the true MGF of AFP. The specific (true) MGF of AFP represents a totally flexible molecule with solvent accessible nonpolar residues and complete mobility of both aromatic and aliphatic side chains. This flexible form of AFP is more protease sensitive, binds hydrophobic ligands (dyes), and displays affinity for cell membranes (Fig. 6). Up to this point, both the transitory and true MGFs are in dynamic equilibria (two-way arrows, Fig. 4) depending on their molar ratios; however, the true MGF is aggregation sensitive and might eventually be susceptible to irreversible denaturation (Fig. 4, lower left). This hypothetical form (MG) of HAFP might comprise only 1.0% or less of the total circulating fetal protein (247), but might be expected to increase in the presence of fetal defects (173) and be the estrogen-binding form of HAFP previously described (339, 340).

AFP in the MGF. Laboratory studies have shown that the conformation of AFP is modified following changes in the microenvironment, i.e., increased serum concentrations of hydrophobic ligands such as steroidal estrogens and fatty acids (176–178, 8). It has been reported that HAFP, derived from cord serum, can be induced to undergo a conformational change to the MGF (175). HAFP in this type of configuration would lack a rigid tertiary structure, but would have a native-like content of secondary structure and

Figure 5. Diagrammatic representation of the proposed tri-domain structure of HAFP transitioning from the native to the MG state. This artist's conception is predicted from data derived from Refs. 15, 189, 175 through 178, 194, 197, and 203.

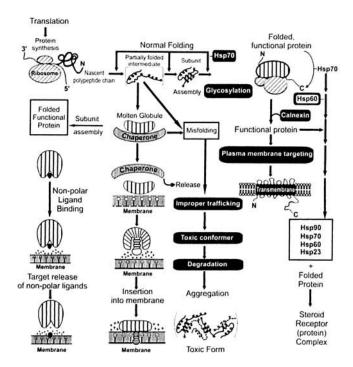


Figure 6. Flow diagram depicting the pathway of the molecular chaperoned folding of ribosome-translated nascent polypeptide chains through the normal folding process to the functional protein. As shown, the partially folded intermediates can be passaged through a MG stage or deemed a misfolded protein destined for degradation. The far right side pathway depicts a folded protein transporting a bound ligand to a membrane surface, while the near left side pathway depicts insertion and passage of the MG intermediate form through a membrane interface. Concepts for this composite diagram were taken from Refs. 15, 195, 196, 198, 189, 207, and 208.

would be intermediate between the native compact form and the completely denatured form (see Figs. 4 and 5). Such denaturing conditions might include anoxia, pH and osmotic extremes, glucose and heat shock, ischemia, and excessive ligand (i.e., estrogens) concentrations. Ligandinduced events are known to induce conformational changes in the HAFP molecule in vitro that expose a site on the protein, which inhibits the growth of estrogen-sensitive cells in a cell regulatory fashion (4, 7, 87, 115). Like other hidden (occult) epitopes on AFP, other sites can be uncovered by fatty acid exposure and solid surface adsorption. While ALB reverts immediately back to the native state following shock or stress at equimolar ratios, AFP was found to retain the mildly denatured intermediate configuration in an irreversible form, leaving any exposed peptide segments intact (176). However, a subsequent report showed that increased ligand molar ratios could revert MG-AFP back to a more native form (178).

The MG configuration for AFP showed a flexible tertiary structure with a native-like content of secondary structure; therefore, HAFP in this form constitutes an intermediate stage between the native compact form and the completely denatured (unfolded or aggregated) form (175, 177, 200). AFP in the MGF would be quite flexible, exhibiting intrinsic rotational properties; its loosely packed surfaces

would expose hydrophobic, aliphatic, and aromatic sidechains that are normally concealed in the native state (Fig. 5). Proteins are thought to assume the MGF as they approach a charged surface or a membrane (196, 201). Once across the membrane itself, the protein refolds to the native state. Calculations have shown that the dielectric constant of water (and buffers) near the flat nonpolar organic surface is one-half of its intrinsic dielectric constant (183, 189). Therefore, a decrease of the water dielectric constant near a membrane can facilitate a local decrease in pH sufficient to transform native proteins into the MG intermediate state. It is the electrostatic attraction of positively charged groups of a protein with the negatively charged membrane surface that brings the protein and the membrane into juxtaposition (189). It has, therefore, been proposed that the MGF is involved in protein adherence, translocation, and insertion into membrane bilipid surfaces (15) (Fig. 6). Indeed, the use of MoAbs has demonstrated that HAFP purified from placental extracts displayed different epitopes compared with AFP passaged into the umbilical cord serum (14).

Induction of the MGF. The AFP molecule at pH 3.1 undergoes a considerable conformational rearrangement and fulfills all the requirements of the MGF (175–177). The acid form of HAFP preserves a native-like content of secondary structure, but has a less compact tertiary structure than the native protein molecule. The affinity of AFP for the hydrophobic fluorescent probe, anilino-napthalinesulfate (ANS), is much higher than that observed for the completely folded native state (175). It has been shown that ANS binds to solvent-accessible clusters of nonpolar groups in the native state (194) and that this binding is even stronger in the MGF than in native AFP. This transformation of native AFP to the MGF appears to result in a substantial increase in flexibility, which facilitates the release of hydrophobic ligands that were bound to the native form (177). Thus, the MGF of HAFP may be of physiological and or pathological significance as discussed below.

The release of hydrophobic ligands from HAFP results in a conformational rearrangement of the molecule to a less compact form, defining the MGF (177). It has further been reported that stripping off the E₂ ligand of HAFP is an irreversible process (at equimolar ratios of E₂ and AFP). It is conceivable that exposing high concentrations of estrogens to HAFP can also produce this state (115). It has been proposed that the interaction of ligand-saturated AFP with cell surface receptors induces a conformational change in the protein accompanied by dissociation of the AFP-ligand complex for delivery to the cell (202) (Fig. 6). The ligands are then translocated to nearby ligand-acceptor sites on the cell surface. The ligand-free AFP molecule can then dissociate from the AFP receptor and be transferred into the cell by endocytosis (see 201, 202).

The denaturation of AFP by an increase in temperature or by exposure to high urea concentrations is irreversible and also results in ligand release from the AFP molecule

Protein	Amino Acid* Sequence #		Acid Sequences	Percent (%) Identity/Similarity	Percent (%) Total
Human AFP	445-480	T S F D K T. T.	ACGEGAADIIIGHLCIRHEMTPVNPGV	G 100/0	(100)
Rattine HSP70	1335-1347	IFFSPLL		50/15	(65)
Pisum s. HSP70	552-558	1113122	AXEEGXSQECIGKLCIQHE	50/28	(78)
Petunia HSP70	533-550		AEEEGGSXECIGELCLQHE	50/22	(72)
Clover HSP70	22-39		AQEEGXSKELIGELCLQHE	50/14	(64)
Tobacco HSP70			VDEEKSGXELIGELCLQHE	50/14	(64)
Yeast CALMD	455-471		ELVNRIGQLCIRLK	44/0	(44)
Human CALRCT	77300-77311		IOSIIVGHLGWFQX	38/15	(53)
Murine PDSI	1535-1547		TADGIVSHLKKQAG	36/21	(57)
Human CALC	130-131		RKFGSTLLICIRHS	28/14	(42)
O. Sativa UDGT	1535-1547 335-353	NKKGKLM	W # P P C P C M	T 42/35	(77)

^{* -} Genebank derived

Figure 7. Matching of amino acid region #445-480 of human alpha-fetoprotein (AFP) with conserved amino acid sequences of heat shock protein (HSP) related factors.

(175). After ligand release, the AFP molecule displays all the properties of the MGF (15). This suggests that the rigid tertiary structure of AFP is controlled by interaction with ligands, while their release results in the MGF (177). Unlike AFP, human ALB denaturation and unfolding appear to be more readily reversible, but may be dependent on ligand: AFP molar ratios. The release of ligands from ALB resulted in only small decreases in stability, but ALB did not undergo extensive MG formation. The authors of this report suggested that glycosylation sites of the AFP molecule may be responsible for the lack of reversibility since ALB contains no such N-glycan sites (176).

AFP appears to be largely a growth promoter rather than an inhibitor, as revealed by a detailed literature survey and the observation that the majority of human pregnancies (>95%) are successfully brought to term without intrauterine growth retardation. However, a small percentage of post-translationally modified AFP molecules have been reported to possess growth inhibitory properties in both in vivo and in vitro assays (173, 309). This small percent of AFP molecules, present in both naturally occurring and cell culture forms, can be increased in vitro by mild denaturation methods such as exposure to solutions of high ionic strength and excessive ligand concentrations (50, 310). Intracellular and intercellular environments such stress/shock-induced conditions might favor conformational changes in the protein, which permit expression of transitory intermediate forms of an energy state that would be consistent with the MGF (15). Similar molecular folding changes have been reported to occur in the ER and are associated with the HSP chaperones (see references below). It has been proposed that altered conformations of the AFP molecule expose cryptic sites (amino acid stretches or motifs) that are normally concealed in molecular clefts in the native form (87, 172). Some of these hidden sites have since been reported, as discussed previously.

Role of Molecular Chaperones

The MGF has a slightly altered tertiary architecture, a property needed to adapt proteins to different cell conditions. The presence of solvent-accessible, nonpolar clusters on the surface of the MGF may serve to facilitate interactions with HSPs and related chaperonins (203, 204). There is now direct evidence that chaperonins only function is to mediate the correct assembly of nascent polypeptides (205). Thus, the chaperonins keep nascent proteins in the MGF to prevent folding at improper times and inappropriate cell locations. The chaperonins function not only during periods of stress (i.e., heat shock, poisoning, ischemia, anoxia, and osmolality), but also during normal cell functions such as nuclear receptor complexing, storage, and cell trafficking (see Fig. 6).

Chaperonin include not only the HSP and glucose shock proteins (HSP90, HSP70, HSP60, and BiP), but also the small HSPs, co-chaperonins, calcium-related proteins (calnexin and calreticulin), and two enzymes, namely, protein disulfide isomerase and peptidyl-prolyl isomerase (205, 206) (see Fig. 7). The chaperonins are not enzymes and do not accelerate protein folding, but rather they ensure that proteins fold correctly and in the proper sequence. They interact with newly synthesized polypeptides and prevent nonspecific aggregation and keep proteins as inactive monomers, thereby facilitating specific assembly; they also assist proteins in survival and repair following heat and/or other stresses (207, 208). Thus, chaperonins prevent nonspecific aggregation following protein release from ribosomes and promote renaturation after temperature shock. Since MGs usually have a tendency to aggregate, it is the function of chaperonins to prevent such clumping (208, 209). In fact, it is believed that chaperonins bind to proteins in order to keep them in their MG state; thereby chaperonins retard rather than accelerate protein folding (181, 209). It is

Petunia = Petunia hybrida Clover = Trifolium repens Tobacco = Nicotiana tabacum

O. Sativa - Oryza sativa

HSP70 = Heat Shock Protein BiP70 family

CALMD = calmodulin CALRCT = calrecticulin; ss-A/RO

PDSI = protein disulfide isomerase CALC = calcitonin UDGT = UDP-glucose glycosyltransferase X = unknown amino acid

germane to this discussion that a hidden epitope on HAFP (amino acids 445-480) was initially discovered by amino acid sequence matching to HSP-70 and its cognate proteins (87, 173). In the matching, HAFP sequences amino acids 452 to 458, 460 to 466, and 475 to 480 were found to display identity/similarities to eukaryotic HSP-70 sequences (Fig. 7). HSP-70s are known to interact with incompletely assembled proteins in which only a limited internal segment of polypeptide chain is exposed (210). This stretch of HAFP amino acids was later shown to emerge following incubation in high estrogen concentrations (173). This segment may represent one of several sites on HAFP to which HSPs bind during the assembly of the HAFP molecule following release from the ribosome. HSP70 proteins are known to bind to short, extended, and exposed hydrophobic peptide sequences of larger proteins (210, 211).

Misfolded Proteins and Genetic Disease. The ability of a polypeptide to fold into a unique, functional, three-dimensional structure is determined by its amino acid sequence, the chaperonins, and the enzymes that catalyse the folding (see 205). HSP70 binds to unstructured regions of newly synthesized polypeptides through exposed hydrophobic residues (Fig. 7). The masking of these surfaces prevents aggregation of the partially folded chains, which can prove toxic to the cells as reported for Alzheimer's disease (AZD) and the amyloid disorders (2). The HSP70 bound-polypeptide is then transferred to the HSP60 chaperonins, which aid in transport into organelles and continued assembly into oligomeric complexes with the smaller HSPs (205, 206). In mammals, HSP70 and HSP60 are found in mitochondria, cytosol, and ER, whereas the HSP70 homologue BiP (immunoglobulin-binding protein) is found only in the lumen of the ER (205). The HSP70 is associated with clathrin-coated vesicles and is cytoplasm retained, while BiP is confined to the ER (210). Evidence is accumulating that defective or altered protein folding (mutations and/or modifications) may form the basis of many human diseases (212-214, 325).

As evidenced in Table VIII, improper folding, assembly, and localization of nascent proteins cause them to aggregate and deposit abnormally in and around cells (215-238, 318-324); misfolding of proteins can lead to debilitating diseases and disorders and sometimes death (213). It is tempting to speculate that congenital disorders involving altered concentrations of HAFP (Down's syndrome, chromosomal trisomies) may be associated with defective protein folding/assembly and the involvement of conformational variants. Down's syndrome is characterized by low HAFP levels in both amniotic fluid and maternal blood, which could be indicative of either low hepatic AFP synthesis or a conformational alteration of the secreted protein that eludes serological detection (215-219). Improper folding/assembly can occur at two possible checkpoints: on nascent polypeptide chains as they emerge from the ribosome during translation or following passage through a membrane during translocation (Fig. 7). Since a normal mRNA transcript has been detected in the livers of prenatally detected Down's syndrome babies, a defect in hepatic protein synthesis appears less likely (215). It remains plausible that such fetal defects might be related to misfolding/misassembly of the fetal protein following either synthesis in the hepatic cell or during passage from the fetal to the maternal circulation via the placental membranes. To date, the data from Down's syndrome pregnancies seem to favor a conformational alteration of AFP resulting from impaired fetal kidney processing (pyelectasis) and/or altered transmembrane and transplacental passage into the maternal circulation (218, 240, 241).

AFP Intermediates and Genetic Disease. Down's syndrome is similar to AZD in that aggregated pro-amyloid and amyloid fibrils gradually accumulate in brain cells (242). In AZD, an increased synthesis and accumulate in the contraction of the co

mulation of HSP70 proteins have been reported (243) and it has been proposed that the aetiology of AZD may involve a misfolded chaperone protein (244). The gene for the proamyloid precursor is on the long arm of chromosome-21, which is present in triplicate in Down's syndrome. Overexpression of this gene is thought to lead to increased levels of pro-amyloid/amyloid deposition in Down's syndrome leading to early onset AZD. Abnormal accumulation of proteins in the ER serves as a eukaryotic stress signal and triggers the activation of heat shock genes (245). This unfolded protein response, induced by the accumulation of proteins in the lumen of the ER, results in upregulation of genes encoding ER-resident enzymes involved in the protein folding process (246). A thermokinetic model has been employed to calculate that, in any population of proteins, a small portion (1% or less) might be randomly misfolded (247). Misfolding would most likely result in the exposure of parts of the protein chain that are normally hidden inside the molecule, areas to which molecular chaperones bind (Fig. 7) (325). Normally, these parts become buried as the protein folds and the chaperone is then released (173). Usually, the only consequence of improper folding would be a loss of biological activity in the protein that eventually aggregates. The misfolded protein would either be refolded by another chaperonin or eliminated from the cell; however, slightly misfolded forms can exocytose the ER (336). However, when the misfolded protein is a chaperonin that modulates the folding of other proteins, the outcome could be significant. If Down's syndrome is a disease of a malfunctioning or misfolded chaperonin, as postulated for AZD (244), one could speculate that an increased proportion of other misfolded proteins (i.e., AFP) might be expected. It is noteworthy that both Down's syndrome (215) and insulin-dependent diabetic pregnancies (248) exhibit a 20% decrease in serum and amniotic fluid AFP levels. One could propose that misfolded and/or MG intermediates of secreted AFP might be nonimmunoreactive and hence undetectable by conventional immunoassays, examples of which are known to

exist (44-46).

Table VIII. Selected Proteins and Their Proposed and/or Confirmed Folding Diseases and Disorders

Protein involved	Disease/disorder	Protein defect	Molecular manifestation	Reference
Alpha-fetoprotein	Down syndrome, chromosomal abnormalities	Inability to fold	Misfolding, altered HSP70 interaction	215–219
Serum albumin	Chronic liver ^a disease	Improper folding	Misassembly, aggregation	220-222
CF-TMCR	Cystic fibrosis	Misfolding	Altered HSP70-calnexin interaction	223, 226
Fibrillin	Marfan syndrome	Inability to fold	Misfolding	237
α-Ketoacid dehydrogenase complex	Maple sugar urine disease	Misfolding	Misassembly	235, 236
Prion protein	Scrapie, Creutzfeldt Jacob disease	Toxic folds	Aggregation	230
Rhodopsin	Retinitis pigmentosa	Mislocalization	Improper trafficking	228
Superoxidedismutase	Lou Gehrig's disease	Inability to fold	Misfolding	212
P53 Protein	Cancer	Misfolding	Altered HSP70 interaction	239
β-Amyloid	Alzheimer's disease	Toxic folds	Aggregation	231
β-Hexosaminidase	Tay-Sachs disease	Mislocalization	Improper trafficking	234
Type-1-α procollagen	Osteogenesis Imperfecta	Misassembly	Altered BiP interaction	227
Transthyretin and isozyme	Familial amyloidosis	Toxic folds	Aggregation	229
α ₁ -Antitrypsin	α_1 -Antitrypsin deficiency	Mislocalization	Improper trafficking	224
Collagen	Scurvy	Inability to fold	Misfolding altered HSPs	232
Crystallins	Cataracts	Toxic folds	Aggregation cross-linking	193
LDL receptor	Familial hyper- cholesterolemia	Mislocalization	Improper trafficking	233
Insulin receptor	Leprechaunism	Mislocalization	Improper trafficking	223
Tau protein	Alzheimer's disease	Abnormal Phos- phorylation	Aggregation, proteolysis	238
Hemoglobin	Sickle cell anemia, β-thalassemia	Toxic folds	Aggregation, polymerization	212
Acyl-CoA dehydrogenase	Hereditary MCAD deficiency	Misfolding	Impaired protein assembly	225
Thyroglobulin	Congenital goitrous hypothyroidism	Defect in folding	Misassembly and ER retention	318
Unknown protein	Carbohydrate-deficient glycoprotein syndrome	Insufficient glyco- sylation	Retention in the ER	319
Vasopressin receptor	Nephrogenic diabetes insipidus	Misfolding	Retention in the ER	320
GPIIb integrin	Glanzmann's thrombo- asthenis	Improper folding	Retention in the ER, aggregation	321
Von Willibrand factor	Von Willibrand disease	Misfolding	Impaired transport from ER	322
Clotting factor VII	Hereditary factor VII deficiency	Misfolding	BiP retention in ER	323
Protein-C	Protein-C deficiency	Improper folding	GRp-94, BiP retention in ER	324

MCAD = Medium chain acyl-CoA dehydrogenase; LDL = Low density lipoprotein; CF-TMCR = Cystic fibrosis transmembrane conductance regulator; Proposed Folding Disease; BiP = glucose induced shock protein, immunoglobulin binding protein

There is now direct evidence that some proteins unfold to MG intermediates for import and translocation across cell membranes (196, 201) (Fig. 6). Observations ascribed to this translocation phenomenon have also been associated with HAFP passage through the umbilical cord and across the placenta. MoAbs have been utilized to enumerate the major and minor epitopes on cord serum-derived versus placental-purified HAFP. Epitope mapping of HAFP from cord serum versus placenta extracts has revealed an increase in the number of minor (hidden or occult) epitopes detected on placental AFP (14). Recent studies further demonstrated that HAFP at the placental interface is exposed to high concentrations of fatty acids and other hydrophobic ligands (8, 249), which are known to induce conformational

changes in the AFP molecule. These data would suggest that HAFP might assume the mildly denatured transitory (intermediate) state of the MGF when traversing the placenta (see Fig. 4). In light of these recent findings, the transplacental passage of AFP will be addressed in more detail in the following section.

Update on AFP Physiology and Clinical Potential

Transplacental Passage of AFP. The fetal-to-maternal transfer of AFP occurs by a transplacental, not a solely transamniotic, route as previously postulated (250). The transfer of AFP across the placenta, once thought to be accomplished only by paracellular diffusion (251), involves additional and more complicated mechanisms (Table IX). In

Table IX. Summary of Various Biological Activities of Human Alpha-Fetoprotein Regarding Physiological Mechanisms and Experimental/Clinical Significance

Biological activity	Ligand or binding proteins involved	Implicated physiological mechanism	Experimental or clinical significance	Reference
A. Placental transfer/ passage	Fetal-AFP; Amniotic fluid-AFP; Cord-AFP	Paracellular diffusion; unidirectional passage; hydrostatic gradient	Placental defects; abnormal MSAFP levels	250–256
B. Drug conjugation, induced cytotoxicity	0 , 0 ,		Multi-drug resistance; anti-cancer therapeutics	260–263
C. Ligand binding and carrier function	Ligand binding and Dioxin; bioFlavonoids;		Fetotoxins, carcinotoxins endocrine disrupters	264–268, 292
Control of growth; up- and down-regulation	 a. caspase-3 TNFR TNF b. Transcription factors c. Arrestin, dynamin 	a. Apoptosisb. Cytoplasmic signallingc. Agonist desensitization	 a. Caspase activation b. Mitogenesis down-regulation c. Receptor blockade, signal uncoupling 	282, 284, 289, 310 297–300 275, 302–309

Note. TNF, tumor necrosis factor and TNFR, tumor necrosis factor receptor.

an elegant study utilizing perfused normal human placental cotyledons, the mechanism of transplacental transfer of AFP was further elucidated (253). Four anatomical barriers must be traversed between the maternal and fetal circulation in the human. These transplacental barriers include the syncytiotrophoblast bathed by maternal blood in the intervillous space, the trophoblastic basement membrane, the capillary basement membrane, and the fetal capillary endothelium. The transplacental passage of AFP was found to be asymmetrical and unidirectional, displaying a faster transfer rate of AFP from the fetal to maternal circulation than vice versa. Fetal AFP was found to enter the maternal circulation via two possible pathways (252, 253). The first pathway (containing two parts) involved AFP exiting fetal vessels and passing through the placental villous core; AFP can also traverse fibrinoid deposits and cross at sites of discontinuity of the syncytiotrophoblast cells. Thus, AFP can enter the maternal circulation with and without passage through the cytoplasm of these cells. The second pathway involves AFP gaining entrance into the decidua basalis with passage into the maternal circulation by entering vessels that traverse the basal plate of the decidua.

The overall transplacental passage of AFP is accomplished by the bulk flow of AFP-containing fluids driven by a fetal-to-maternal hydrostatic gradient across the placental villous surface (253). Fetal arterial perfusion pressures are higher than those in the maternal intervillous spaces. Umbilical venous pressure is also significantly higher than the intervillous space pressure, providing support for the hydrostatic pressure gradient mechanism (254). Obviously, areas of discontinuity in the syncytiotrophoblast layer would provide even more surface area to facilitate such routes. Fibrinoid deposits are thought to further enhance passage by providing an additional matrix surface area for temporary AFP adhesion/attachment. The second pathway for AFP

passage involves traversing the basal plate in which AFP gains access to the maternal arteries and veins of the decidua. Since Furth and Adinolfi (254) reported AFP fluorescent localization in placental cells, AFP might be transported into the cytoplasm of the trophoblast cells or it might be synthesized by these cells. These observations may explain why enhanced AFP transfer will occur in the presence of gross anatomical abnormalities of the placenta such as damaged placental villi or abnormal rupture of vessels passing through the basal plate, as occurs in placenta accreta (255). Such anatomical lesions of the placenta may underlie unexplained elevated AFP levels (see Figs. 4 and 6), which could be associated with perinatal loss, preeclampsia, and intrauterine growth retardation (256, 257). Thus, a major link to altered maternal serum AFP levels appears to be related to placental dysfunction or an immature state of the placenta (240, 241).

AFP As An Anticancer Drug Conjugate. The use of HAFP as a carrier for the delivery of anticancer drugs, as previously predicted (4), has increased since the mid-1990s (Table IX). Since some chemotherapeutic agents display low selectivity toward tumor cells, attention has been focused on the specific targeted delivery of cytotoxic compounds into cancer cells. The use of drug conjugates to antibodies (as with antibiotics, plant and bacterial toxins, etc.) has been hampered by immune reactions toward such preparations and rapid rates of clearance by the reticuloendothelial system. However, the high density of cell surface receptors for growth stimulatory factors on tumor cells provides a rationale for using growth factors and oncofetal proteins as drug-ligand carriers (74-77, 258). The HAFP receptors on nonproliferating normal cells have been shown to be 10-fold less in normal T-lymphocytes in comparison with lymphoma cells (73-76). Thus, HAFP has been shown to avidly bind and selectively enter tumor cells via a receptor-mediated endocytotic pathway (259, 260). Successful conjugation of HAFP with numerous anticancer drugs has now been reported; such drugs include doxorubicin, daunomycin, calichemicin, carboxyphosphamide, bleomycetin, chlorbutin, cis-platinum, and methotrexate (261).

In vitro studies using anticancer drugs conjugated to HAFP displayed a highly selective antitumor cytotoxic activity toward human tumor cell cultures (262). The optimal AFP:cytotoxic drug conjugation ratio was shown to range from 1:3 to 1:5, resulting in higher cytotoxicity than for the drug alone. The success of the cell culture studies spurred development of in vivo tumor models employing murine leukemia and myeloid cells lines (263). Using HAFP conjugated to vinblastine and calichemicin, the therapeutic effect of AFP:drug conjugates in cell cultures and on solid tumors was much greater than that of unconjugated antitumor drug preparations. Such reports prompted the rapid development and use of metallic complexes of the phthalocyanines conjugated to HAFP. In vitro studies using aluminum and cobalt complexes of phthalocyanines linked to HAFP demonstrated 1000 to 50 times greater selective cytoxicity against T-lymphoblastoma and ovarian carcinoma cell lines respectively (263). Success of this metallic-drug conjugation will allow the use of photosensitizing therapy that involves light irradiation following uptake of the drug.

HAFP has been selected as a vector for specific delivery of anticancer drug conjugates to target cells in vivo as mentioned above; this strategy was based on the overexpression of AFP receptors on the surface of malignant cells versus the negligible incidence on normal cells (263, 265). Due to the bystander effect on surrounding cells, designing of drugs that target solely tumor cell populations is a principal objective in the field of cancer chemotherapy. As shown above, the use of AFP:drug conjugates is both safe and effective. However, the problem of multi-drug resistance (MDR) in cancer cells has also vexed the clinical oncologist. A strategy to overcome or bypass the MDR of the mdr-1 receptor/transporter has employed the aid of AFP-mediated targeting of tumor cells (262). In a human Ovarian carcinoma and a breast cancer drug-resistant cell line, HAFP conjugated to doxirubicin increased the drug sensitivity 10- and 4-fold, respectively. Thus, penetrating the tumor cells via receptor-mediated endocytosis with HAFP as the vehicle raised the drug sensitivity in these antibiotic-resistant cell lines. However, the breast cancer cell line MCF-7 did not fully overcome or break drug resistance and this was attributed to other multifactorial agents such as overexpression of topoisomerase II, and other membrane proteins such as the MDR-associated protein (MRP) and P-glycoprotein (261). Overall, these studies demonstrated that the HAFP-conjugated drugs were highly efficient against human tumor cells in vitro with demonstrable drug resistance possibly due to the hyperexpression of membrane receptors/and/or transporters.

AFP Ligand Binding and Transport. The binding and transport of ligands has long been recognized as a major

function of AFP during fetal development (Table IX). The multiple ligands that bind HAFP have been described in a myriad of reviews on the biology of this fetal protein (5-7), 16, 17). However, recent reports have expanded this list to include environmental agents that impact the human population at large. Such agents now include the phytoestrogens, dioxins, and the flavinoids. Binding of rodent and HAFP to the phytoestrogens has previously been discussed and the reader is directed to these references (6, 265, 267). Dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin [TCDD]) belongs to a class of highly hazardous environmental contaminants formed as a by-product of technological manufacturing processes. The polychlorinated dioxins and the many related compounds (polychlorinated dibenzofurans, biphenyls, and other aromatic hydrocarbons) are highly toxic and carcinogenic. Such compounds are also embryotoxic, teratogenic, neurotoxic, and immunotoxic in a multitude of target organs (i.e., thymus, spleen, lymph nodes, adrenal, thyroid, mammary, and sex accessory glands). This highly embryotoxic agent has been found to form a noncovalent, stable complex with HAFP in a 2:1 ratio (265). The apparent solubility of TCDD in water increases 10⁵ fold after binding to HAFP and the injected water-soluble complex is less cytotoxic in normal mice than TCDD injected in oil suspensions. However, in human tumor cell cultures (DEM, MCF-7, and Hep G2), the AFP-TCDD complex was highly toxic, displaying 200 to 1400 times higher toxicity than TCDD alone. The complex also surpassed dioxin in cell selectivity. The authors of this report cautioned that AFP might facilitate TCDD transport into embryonic tissues and thus enhance its embryotoxic and teratogenic effects (265).

Recently, awareness has developed of endocrine disrupters in the environment due to chemical contaminants found in fertilizers, pesticides, polychlorinated biphenyls. and nutritional (beef-fattening) hormonal supplements. These agents have been proposed as possible causes for the present-day increased rates of endocrine-related cancer. Since many of these chemicals display estrogen-like ring structures, they were thought to contribute to the estrogen biomass (i.e., phytoestrogens) already present in the environment derived from plant and animal sources (266). Interest in plant-derived bioflavonoid (BFV) effects in regulating steroid hormone action in mammals has recently aroused concern. Studies of the BFVs for possible modulation of steroid-dependent breast and prostate tumor growth, as well as during fetal development, have justified further testing in this field (267). Unfortunately, pharmaceutical screening for these estrogen-like compounds often employs fetal or neonatal rodent models in which AFP avidly binds estrogenic steroids with a $K_d = 5 \times 10^{-9}$ M, in contrast to HAFP, which does not bind these compounds (268). A recent study has now shown that binding of AFP to BFVs is sufficiently high $(K_d = 5 \times 10^{-7} \text{ M})$ to suggest that flavonoids (naringenin, flavanones, quercetin, kaempferal, and flavonols) and isoflavonoids (daidzein and genistein) could affect estradiol and estrone binding to rat AFP in vivo when

present at dietary levels (268). These authors found that the 5, 7-hydroxyl groups in ring-A and 4-hydroxyl group in ring-B of the BFVs are important for binding to AFP. Such studies could aid in elucidating the molecular basis for recognition of flavonoids and estrogens by AFP. Finally, these findings also emphasize that the flavonoid levels in the diet need to be further considered in studies of xenobiotics and endocrine manipulations in both experimental and drugscreening programs.

AFP as a Growth Regulator. Mammalian AFP is a fetal tumor-associated (oncofetal) protein that first and foremost promotes growth in a variety of in vitro (cell) and in vivo (animal) models (6, 7, 269) (Table IX). The presence of AFP is known to be associated with the successful completion of term pregnancies in mammals, and even nanogram amounts have been reported in fetuses and newborns that were thought to lack serum AFP; hence, it appears that even minute amounts of AFP may still be necessary during human pregnancy (270, 271). However, knockout mice for AFP have not yet been developed and the final answer must await the test of scientific endeavor. Since AFP has been identified at every stage of development from fertilization of the zygote, through the blastula, gastrula, embryo, and fetal and newborn periods, it is likely that this fetal protein plays a crucial role in ensuring the successful completion of pregnancy in mammals. It may be just a coincident occurrence that AFP, as an autocrine factor, also enhances the growth of a variety of tumors under certain concentrations and conditions (269, 272-274). However, AFP and its derived peptides are also able to inhibit proliferation in instances where growth is involved; these include fetal development, cancer cells, frog metamorphosis, liver regeneration, and glucocorticoid-induced splenic growth (6, 7, 58).

In the last decade, reports have confirmed that AFP serves as a dual regulator of growth, capable of both enhancement and inhibition (115, 270, 275-277). The capability of both up and down modulation of growth and differentiation as a dose-dependent function of AFP has now been demonstrated in a multitude of cell types including placental, ovarian, uterine, lymphoid, epidermal, endothelial, testicular, breast, and liver (278-282) and in certain types of cancers (283, 309). However, elucidation of the cell regulatory mechanisms of these growth events involving AFP remains to be determined. Reports now indicate that AFP regulates growth by enhancing or by inhibiting apoptosis (cytotoxicity) in tumor cell culture assays, while in cases of AFP-induced growth inhibition involving signal transduction, the event results in a cytostatic rather than a cytotoxic effect (see Refs. below).

AFP can apparently regulate growth by several mechanisms, which might include apoptotic regulation, cytoplasmic signaling modulation, and receptor desensitization. Regarding apoptosis, it has previously been reported that hepatoma cells from the cell culture line HepG2, washed free of AFP that was bound to the cell surface, became susceptible to tumor necrosis factor (TNF) cytotoxicity (283). The

HepG2-derived cells had previously been shown to be resistant to TNF cytotoxity. Subsequent studies revealed that HAFP could induce apoptosis in various tumor cell culture lines (heptoma and lymphoblastomas) in just a few hours (284). Induction of tumor cell death was shown at high physiological doses of AFP (>250 µg/ml), but not at low doses (<200 µg/ml). It is interesting that embryonic fibroblasts responded only by increased cell proliferation and not by apoptosis. The AFP-mediated apoptosis is mediated via Ca⁺⁺ and tyrosine kinase-independent pathways and did not require protein and/or RNA synthesis (285). However, AFP-induced apoptosis in tumor cells (human lymphoblastoma Jurkat cells) was shown to be abrogated by endogenous or exogenous interleukin-2 (IL-2) and other immunoregulatory agents (286). Subsequent studies revealed that the AFP-mediated apoptosis occurred in a manner independent of the TNF receptor, and that AFP could mediate growth regulatory signals in TNF receptor-impaired cells (287). It was further determined that HAFP induced apoptosis in Raji tumor cells by activation of caspase-3 and, in turn, bypassed the FAS and TNF receptor-dependent signaling pathways (288, 290). The activation of caspase-3 proteases by AFP was also independent of upstream activation of the initiator caspase-1,8, and 9 proteases (291, 50). In summary, the cytotoxic effects of AFP are apoptosislinked and are independent of the down regulation of the Bcl-2, Bcl_x-L proteins, and the TNF receptor-dependent signaling cascade.

HAFP has been reported to display growth regulatory activity on different types of tumor, as well as normal, cells. As discussed above (261), the presence of the AFP receptor on tumor cells and lymphocytes enables AFP to be readily endocytosed. In light of its regulation of apoptosis, AFP in high doses (>100 µg/ml) was found to exhibit in vitro growth inhibition on a variety of tumor cells including hepatoma HepG2, lymphoblastoma MT4, Jurkat lymphoma, murine fibroblastoma L-929, and MCF-7 breast cancer cells (292). An equivalent dose of human ALB had no effect. However, low AFP doses (<100 µg/ml) failed to inhibit growth in any cells tested and rather showed a slight stimulating effect. Interestingly, all AFP doses were growth stimulating to embryonic epidermal fibroblasts. These in vitro data demonstrate that AFP could induce either stimulative or inhibitory growth activity, depending on the relative concentration of AFP and of exogenous or endogenous cytokines, hormones, and growth factors in the culture media. Subsequent studies employing an estradiol- (E₂) induced conformational change of the AFP molecule further resulted in significant growth suppression of MCF-7 cells (292). Low doses of AFP (0.01 µM) incubated in molar excess of E₂ (but with AFP:E₂ preincubation) produced the suppression, but AFP and E2 added to cultures without preincubation induced only apoptosis leading to cytotoxicity in these cells.

It has previously been documented that HAFP could display an antiestrotrophic property following incubation

with high concentrations of E₂ or other ligands of the steroid receptor superfamily (115, 294, 295). It was subsequently demonstrated that ligand incubation of HAFP was not required when 100-fold increases in HAFP doses were employed (from 1.0 µg up to 100 µg) in the inhibition of an E₂-dependent human breast cancer xenograft (201). Such data can be interpreted to propose that a small percentage of HAFP already exist in a conformationally transformed (inhibitor-exposed) variant form. These findings led to studies to determine what active site on HAFP was responsible for and harbored the antiestrotrophic active site (87). A recent report employing a recombinant portion of HAFP confirmed that this activity localized to the third domain of HAFP (295) in E₂-dependent, but not -independent tumors. Although daily administration of the HAFP was required for 30 days, both the MCF-7 and the T-47 cancer cell strains were almost completely growth-inhibited. A highlight of this study was a demonstration that the native HAFP, as well as the third domain of HAFP, underwent a timedependent spectrum change when analyzed in the presence of high E2 confirming a conformation-induced change in these molecules. The transformation of HAFP by ligands such as E₂ (292, 293) confirms similar changes induced by fatty acids (C18 to C22), which also bind AFP (8). One active site exposed following an AFP conformational change has been detected, and the peptide has been synthesized and purified as been described above (see Ref. 87).

A second method that AFP could employ to regulate growth might involve protein-to-protein interaction in the course of cytoplasmic signaling cascades (297). Since AFP has not been reported to localize in the intranuclear compartment of cells (296), it is unlikely that AFP can directly affect the nuclear transcription process. In contrast, AFP has been localized in ECMs, at cell surfaces, and in receptosomes, endosomes, the ER, and perinuclear spaces within the cytoplasm (202, 259, 75). A nonsecreted form of AFP has also been reported (45-47). Therefore, it is conceivable that AFP could interact with receptors, binding proteins, transcription factors, kinases, coactivators, and cell cycle regulators in the cytoplasm prior to their nuclear translocation. For example, AFP binding to a co-activator or a transcription factor might mask a nuclear localization signal (zip code), essentially impeding its cytoplasmic-to-nuclear translocation; alternatively, AFP fragments or truncated forms could serve as short heterodimer partners to dimerize and neutralize such factors (47, 48).

Mitogenesis induced by estrogen could serve as a paradigm for hormone-induced growth, since rodent and HAFP have been demonstrated to regulate E-sensitive growth (298). E₂ stimulation of quiescent MCF-7 breast cancer cells results in E₂ binding to the estrogen receptor in the cytoplasm and/or nucleus. The E₂-bound estrogen receptor reacts with DNA at the palindromic estrogen response element (ERE), resulting in initiation of the transcriptional activity of immediate-early genes (299). Following gene activation, the expression of the cyclins and their associated

proteins ensues, resulting in G₀ to G₁ cell cycle progression via cyclin D1 and the CDK4 and CDK6 kinases (299). However, recent reports now show that various elements of the cytoplasmic signaling cascades are also E-responsive. In bone cells expressing estrogen receptors, the mitogen-associated protein kinases (MAPK) family members of ErK-1 and ErK-2 (extra cellular signal-regulated kinase) are activated within 5 min following E₂ stimulation (300). The cytoplasmic signaling data are further supported by reports of the existence of cell membrane-associated estrogen receptors that are G protein-coupled (301). Activation of MAPK indicates that at least some part of the mitogenic stimulation by estrogen may be mediated through a cytoplasmic pathway.

Recent studies have suggested that MAPK activation may actually be a requirement for estrogen-induced cell cycle progression (297, 300). These reports showed that MAPK and phosphatidylinositol 3-kinase (P3K), but not PKA or PKC (protein kinases), were obligatory for Estimulated cell cycle progression. The use of MAPK and P3K inhibitors showed that a cell cycle block occurred just after the expression of immediate/early genes and prior to the induction of cyclin D1 expression, resulting in G₁ arrest (299). Thus, it is conceivable that intracellular-bound AFP, either as the endocytosed, nonsecreted, or the estrogen receptor form, may be capable of blocking mitosis stimulated by E₂ and possibly other growth factors.

The third method by which AFP and/or its derived peptides could modulate cellular growth might involve the interruption of G-coupled signal transduction in a process termed "agonist desensitization" (304). Unlike the cytoplasmic signaling discussed above, this signaling cascade occurs at or proximal to the cell membrane. Following binding to cell surface G-coupled receptors, endocytosed clathrincoated receptosomes are generated. The endocytotic clathrin pathway attracts a G protein-associated adapter protein termed arrestin and the mechano-enzyme, dynamin (305, 306). Arrestin binding to the receptor uncouples the G proteins and no further kinase phosphorylation cascades occur (307). Clathrin is bound by arrestin and assisted by dynamin in trafficking the receptosome protein/peptide cargo to either an endosome or proteosome destination. Dyamin mediates the fission step subsequent to the initial coated-pit formation in the membrane (vesicle) recycling process (306). However, rapidly repeated agonist stimulation or high agonist concentrations depletes the cell surface receptor population (without replacement), which renders the cell insensitive to further stimulation.

The G-coupled receptors are seven-transmembrane domain proteins linked to G protein extracellular receptor kinases (ERKs), which respond to neurotransmittor, hormone, and growth factor stimulation (303, 307). Signal transduction of this receptor type can thus be uncoupled by the "desensitization" process described above. In this process, a blunting of the second messenger responses occurs following prolonged or excessive agonist exposure (308, 309).

AFP and its derived peptides might desensitize or quench G-coupled receptor-mediated signal transduction pathways and functionally impair the cellular growth response of multiple cell types including tumor cells. Thus, AFP/and its derived peptides might serve as decoy ligands for G-coupled receptors, which could uncouple ERK-protein cascade interactions. This, in turn, might affect the mitogenic response to MAPK interactions, which are involved in cellular proliferation. Such a pathway would represent a blockade of growth factor receptors, thereby depriving the cell of further proliferation.

Cancer Chemoprevention. The recent epidemiologic observations that high AFP levels in pregnant women reduce their subsequent risk of both pre- and postmemopausal breast cancer may be related to the growth suppressive properties of AFP (Table IX). An initial study by Richardson et al. (327) has indicated that a reduced risk of postmenopausal breast cancer is associated with high third trimester AFP levels in women younger than age 28 at first pregnancy. A subsequent report by Melbye et al. (328) confirmed and extended these findings to include second trimester AFP blood values in premenopausal women up to age 38. Thus, both studies concluded that high levels of AFP in maternal serum during any pregnancy were associated with a low incidence of breast cancer; the association was particularly strong for pregnancy at young maternal age. These results provide the impetus to propose that AFP and its derived peptides (173) could be employed not only for cancer therapy, but also for the chemoprevention of breast and possibly other tumors as well (329). This protective effect of AFP during pregnancy was also observed in women bearing multiple pregnancies (twins), neural tube defects, and presenting with pre-eclampsia (330-332). All these situations share a commonality of elevated serum AFP levels, which may contain sufficient quantities of AFP conformationally induced variants to affect growth suppression of cancer microfoci present in the maternal breast tissues (173, 309). The presence of cancer microfoci in the young adult and the middle-age population has been described (J. Folkman, M.D., personal communication).

Concluding Remarks

In the course of this updated review on AFP, the human form of this fetal protein has been the center of focus. This emphasis on HAFP is a direct reflection of the biomedical literature of the last 5 years. In the 1970s and early 1980s, animal forms of AFP were abundantly identified, purified, and characterized; these included rabbit, mouse, rat, guinea pig, cow, sheep, goats, pigs, and monkeys. Although HAFP was first purified in 1970 (See Ref. 6), its isolation continued to be difficult due to its copurification with serum ALB. When the HAFP gene was cloned in the early 1980s and HAFP immunoassays were approved for clinical use in 1984, a trend developed in the scientific literature toward an increase in the publication of human clinical applications. This trend was propelled by the advent of MoAbs for direct application measurement of HAFP as a diagnostic marker in screening for fetal birth defects and various tumors. However, during this period, reports of different AFP isoforms and heterogeneic variants continued to emerge with additional nomenclatures. Concomitantly, funding for basic research on AFP in the United States drastically declined when clinical usage for fetal defects and cancer became routine nationwide.

This overview has, therefore, attempted to update the reader concerning the classification, nomenclature, and status of the various isoforms, epitopes, peptic fragments, and conformational variants exhibited by HAFP (Table X). Such forms should be considered in the design of immunoassays, purification strategies, physicochemical studies, genetic variants, and bioassays for HAFP. As proposed in 1985 (4), HAFP has also been employed as a carrier vehicle for anticancer drugs and for the biomodulation of both ontogenic and oncogenic growth processes. The cloning of the HAFP gene and its translated protein product have further enabled the use of short specific peptide segments obtained

Table X. Summary of Mammalian Alpha-Fetoprotein Isoforms and Variants Described in the Present Report Regarding Number and Mode of Detection

Source of AFP isoforms and variants	Mode of detection and analysis	Number identified	Manuscript section	References
A. mRNA transcripts of translated proteins	Cloning, sequence analysis, nuclear acid hybridization, nucleases, PCR	8	2A	31–42
B. Free/bound forms	Immunological physicochemical	9	3A, B	4, 44-55, 65-77
C. Peptide fragments	Enzymatic cleavage, peptide synthesis	26	4A, B	86-90
D. Cell adhesion	Genebank, adhesion plate assays	8	5A, B	91–111
E. Carbohydrate, N-linked glycans	Chromatography, electrophoresis, lectin affinity	10	6A	118–133
F. pH isoforms	Electrophoresis, isoelectric focusing, chromatofocus	3	6B	137–142
G. Antigenic epitopes	Monoclonal antibodies, epitope mapping	6–8 (major) 12 (minor)	7B, C, D	158–172
H. Molten globule intermediates	Fluorescence, circular dichroism, microcalorimetry	2-3 (?)	8B, C	175–178

Note. AFP, alpha-fetoprotein and N, asparagine linked.

from recombinant and synthetic peptide technologies as probes for biological activities, subcellular trafficking, and therapeutic targets. With the documentation of AFP and its derived peptides as regulators of growth, studies of carrier vectors for genetic manipulation and histocompatability modulation are now being pursued. It can only be expected that more imaginative and creative uses of AFP and its derived fragments will be employed as the future dictates. The ongoing euphoria regarding the success of the Human Genome Project at the DNA level will inevitably give way to a recognition of the enormity of the next challenge, Proteomics. The structure and function of the AFP, as delineated here and in previous reviews, is a particularly good example of this future challenge.

The author wishes to express his sincerest thanks and deepest gratitude to Lynda Jury for her commitment and time expenditure in the excellent typing and processing of the manuscript, references, and tables of this report.

- Tatarinov YS. Content of embryo-specific alpha-globulin in the blood serum of the human fetus, newborn, and adult man in primary cancer of the liver. Vop Khim SSR 11:20-24, 1965.
- Abelev GI. Alpha-fetoprotein in association with malignant tumors. Adv Cancer Res 14:295–357, 1971.
- Brock DJH, Sutcliffe RG. Alpha-fetoprotein in the antenatal diagnosis of anencephaly and spina bifida. Lancet 2:197-194, 1972.
- Mizejewski GJ. New insights into AFP structure and function: Potential biomedical applications. In: Mizejewski GJ. Porter IH, Eds. Alpha-Fetoprotein and Congenital Disorders. Orlando: Academic Press, pp5-34, 1985.
- Deutsch HF. Chemistry and biology of α-fetoprotein. Adv Cancer Res 56:253-312, 1991.
- Mizejewski GJ. The phylogeny of alpha-fetoprotein in vertebrates: Survey of biochemical and physiological data. Crit Rev Eukaryot Gene Expr 5:281-316, 1995.
- Mizejewski GJ. Alpha-fetoprotein as a biologic response modifier: Relevance to domain and subdomain structure. Proc Soc Exp Biol Med 215:333-362, 1997.
- Hsourigui M, Thabie N, Martin ME, Benassayag C, Nunez EA. In vivo transient rise in plasma free fatty acids alters the functional properties of alpha-fetoprotein. Biochim Biophys Acta 1125:157– 165, 1992.
- Crandall BF. Alpha-fetoprotein: A review. CRC Crit Rev Clin Lab Sci 15:1271-1285, 1981.
- Smith CJP, Kelleher PC. Alpha-fetoprotein molecular heterogeneity: Physiologic correlation with normal growth, carcinogenesis, and tumor growth. Biochim Biophys Acta 605:1-32, 1980.
- Beborowica J. Microheterogeneity of human alpha-fetoprotein. Tumor Biol 9:3-14, 1988.
- Takata K, Kamakura K, Satomura S, Taga H. Lectin-dependent modulation of interaction between human alpha-fetoprotein and its monoclonal antibodies. Tumor Biol 19:318-328, 1998.
- Karamova ER, Yazova AK, Goussev AI, Yakiemenko EF, Abelev GI. Conformational variants of human alpha-fetoprotein. Tumor Biol 19:310-317, 1998.
- Yakimenko EF, Karamova ER, Goussev AI, Hilgers J, Abelev GI, Yazova AK. Epitope mapping of human alpha-fetoprotein. Tumor Biol 19:301-309, 1998.
- Bychkova VE, Ptitsyn OB. The molten globule in vitro and in vivo: Chemtracts. Biochem Mol Biol 4:133-163, 1993.
- Nunez EA. Biological role of alpha-fetoprotein in the endocrinological field: Data and hypotheses. Tumor Biol 15:63-72, 1994.
- 17. Uriel J. The physiological role of alpha-fetoprotein in cell growth and differentiation. J Nucl Med Allied Sci 33:12-17, 1989.
- 18. McLeod JF, Cooke NE. The vitamin D-binding protein, alpha-

- fetoprotein, albumin multigene family: Detection of transcripts in multiple tissues. J Biol Chem **264**:21760-21769, 1989.
- Lichenstein HS, Lyons DE, Wurfel MM, Johnson DA, McGinley MD, Leidle JC, Trollinger DB, Mayer JP, Wright SD, Zukowski MM. Afamin is a new member of the albumin, alpha-fetoprotein and vitamin D-binding protein gene family. J Biol Chem 269:18149–18154, 1994.
- Carter DC, He XM. Structure of human serum albumin. Science 249:302-304, 1990.
- Luft AJ, Lorscheider FL. Structural analysis of human and bovine alpha-fetoprotein by election microscopy, image processing, and circular dichroism. Biochemistry 22:5978-5981, 1983.
- Yang F, Luna VJ, McAnelly RD, Neberhaus KH, Cupples RI, Bowman BH. Evolutionary and structural relationships among the group specific component, albumin and alpha-fetoprotein. Nucleic Acids Res 13:8007-8017, 1985.
- Ray K, Wang X, Zhao M, Cooke NE. The rat vitamin D-binding protein gene: Structural analysis functional and evolutionary correlations. J Biol Chem 266:6221-6229, 1991.
- Belanger L, Roy S, Allard D. New albumin gene 3' adjacent to the alpha-protein gene. J Biol Chem 269:5481-5484, 1994.
- Allard D, Gilbert S, Lamontagne A, Hamel D, Belanger L. Identification of rat alpha-albumin and cDNA cloning of its human ortholog. Gene 153:287-288, 1995.
- Gutteridge JMC. Antioxidant properties of the protein caeruloplasmin, albumin, and transferrin: A study of their activity in serum and synovial fluid from patients with rheumatoid arthritis. Biochem Biophys Acta 869:119–127, 1986.
- Nathan C, Xie QW, Halbwachs-Mecarelli L, Jin WW. Albumin inhibits neutrophil spreading and hydrogen peroxide release by blocking the shedding of DC43 (sialophorin, leukosialin). J Cell Biol 122:243-256, 1993.
- 28. Constans J. Group-specific component is not only a vitamin D-binding protein. Exp Clin Immunogenet 9:161-175, 1992.
- Ohkawa K, Tsukada Y, Nunomura W, Ando M, Kimura I, Hara A, Hibi N, Hirai H. Main serum protein of rainbow trout Salmo gaidneri: Its biological properties and significance. Comp Biochem Physiol 88B:497-501, 1987.
- Butterstein GM, Mizejewski GJ. Alpha-fetoprotein inhibits frog metamorphosis: Implications for protein motif conservation. Comp Biochem Physiol 124A:39-45, 1999.
- Andres OK, Dziadek M, Tamaoki T. Expression of methylation of the mouse alpha-fetoprotein gene in embryonic, adult, and neoplastic tissue. J Biol Chem 257:5148-5153, 1982.
- Miura K, Law SWT, Nishi S, Tamaoki T. Isolation of alphafetoprotein messenger RNA from mouse yolk sac. J Biol Chem 254:5515-5521, 1979.
- Hammer RE, Krumlauf R. Camper SA, Brinster RI, Tighman SM. Diversity of alpha-fetoprotein gene expression in mice is generated by a combination of separate enhancer elements. Science 235:53-58, 1987.
- Tamaoki T, Fausto N. Expression of the alpha-fetoprotein gene during development, regeneration, and carcinogenesis In: Stein G, Stein J, Eds. Recombinant DNA and Cell Proliferation. New York: Academic Press, pp145-168, 1984.
- Petropoulos C, Andrews G, Tamaoki T, Fausto N. Alpha-fetoprotein and mRNA levels in liver regeneration and carcinogenesis. J Biol Chem 258:4901-4906, 1983.
- Petropoulos C, Yaswen P, Panzica M, Fausto N. Cell lineages in liver carcinogenesis: Possible clues from studies of the distribution of AFP mRNA sequences in cell populations isolated from normal regenerating and preneoplastic rat livers. Cancer Res 45:5762-5768, 1985.
- Chou JY, Savitz AJ. AFP synthesis in transformed fetal rat liver cells. Biochem Biophys Res Commun 135:844–851, 1986.
- Chou JY, Ito F, Evans G, Chiu FJ, Feldman M. Alpha-fetoprotein biosynthesis and hepatocellular differentiation. Biochem Biophys Res Commun 108:1524-1530, 1982.
- Lemire JM, Fausto N. Multiple alpha-fetoprotein RNAs in adult rat liver: Cell type-specific expression and differential regulation. Cancer Res 51:4656-4664, 1991.
- Wan YJV, Chou JY. Expression of the AFP gene in adult rat liver. Arch Biochem Biophys 270:267-276, 1989.
- 41. Watanabe T, Jimenez-Molina JJ, Chou JY. Characterization of a rat

- variant alpha-fetoprotein. Biochem Biophys Res Commun 185:648-656, 1992.
- 42. Wan YJY, Jimenez-Molina JJ, Chou JY. Fetal and variant AFPs are encoded by mRNAs that differ in sequence at the 5' end. Biochemistry 27:7269-7276, 1988.
- Morinaga T, Sakai M, Wegmann TG, Tomaoki T. AFP messenger RNA in human embryonal carcinoma grown in nude mice and cloning of its complementary DNA. Oncodev Biol Med 3:301-313, 1982.
- 44. Smalley JR, Sarcione EJ. Synthesis of alpha-fetoprotein by immature rat uterus. Biochem Biophys Res Commun 92:1429–1434, 1980.
- Sarcione EJ, Zlotty M, Delluomo DS, Mizejewski GJ, Jacobson HI. Detection and measurement of alpha-fetoprotein in human breast cancer cytosol after treatment with 0.4 M potassium chloride. Cancer Res 43:3739-3741, 1983.
- Sarcione EJ, Hart D. Biosynthesis of alpha-fetoprotein by MCF-7 human breast cancer cell. Int J Cancer 35:315–318, 1985.
- Seal W, Hanstein B, Brown M, Moore DD. Inhibition of estrogen receptor action by the orphan receptor SHP (short heterodimer partner). Mol Endocrinol 12:1551-1557, 1998.
- 48. Resnick EM, Schreihofer DA, Periasamy A, Shupnik, MA. Truncated estrogen receptor product-1 suppresses estrogen receptor transactivation by dimerization with estrogen receptors α and β . J Biol Chem **275:**7158–7166, 2000.
- Mizejewski GJ. An apparent dimerization motif in the third domain of alpha-fetoprotein: Molecular mimicry of the steroid/thyroid nuclear receptor superfamily. Bioessays 15:427-432, 1993.
- Dudich I, Tokhtamysheva N, Semenkova L, Dudich E, Hellman J, Korpela T. Isolation and structural and functional characterization of the two stable peptide fragments of human alpha-fetoprotein. Biochemistry 38:10406-10414, 1999.
- Chen H, Egan Jo, Chiu JF. Regulation and activities of alphafetoprotein. Crit Rev Eukary Gene Exp 7:11-41, 1997.
- Lazarevich NL. Molecular mechanisms of alpha-fetoprotein gene expression. Biochim (Moscow) 65:117-133, 2000.
- Matsumura M, Shiratori Y, Niwa Y, Tanaka T, Ogura K. Presence of alpha-fetoprotein mRNA in blood correlates with outcome in patients with hepatocellular carcinoma. J Hepatol 31:332-339, 1999.
- 54. Ido A, Ishikawa H, Wakata K, Eguchi K. Gene therapy for hepatoma cells using a retrovirus vector carrying herpes simplex virus thymidine kinase gene under the control of the AFP gene promoter. Cancer Res 55:3105-3109, 1995.
- Ishikawa H, Nakata K, Nawatari F, Ueki T. Utilization of varianttype of human AFP promoter in gene therapy targeting for hepatocellular carcinoma. Gene Therap 6:465-470, 1999.
- Wang XW, Xie H. Growth inhibition of human liver cancer cells by alpha-fetoprotein antisense strategy. In vitro Cell Dev Biol – Animal 35:118-119, 1999.
- Vollmer CM, Eilber FC, Butterfield LH, Ribas A, Economou JS. Alpha-fetoprotein-specific genetic immunotherapy for heptocellular carcinoma, Cancer Res 59:3064

 –3067, 1999.
- Butterfield LH, Koh A, Meng W, Vollmer CM, Economou JS. Generation of human t-cell responses to an HLA-A2.1-restricted peptide epitope derived from alpha-fetoprotein. Cancer Res 59:3134-3142, 1999
- Chou WC, Liao KW, Lo YC, Jiang SY, Yeh MY, Roffler SR. Expression of chimeric monomer and dimer proteins on the plasma membrane of mammalian cells. Biotechnol Bioengineer 65:160–169, 1000
- Wan YJ, Pan T, Wang L, Locker J, Wu TC. T-cis retinoic acid is more effective than all-trans-retinoic acid in upregulating expression of the AFP gene. J Mol Endocrinol 14:101-108, 1995.
- Bois-Joyeux B, Denissenko M, Thomassin H, Guesdon S, Ikonomova R, Bernuau D, Friedmann G, Danan JL. The c-jun proto-oncogene down regulates the rat AFP promoter in HepG2 hepatoma cells without binding to DNA. J Biol Chem 270:10204-10211, 1995.
- 62. Thomassin H, Bois-Joyeux B, Delille R, Ikonomova R, Danan JL. Coup-transcription factor, hepatocyte nuclear factor-3, and CCAAT/enhancer binding protein control the far-upstream enhancer of the rat alpha-fetoprotein gene. DNA Cell Biol 15:1063-1074, 1996.
- Mizejewski GJ. Alpha-fetoprotein binding proteins: Implications for transmembrane passage and subcellular localization. Life Sci 56:1-9, 1994.
- 64. Norgaard-Pedersen B, Axelsen NH. Alpha-fetoprotein-like activity in

- sera from patients with malignant disease and healthy individuals. Clin Chem Acta 71:343-347, 1976.
- Marrink J. Alpha-fetoprotein determination: A warning. Scand J Immunol 8(Suppl 8):309–313, 1978.
- Nishi S, Fugiyama Y, Hirai H. A sensitive and simple determination of human alpha-fetoprotein by enzyme-electroimmunodiffusion. Scand J Immunol 8(Suppl 8):305-308, 1978.
- Sarcione EJ, Biddle W. Elevated serum alpha-fetoprotein levels in postmenopausal women with primary breast carcinoma. Dis Markers 5:75-79, 1987.
- Naketa K, Muro T, Furukawa R, Kono K, Kusumoto Y, Ishn N, Munehisa T, Koji T, Nagataki S. Presence of immunoglobulin-G in human sera binding to alpha-fetoprotein. Oncodev Biol Med 4:101– 104, 1983.
- 69. Mizejewski GJ, Brown-Buddle MM. Release of AFP from serine protease inhibitors in serum and tissue cytosols. In: Mizejewski GJ, Jacobson HI, Eds. Biological Activities of Alpha-fetoprotein. Boca Raton, FL: CRC Press, Vol II:pp162-179, 1987.
- Wu JT, Waterhouse WJ. Identification of AFP polymers: Artifacts of the isolation procedure. Clin Chem Acta 125:9-19, 1982.
- 71. Wu JT, Knight JA. *In vitro* stability of human alpha-fetoprotein. Clin Chem 31:1692–1697, 1985.
- Goncharova O, Dudich E, Semenkova L, Gorbatova E, Dudich I. Synergy of alpha-fetoprotein and estradiol in suppression of tumor cell growth. Tumor Biol 20:42-52, 1999.
- Torres JM, Carracq N, Uriel J. Membrane proteins from lymphoblastoid cells showing cross-affinity for alpha-fetoprotein and albumin. Isolation and characterization. Biochem Biophys Acta 1159:60-66, 1992.
- Suzuki Y, Zeng CQY, Alpert E. Isolation and characterization of a specific alpha-fetoprotein receptor on human monocytes. J Clin Invest 90:1530–1536, 1992.
- Naval J, Villacampa MJ, Goguel AF, Uriel J. Cell type-specific receptors for AFP in a mouse T-lymphoma cell line. Proc Natl Acad Sci U S A 82:3301–3304, 1985.
- Moro R, Tamaoki T, Wegmann TG, Longnecker BM, Laderoute MP. Monoclonal antibodies directed against a widespread oncofetal antigen: The alpha-fetoprotein receptor. Tumor Biol 14:116–130, 1993.
- Villacampa MJ, Moro R, Naval J, Failly-Crepin C, Lampreave F, Uriel J. Alpha-fetoprotein receptors in a human breast cancer cell line. Biochem Biophys Res Commun 122:1322-1327, 1984.
- Martinez J, Potier P. Peptide hormones as prohormones. Trends Pharmacol Sci 7:139–147, 1986.
- Campbell ID, Bork P. Epidermal growth factor-like modules. Curr Opin Struct Biol 3:385–392, 1993.
- Thim L, Moody AJ. The primary structure of porcine glicentin (proglucagon). Regul Pept 2:139-150, 1981.
- Ohno S. Many peptide fragments of alien antigens are homologous with host proteins, thus canalizing T-cell responses. Proc Natl Acad Sci U S A 88:3065-3068, 1991.
- Browder T, Folkman J, Pirie-Sheperd S. The hemostatic system as a regulator of angiogenesis: A review. J Biol Chem 275:1521-1524, 2000.
- 83. Wen W, Moses MA, Wiederschain D, Arbizer JL. Folkman J. The generation of endostatin is mediated by elastase. Cancer Res 59:6052-6056, 1999.
- Carroway RE, Mitra SP, Cochrane DE. Structure of a biologically active neurotensin-related peptide obtained from pepsin-treated albumin. J Biol Chem 262:5969-5973, 1987.
- 85. Peters T Jr. Plasma albumin. Adv Protein Chem 37:161-188, 1985.
- Pucci P, Sicilano R, Malorni A, Marino G, Tecce MF, Ceccarini C, Terrana B. Human AFP primary structure: A mass spectrometric study. Biochemistry 30:5061–5066, 1991.
- Mizejewski GJ, Dias JA, Hauer CR, Henrikson KP, Gierthy J. Alphafetoprotein derived synthetic peptides: Assay of an estrogenmodifying regulatory segment. Mol Cell Endocrinol 118:15-23, 1996
- 88. Terentiev AA, Tagirova AK. Synthetic oligopeptide sequences LDSYQCT (13–19 Human AFP) and ENCYN (17–21 insulin alphachain) stimulate uptake of glucose into red blood cells *in vitro*. Tumor Biol **20**:42, 1999.
- Salmasi JM, Kazimirski AN, Terentiev AA, Porjadin GV, Kudrjavceva EV, Tatarinov YS. LDSYQCT-peptide synthetic analogue of human alpha-fetoprotein (#13-19) increases anti-

- proliferative effect of cytozar on the lymphocytes of chronic leukemia patients. Tumor Biol 20:43, 1999.
- Terentiev AA, Tatarinov YS. Homology of oligopeptide sequences in primary structures of glycodelin, AFP, insulin alpha-chain, and EGF. Tumor Biol 20:44, 1999.
- Yamada Y, Kleinman, HK. Functional domains of cell adhesion molecules. Curr Opin Cell Biol 4:819–823, 1992.
- Tashiro K, Sephel GC, Weeks BS, Sasaki M, Martin GR, Kleinman HG, Yamada Y. A synthetic peptide containing the IKVAV sequence from the A-chain of laminin mediates cell attachment, migration, and neurite outgrowth. J Biol Chem 264:16174–16182, 1989.
- Nomizu M, Yamamura K, Kleinman HK, Yamada Y. Multimeric forms of Tyr-Ile-Gly-Ser-Arg peptide enhance the inhibition of tumor growth and metastasis. Cancer Res 53:3459-3461, 1993.
- Tuszynski GP, Rothman VL, Papale M, Hamilton BK, Eyal J. Identification and characterization of a tumor receptor for CSVTCG, a thrombospondin adhesive domain. J Cell Biol 120:513-521, 1989.
- Grant DS, Tashiro K, Segui-Real B, Yamada Y, Martin GR, Kleinman HK. Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vitro. Cell 58:933-943, 1989.
- Beck K, Hunter I, Engel J. Structure and function of laminin: Anatomy of a multidomain glycoprotein. FASEB J 4:148–160, 1990.
- Kijimoto-Ochiai S, Noguchi A. Two peptides from CD23, including the inverse RGD sequence and its related peptide, interact with MHC Class II molecules. Biochem Biophys Res Commun 267:686-691, 2000.
- Main AL, Harvey TS, Baron M, Boyd J, Campbell ID. The threedimensional structure of the tenth type III module of fibronectin: an insight into RGD-mediated interactions. Cell 71:671-678, 1992.
- Leahy DJ, Hendrickson WA, AuKhil I, Erickson HP. Structure of a fibronectin type III domain from tenascin phased by MAD analysis of the selenomethionyl protein. Science 258:987-991, 1992.
- Bilozur ME, Hay ED. Neural crest migration in 3D extracellular matrix utilizes laminin, fibronectin or collagen. Dev Biol 174:1159– 1162, 1988.
- 101. Vandenberg P, Kern A, Ries A, Luckenbill-Edds L, Mann K, Kuhn K. Characterization of a type IV collagen major cell binding site with affinity to the alpha-1 beta-1 and the alpha-2 beta-1 integrins. J Cell Biol 113:1475-1483, 1991.
- 102. Joseph DR, Baker ME. Sex hormone-binding globulin, androgen-binding protein, and vitamin K-dependent proteins are homologous to laminin-A, merosin, and crumbs protein. FASEB J 6:2477-2481, 1992.
- 103. Iwamoto Y, Robey FA, Grof J, Sasaki M, Kleinman HK, Yamada Y, Martin GR. YIGSR, a synthetic laminin pentapeptide, inhibits experimental metastasis formation. Science 238:1132-1134, 1987.
- 104. Stack S, Gray RD, Pizzo SV. Modulation of plasminogen activation and type IV collagenase activity by a synthetic peptide derived from laminin-A chain. Biochemistry 30:2073-2077, 1990.
- 105. Minguell JJ, Hardy CL, Tavassoli M. Adhesive interaction of hemopoietic progenerator cells membrane with the RGD domain of fibronectin. Biochem Biophys Acta 1151:120-126, 1993.
- 106. Aota S, Nagai T, Yamada KM. Characterization of regions of fibronectin besides the RGD sequence required for adhesive function of the cell-binding domain using site-directed mutagenesis. J Biol Chem 2626:15938-15943, 1991.
- 107. O'Shea KS, Lui K-H, Dexit VM. Thrombospondin and a 140-kD fragment promote adhesion and neurite outgrowth from embryonic central and peripheral neurons and from PC12 cells. Neuron 7:231-237, 1991.
- 108. Hadley MA, Weeks BS, Kleinman HK, Dym M. Laminin promotes formation of cord-like structures by Sertoli cells in vitro. Dev Biol 140:318–327, 1990.
- 109. Staatz WD, Fok KF, Zulter MM, Adams SP, Rodriguez BA, Santoto SA. Identification of a tetrapeptide recognition sequence for the alpha-2 beta-1 integrin in collagen. J Biol Chem 266:7363-7367, 1991.
- 110. Phillips DR, Charo IF, Scarborough RM. GPIIb-IIIa: The responsive integrin. Cell 65:359-362, 1991.
- 111. Mizejewski GJ. Role of integrins in cancer: Survey of expression patterns. Proc Soc Exp Biol Med 222:124-138, 1999.
- 112. Koivunen E, Gay DA, Ruoslahti E. Selection of peptides binding to the alpha-5 beta-1 integrin from phage display library. J Biol Chem 268:20205-20210, 1993.

- Chakravarti S, Tam MF, Cheung AE. The basement membrane glycoprotein entactin promotes cell attachment and binds calcium ions. J Biol Chem 265:10597-10603, 1990.
- 114. Wu CY, Chung AE. Potential role of entactin in hemostasis: Specific interaction of entactin with fibrinogen α and β chains. J Biol Chem 266:18802–18807, 1991.
- Mizejewski GJ, Vonnegut M, Jacobson HI. Estradiol-activated alphafetoprotein suppresses the uterotropic response to estrogens. Proc Soc Natl Acad Sci U S A 80:2733–2737, 1983.
- Nishihira J, Koyama Y, Sakai M, Nishi S. The fatty acid binding site of human alpha-fetoprotein. Biochem Biophys Res Commun 196:1049-1059, 1993.
- Morinaga T, Sakai M, Wegmann TG, Tomoaki T. Primary structures of human AFP and its mRNA. Proc Natl Acad Sci U S A 80:4604– 4608, 1983.
- Smith CJ, Kelleher PC. Alphafetoprotein separation of two molecular variants by affinity chromatography with concanavalin A-agarose. Biochim Biophys Acta 317:231–235, 1973.
- 119. Kerckaert JP, Bayarde B, Biserte G. Microheterogeneity of rat, mouse and human alphafetoprotein as revealed by crossed immunoaffinoelectrophoresis with different lectins. Biochim Biophys Acta 576:99-108, 1979.
- 120. Kerckaert JP, Bayard B. Study of the molecular heterogeneity of human alphafetoprotein, Oncodevelopmental aspects. In: Bog-Hansen TC, Ed. Lectins Biology, Biochemistry, and Clinical Biochemistry. Academic Press, London, Vol 8, pp271-282, 1981.
- 121. Ishiguro T, Sakaguchi H, Fukui M, et al. Alpha-fetoprotein subfractions in amniotic fluid identified by a modification of the method of concanavalin A, lentil lectin or phytohemagglutinin-E affinity crossed-line immunoelectrophoresis. Tumor Biol 6:195-205, 1983.
- Taketa K, Ichikawa E, Nakabayashi H, Namiki M, Takami H. Further resolution of human alphafetoprotein by affinity electrophoresis with erythroagglutinating phytohaemagglutinin of *Phaseolus vulgaris1* lectin. Tumor Biol 6:519-532, 1985.
- 123. Taketa K, Ichikawa E, Akamatsu K, Ohta Y, Seikiya C. Increased asialo alphafetoprotein in patients with alphafetoprotein producing tumors: Demonstration by affinity electrophoresis with erythroagglutinating phytohaemagglutinin of *Phaseolus vulgaris* lectin. Tumor Biol 6:533-544, 1985.
- 124. Aoyagi Y, Isemura M, Yosizawa Z, Suzuki Y, Sekine C, Ono T, Ichnida F. Fucosylation of serum alphafetoprotein in patients with primary hepatocellular carcinoma. Biochim Biophys Acta 830:217–223, 1985.
- 125. Breborowicz J. Application of lectins and of monoclonal antibodies for determination of structure of N-linked glycan of human alphafetoprotein. In: Tardowski J, Ed. Spectroscopic and Structural Studies of Biomedical Materials. Sigma Press, Wilnslow, N.J., pp201-230 1987.
- Taketa K. Characterization of sugar chain structures of human AFP by lectin affinity electrophoresis. Electrophoresis 19:2595-2602, 1998.
- Taketa K. Multimodal application of lectin affinity electrophoresis of alpha-fetoprotein. Electrophoresis 19:1774–1779, 1998.
- Smith CJ, Kelleher PC, Belanger L, Dallaire L. Reactivity of amniotic fluid alpha-fetoprotein with concanavalin A in diagnosis of neural tube defects. Br Med J 1:920-921, 1979.
- Ruoslahti E, Engvall E, Pekkala A, Seppala M. Developmental changes in carbohydrate moiety of human alphafetoprotein. Int J Cancer 22:515-520, 1978.
- Ishiguro T, Sakaguchi H, Sugitachi I. Developmental changes of amniotic fluid alpha-fetoprotein subfractions in early gestation. Am J Reprod Imunol 3:61-64, 1983.
- Ohta M, Kawahara N, Liu M, Taketa K, Kudo T, Taga H. Developmental alterations of AFP sugar chain in amniotic fluids analyzed by lectinaffinity. Acta Med Okayama 52:27-33, 1998.
- Breborowicz J, Mackiewicz A, Breborowicz D. Microheterogeneity of alpha-fetoprotein in patient serum as demonstrated by lectin affino immunoelectrophoresis. Scand J Immunol 14:15-20, 1981.
- Miyazaki J, Endo Y, Oda T. Lectin affinities for alpha-fetoprotein in liver cirrhosis, hepatocellular carcinoma and metastatic liver tumor. Acta Hepatol Jpn 22:1559-1568, 1981.
- 134. Kumada T, Nakano I, Takeda I, Kiriyama S, Sone Y, Hayashi K. Clinical utility of lens culivaris agglutinin-reactive AFP in small

- hepatocellular carcinoma: Special reference to imaging diagnosis. J Hepatol 30:125-130, 1999.
- 135. Herve F, Gentin M, Rajkowski KM, Wong LT, Hsia CJ, Cittanova N. Estrogen-binding properties of rat AFP and its isoforms: Investigation of the apparent non-integrality of sites on the unfractionated protein. J Steroid Biochem 36:319–324, 1990.
- Savu L, Benassayag C, Vallette G, Nunez E, Jayle MF. Purification and estrogen binding properties of mouse AFP and two forms of the protein with different affinities for Con-A. Biochemistry 59:323– 328, 1977.
- Yachnin S. Demonstration of the inhibitory effect of human AFP on in vitro transformation of human lymphocytes. Proc Natl Acad Sci U S A 73:2857-2860, 1976.
- Alpert E, Drysdale JW, Isselbacher KJ, Schur PH. Human AFP: Isolation, characterization, and demonstration of microheterogeneity. J Biol Chem 247:3792-3798, 1972.
- Parmelee DC, Evensen MA, Deutsch HF. The presence of fatty acids in human alpha-fetoprotein. J Biol Chem 253:2114–2119, 1978.
- 140. Berde CB, Nagai M, Deutsch HF. Human alpha-fetoprotein: Fluorescence studies on binding and proximity relationships for fatty acids and bilirubin. J Biol Chem 254:12609-12614, 1979.
- 141. Leal JA, Eddy KB, Keel BA. Chromatofocusing profile of purified human AFP and albumin differs from those of crude samples: Effect of protein concentration of the elution of the sample. Anal Biochem 192:411-418, 1991.
- 142. Zizkovsky V, Strop P, Korcakova J, Havranova M, Mikes F. Fluorescence spectroscopy and polarization, and circular dichroism in studies on pH-dependent changes in the AFP molecule. Ann NY Acad Sci 417:49-55, 1983.
- Ruoslahti E, Engvall E. Immunological crossreaction between AFP and albumin. Proc Natl Acad Sci U S A 73:4641-4644, 1976.
- 144. Pekkala-Flagan A, Ruoslahti E. Unfolded transferrin polypeptide chain is immunologically cross-reactive with similar derivatives of serum albumin and AFP. J Immunol 128:1163-1167, 1982.
- 145. Jalanko H, Engvall E, Ruoslahti E. Immunochemical properties of AFP and antibodies to autologous AFP. Immunol Commun 7:209– 222, 1978.
- Nishi S, Watabe H, Hirai H. Immunological and chemical correlation between AFPs from human and several mammalian species. Ann NY Acad Sci 259:109-118, 1975.
- Mizejewski GJ, Vonnegut M. Induction of fetal wastage in pregnant mice passively immunized to murine alpha-fetoprotein. J Dev Comp Immunol 7:139-149, 1983.
- Mizejewski GJ, Vonnegut M. Mechanisms of fetal demise in pregnant mice immunized to murine alpha-fetoprotein. Am J Reprod Immunol 5:32-38, 1984.
- Hassoux R, Uriel J. Abortive effect of autologous antibodies against alpha-fetoprotein. Comp Rend Acad Sci (Paris) 287:395–398, 1978.
- Ruoslahti E, Pihko H, Becker M, Makela C. Rabbit AFP: Normal levels and breakage of tolerance with haptenated homologous alphafetoprotein. Eur J Immunol 5:7-10, 1975.
- Sheppard HW, Sell S, Trefts P, Bahn R. Effects of AFP on murine immune responses: I. Studies on mice. J Immunol 119:91-97, 1977.
- Mizejewski GJ, Allen RP. Immunotherapeutic suppression in transplantable solid tumors. Nature (Lond) 250:50-52, 1974.
- Mizejewski GJ, Grimley PM. Abortogenic activity of antiserum to alpha-fetoprotein. Nature (Lond) 259:222-224, 1976.
- 154. Mizejewski GJ, Dillon WR. Immunobiologic studies in hepatomabearing mice passively immunized to alpha-fetoprotein. Arch Immunol Exp Ther 27:655-662, 1979.
- 155. Mizejewski GJ, Young SR, Allen RP. Alpha-fetoprotein: Effect of heterologous antiserum on hepatoma cells in vitro. J Natl Canc Inst 54:1361-1367, 1975.
- Mizejewski GJ, Allen RP. Alpha-fetoprotein: Studies of tumor associated antigen cytotoxicity in mouse hepatoma BW7756. Clin Immunol Immunopathol 11:307-317, 1978.
- 157. Weir DM. Handbook of Experimental Immunology. Philadelphia: FA Davis Company, pp355-500, 1967.
- Zeng CQY, Alpert E. A novel approach to experimentally estimating the number of reactive epitopes on multivalent antigens. Tumor Biol 10:4–11, 1989.
- Alpert E, Abelev GI. Summary report: Epitope analysis of human alpha-fetoprotein. Tumor Biol 19:290–292, 1998.
- 160. Christiansen M, Yazova AK, Karamova ER, Andreév AV, Goussev

- AI, Mortensen V, Pettersson K, Koch C, Norgaard-Pedersen B, Abelev GI. Epitopes of human alpha-fetoprotein: Construction of an epitope-map from a large number of monoclonal antibodies. J Tumor Marker Oncol 9:57–68, 1994.
- Nustad K, Paus E, Kierulf B, Bormer OP. Specificity and affinity of 30 monoclonal antibodies against alpha-fetoprotein. Tumor Biol 19:293-300, 1998.
- Uotila M, Engvall E, Ruoslahti E. Monoclonal antibodies to human alpha-fetoprotein. Mol Immunol 17:791-794, 1980.
- Nomura M, Imai M, Nakamura T, Miyakawa Y, Mayumi M. Demonstration of two distinct antigenic determinants on human AFP by monoclonal antibodies. Mol Immunol 19:1691–1697, 1982.
- 164. Van Heyningen V, Barron L, Brock DJH, Crichton D, Laurie S. J. Monoclonal antibodies to human AFP: Analysis of the behavior of three different antibodies. Immunol Methods 50:123-131, 1982.
- 165. Micheel B, Fiebach H, Karsten U, Goussev AI, Jazova AK, Kopp J. Monoclonal antibodies to different epitopes of human AFP. Eur J Cancer Clin Oncol 19:1239-1246, 1983.
- Wellerson R, Shaw S, Kaplan P. Characteristics of five monoclonal anti-AFP antibodies. Hybridoma 3:177-185, 1984.
- Sittenfeld A, Moreno E. A sensitive blotting system for detection of AFP variants with monoclonal and polyclonal antibodies. J Immunol Methods 106:19-26, 1988.
- 168. Yazova AK, Goussev AI, Poltaranina VS, Yakimenko EF. Human AFP epitopes as revealed by monoclonal antibodies. Immunol Lett 25:325-330, 1990.
- Karmali A, Novo C. Human AFP: Isolation and production of monoclonal antibodies. Biochim 72:369–374, 1990.
- Chakraborty M, Mandal C, Mandal C. Epitope analysis of the oncofetal antigen AFP using monoclonal antibodies. Mol Immunol 28:703-710, 1991.
- Abelev GI, Karamova ER, Lazarevich NL, Kiseleva VI, Poverenny AM. Electro-chromatography: A method for automatic immunoaffinity chromatography on porous surfaces. Immunol Lett 40:133-138, 1994.
- 172. Bei R, Budillon A, Reale MG, Capuano G, Pomponi D, Budillon G, Frati L, Muraro R. Cryptic epitopes on AFP induce spontaneous immune responses in hepatocellular carcinoma, liver cirrhosis, and chronic hepatitis patients. Cancer Res 59:5471-5474, 1999.
- 173. Vakharia D, Mizejewski GJ. Human alpha-fetoprotein peptides bind estrogen receptor and estradiol and suppress breast cancer. Breast Cancer Res Treat 63:41-52 2000.
- Dolgikh DA, Gilmanshin RI, Brazhnikov EV, Bychkova VE, Semisotnov GV, Venyaminov SY, Ptitsyn OB. Alpha-lactalbumin: Compact state with fluctuating tertiary structure. FEBS Lett 136:311-315, 1981.
- 175. Uversky NV, Kirkitadze MD, Narizhneva NV, Potekhin SA, Tomashevski AY. Structural properties of AFP from human cord serum: The protein molecule at low pH possesses all the properties of the molten globule. FEBS Lett 364:165-176, 1995.
- Uversky VN, Narizhneva NV, Ivanova TV, Tomashevski AY. Rigidity of human AFP tertiary structure is under ligand control. Biochemistry 36:13638-13645, 1997.
- 177. Uversky VN, Narizhneva NV, Ivanova TV, Kirkitadze MD, Tomashevski AY. Ligand-free form of human AFP: Evidence for the molten globule form. FEBS Lett 410:280–284, 1997.
- Dudich IV, Semenkova LN, Dudich El. Reversible conformational changes in the tertiary structure of the human AFP molecule induced by ligand-protein and protein-protein interactions. Tumor Biol 19:34, 1998.
- Demarest SJ, Boice JA, Fairman R, Raleigh DP. Defining the core structure of the alpha-lactalbuman molten state. J Mol Biol 294:213– 221, 1999.
- Greene LH, Grobler JA, Malinovski VA, Tian J, Acharya KR, Brew K. Stability, activity, and flexibility in alpha-lactalbumin. Protein Eng 12:581-587, 1999.
- 181. Demarest SJ, Raleigh DP. Solution structure of a peptide model of a region important for folding of an alpha-lactalbumin provides evidence for the formation of a narrative structure in the denatured state. Protein Struct Func Gen 38:189-196, 2000.
- Griko YV, Remeta DP. Energetics of solvent and ligand-induced conformational changes in alpha-lactalbumin. Protein Sci 8:554-561, 1999.
- 183. Uversky VN, Narizhneva NV, Kirschstein SO, Winter S, Löber G.

- Conformational transitions provoked by organic solvents in betalactoglobulin: Can the molten globule-like intermediate be induced by the decrease in dielectric constant. Fold Design 2:163–172, 1997.
- 184. Matthews BW. Structural and genetic analysis of the folding and function of T4 lysozyme. FASEB J 10:27-34, 1996.
- 185. Wang C, Lascu I, Giartosio A. Bovine serum fetuin is unfolded through a molten globule state. Biochemistry 37:8457–8464, 1998.
- Dockal M, Carter DC, Rüker F. Conformational transitions of the three recombinant domains of human serum albumin depending on pH. J Biol Chem 275:3042-3050, 2000.
- 187. Miroy GJ, Lai Z, Lashuel HA, Peterson SA, Strang C, Kelly JW. Inhibiting transthyretin amyloid fibril formation via protein stabilization. Proc Natl Acad Sci U S A 93:15051-15056, 1996.
- Bychkova VE, Berni R, Rossi GL, Kutyshenko V, Ptitsyn OB. Retinol-binding protein is in the molten globule state at low pH. Biochemistry 31:7566-7571, 1992.
- 189. Bychkova VE, Dujsekina AE, Kleinin SI, Tiktopulo EI, Uversky VN, Ptitsyn OB. Molten globule-like state of cytochrome-C under conditions stimulating those near the membrane surface. Biochemistry 35:6058-6063, 1996.
- Callihan DE, Logan TM. Conformations of peptide fragments from the FK506 binding protein: Comparison with the native and ureaunfolded states. J Mol Biol 285:2161-2175, 1999.
- 191. Clark AC, Freiden C. Chaperonin GroEL binds to late-folding nonnative conformations present in native E. coli and murine dihydrofolate reductase. J Mol Biol 285:1777-1788, 1999.
- 192. Bose HS, Whittal RM, Baldwin MA, Miller WL. The active form of the steroidogenic acute regulatory protein, STAR, appears to be a molten globule. Proc Natl Acad Sci U S A 96:7250-7255, 1999.
- Rajaraman K, Raman B, Rao CM. Molten-globule state of carbonic anhydrase binds to the chaperone-like alpha-crystallin. J Biol Chem 271;27595-27600, 1996.
- 194. Kindu B, Guptasarma P. Hydrophobic dye inhibits aggregation of molten carbonic anhydrase during thermal unfolding and refolding. Protein Struct Func Gen 37:321-324, 1999.
- Pattus F, Massotte D, Wilmsen HU, Lakey J, Tsernoglou D, Tucker A, Parker MW. Colcins: Prokaryotic killer-pores. Exp 46:180-192, 1990.
- 196. Van der Groot FG, Gonzalez-Manas JM, Lakey JH, Pattus F. A molten globule membrane-insertion intermediate of the pore-forming domain of colicin-A. Nature 354:408-410, 1991.
- 197. Ptitsyn OB, Bychkova VE, Uversky VN. Kinetic and equilibrium folding intermediates. Phil Trans Roy Soc (Lond-B) 348:35-41, 1995.
- 198. Bychkova VE, Pain RH, Pititsyn OB. The "molten globule" state is involved in the translocation of proteins across membranes. FEBS Lett 238:231-234, 1988.
- 199. Bychkova VE, Ptitsyn OB. Folding intermediates are involved in genetic diseases. FEBS Lett 359:6-8, 1995.
- 200. Minton AP. Protein folding: Thickening the broth. Curr Biol 10:R97-R99, 2000.
- Eilers M, Hwang S, Schatz G. Unfolding and folding of a purified protein during import into isolated mitochondria. EMBO J 7:1139– 1145, 1988.
- 202. Mizejewski GJ. Alpha-fetoprotein signal sequences: A proposed mechanism for subcellular localization and organelle targeting. J Theor Biol 176:103-113, 1995.
- Uversky VN, Ptitsyn OB. All-or-none solvent-induced transitions between native, molten globule, and unfolded states in globular proteins. Fold Design 1:117-122, 1996.
- Thomasson WA. Unraveling the mystery of protein folding: Breakthroughs in bioscience. Fed Am Soc Exp Biol, Bethesda, MD. Vol 1(Suppl), pp1-12, 1998.
- Buchner J. Supervising the fold: Functional principles of molecular chaperones. FASEB J 10:10-19, 1996.
- 206. Caplan AJ. HSP90's secrets unfold: New insight from structural and functional studies. Trends Cell Biol 9:262–268, 1999.
- Lorimer GH. A quantitative assessment of the role of the chaperonin in protein folding in vivo. FASEB J 10:509, 1996.
- 208. Ellis RJ, Hartl FV. Protein folding in the cell: Competing models of chaperonin function. FASEB J 10:20-26, 1996.
- 209. Shortle D. The denatured state (in other half of the folding equation) and its role in protein stability. FASEB J 10:27-34, 1996.

- Flynn GC, Chappell TG, Rothman JE. Peptide binding and release by protein assembly. Science 245:385–390, 1989.
- Rippmann F, Taylor WR, Rothbard JB, Green NM. A hypothetical model for the pepetide-binding domain of HSP70 based on its binding domain of HLA. EMBO J 10:1053–1059, 1991.
- Thomas PJ, Qu BH, Petersen PL. Defective protein folding as a basis of human disease. Trends Biol Sci 20:456–459, 1995.
- Taubes G. Misfolding the way to disease. Science 271:1493–1495, 1996.
- Dabson CM. Protein misfolding, evolution, and disease. Trends Biol Sci 24:329–332, 1999.
- Kronquist KE, Dreazen E, Keener SL, Nicholas TW, Crandall BF. Reduced fetal hepatic AFP levels in Down's Syndrome. Prenat Diag 10:739-751, 1990.
- Cuckle HS, Wald NJ, Lindenbaum RH. Cord serum AFP and Down's syndrome. Br J Obstet Gynecol 93:408–410, 1986.
- Nicolini U, Hubinont C, Santolaya J, Fisk NM, Rodeck CH, Johnson RD. Fetal serum AFP in fetuses with chromosomal abnormalities. Lancet II:1316-1318, 1988.
- Van Lith JM, Beekhuis JR, Van Loon AJ, Mantingh A, DeWolf BT, Breed AS. AFP in fetal serum amniotic fluid and maternal serum. Prenat Diag 11:625-628, 1991.
- Davis RO, Casper P, Huddleston JF, Bradley EL, Finley SC, Finley WH, Milunsky A. Decreased levels of amniotic fluid AFP associated with Down syndrome. Am J Obstet Gynecol 153:541-544, 1985.
- Narkewicz MR, Krebs N, Karrer F, Orban-Ellen K, Sokol RJ. Correction of hypozincemia following liver transplantation in children is associated with urinary zinc loss. Hepatology 29:830–833, 1999.
- 221. Bonno M, Higashigawa M, Nakano T, Myahara M, Aguma E, Komada Y, Eto M, Sakurai M. Acute myositis with transient decrease of albumin immunoglobulin, and complement following rotavirus gastroenteritis. Acta Paediat Jap 40:82-84, 1998.
- Lai EC, Tam PC, Paterson İA, Ng MM, Fan ST, Choi TK, Wong J. Emergency surgery for severe acute cholangitis: The high-risk patients. Ann Surg 211:55-59, 1990.
- 223. Jang Y, Janich S, Cohn JA, Wilson JM. The common variant of cystic fibrosis transmembrane conductance regulator is recognized by HSP70 and degraded in a pre-Golgi nonlysosomal compartment. Proc Natl Acad Sci U S A 90:9480-9484, 1993.
- Le A, Steiner JL, Farrell GA, Shaker JC. Association between calnexin and a secretion incompetent variant of alpha-1-anti trypsin. J Biol Chem 259:7514-7519, 1994.
- Saijo T, Welch WJ, Tanaka K. Intramitochondrial folding and assembly of medium chain acetyl CoA dehydrogenase. J Biol Chem 269:4401–4408, 1994.
- Pind S, Riordan JR, Williams DB. Participation of the endoplasmic reticulum chaperone calnexin (p88) in the biogenesis of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 269:12784-12788, 1994.
- Chessler SD, Byers PH. BiP binds type-1 procollagen pro-alpha chains with mutations in the carboxyl terminal propeptide. J Biol Chem 268:18226–18233, 1993.
- Yehiely F, Owen M. The gene for the rat heat shock cognate Hsc70 can suppress oncogene-mediated transformation. Cell Growth Diff 3:803-809, 1992.
- Colon W, Kelly JW. Partial denaturation of transthyretin is sufficient for amyloid fibril formation. Biochemistry 31:8654–8660, 1992.
- 230. Gasset M, Baldwin MA, Fletterick RJ, Prusiner SB. Perturbation of the secondary structure of the scrapie prion protein under conditions that alter infectivity. Proc Natl Acad Sci U S A 90:1-5, 1993.
- Soto C, Castano EM, Frangione B, Inestrosa NC. The alpha-helical to beta-strand transition in the amino terminal fragment of the amploidpeptide modulates amploid formation. J Biol Chem 270:3063–3067, 1995.
- Eyre DR. Collagen: Molecular diversity in the body's protein scaffold. Science 207:1315–1433, 1980.
- Hobbs HH, Russell DW, Brown MS, Goldstein JL. The LDL receptor locus in familial hypercholesterolemia: Mutational analysis of a membrane protein. Annu Rev Genet 24:133-170, 1990.
- 234. Lau MM, Neufeld EF. A frameshift mutation in a patient with Tay-Sachs disease causes premature termination and defective intracellular transport of beta-hexosamidase. J Biol Chem 264:21376–21380, 1989.
- 235. Chuang DT, Davie JR, Wynn RM, Chuang JL. Molecular basis of

- maple sugar urine disease and stable correction by retroviral gene transfer. J Nutr 125:17665-17725, 1995.
- Fisher CR, Chang JL, Cox RP, Fisher CW, Starr RA. Maple sugar urine disease in Mennonites: Evidence that Y393N in E1 alpha impedes assemply of branched chain AK acid dehydrogenase complex. J Clin Invest 88:1034–1037, 1991.
- Wu YS, Bevilacqua VL, Berg JM. Fibrillin domain folding and calcium binding: Signficance to Marfan's disease. Chem Biol 2:91-97, 1995.
- Mandelkow EM, Mandelkow E. Tau in Alzheimer's disease trends.
 Cell Biol 8:425-427, 1998.
- 239. Hainant P, Milner J. Interaction of heat shock 70 with p53 translated in vitro: Evidence for interaction with dimeric p53 and a role in the regulation of p53 conformation. EMBO J 11:3513-3520, 1992.
- Honore LH, Dill FJ, Poland BJ. Placental morphology in spontaneous human abortuses with normal and abnormal karyotypes. Teratology 14:151-166, 1976.
- 241. Rochelson B, Kaplan C, Guzman E, Arato M, Hansen K, Trunca C. A quantitative analysis of placental vasculature in the third trimester fetus with autosomal trisomy. Obstet Gynecol 75:59-63, 1990.
- Rumble B, Retallock R, Hilbich C, Simms G. Amyloid A4 protein and its precursor in Down's syndrome and Alzheimer's disease. N Engl J Med 320:1446-1452, 1989.
- 243. Perez N, Sugar J, Charya S, Johnson G, Merril C. Increased synthesis and accumulation of heat shock 70 proteins in Alzheimer's disease. Mol Brain Res 11:249-254, 1991.
- 244. Liautard JP. A hypothesis on the aetiology of Alzheimer's disease: Description of a model involving a misfolded chaperone. Med Hypothesis 43:372–380, 1994.
- 245. Ananthan J, Goldberg AL, Voellmy R. Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science 317:522-523, 1985.
- 246. Sidrauski C, Chapman R, Walter P. The unfolded protein response: An intracellular signaling pathway with many surprising features. Trends Cell Biol 8:245-249, 1998.
- Liautard JP. A thermo-kinetic model for protein folding. CR Acad Sci 311:385–389, 1990.
- Wald NJ, Cuckle H, Boreham J, Stirrat GM, Turnbull AC. Maternal serum AFP and diabetes mellitus. Br J Obstet Gynecol 86:101-105, 1979
- 249. Benassayag C, Migrot TM, Haurigui M, Civel C, Hassid J, Carbonne B, Nunez EA, Ferre F. High polyunsaturated fatty acid, thromboxane A₂, and alpha-fetoprotein concentrations at the human feto-maternal interface. J Lipid Res 38:276-286, 1997.
- Haddow JE, Macri JN, Munson M. The amnion regulates movement of fetally derived alpha-fetoprotein into maternal blood. J Lab Clin Med 94(2):344-347, 1979.
- Gitlin D. Normal biology of alpha-fetoprotein. Ann NY Acad Sci 259:7-16, 1975.
- 252. Brownhill P, Edward, D, Jones C, Mahendrin D, Owen D, Sibley C, Johnson R, Swanson P, Nelsen DM. Mechanisms of alphafetoprotein transfer in the perfused human placental cotyledon from uncomplicated pregnancy. J Clin Invest 96:2220-2226, 1995.
- Schneider H, Stulc J, Radaelli C, Briner J. Effects of elevated umbilical venous pressure on fluid and solute transport across the isolated perfused human placental cotyledon. Trophablast Res 3:189

 201, 1988.
- Furth RV, Adinolfi M. In vitro synthesis of fetal alpha-fetoprotein in man. Nature (Lond) 222:1296-1299, 1969.
- Kupfermine MJ, Tamura RK, Wigton TR, Glassenberg R, Socol ML. Placenta accreta is associated with elevated maternal serum alphafetoprotein. Obstet Gynecol 82:266–269, 1993.
- 256. Konchak PS, Do IM, Bernstein MD, Capeless EL. Uterine artery Doppler velocimetry in the detection of adverse obstetric outcomes in women with unexplained elevated maternal serum alpha-fetoprotein levels. Am J Obstet Gynecol 173:1115-1119, 1995.
- Katz VI, Chescheir NC, Cefalo RC. Unexplained elevations of maternal serum alpha-fetoprotein. Obstet Gynecol Surv 43:719-726, 1990.
- Uriel J, Naval J, Laborda J. AFP-mediated transfer of arachidonic acid into cultured cloned cells derived from a rat rhabdomyosarcoma. J Biol Chem 262:3579-3585, 1987.
- Torres JM, Anel A, Uriel J. AFP-mediated uptake of fatty acids by human T-lymphocytes. J Cell Physiol 150:456-462, 1992.

- 260. Severin SE, Moskaleva EY, Shmyrev IT, Posypanova GA, Gelousova YV, Sologub VK, Luzhkov YM, Makachian R, Andreani J, Severin ES. AFP-mediated targeting of anti-cancer drugs to tumor cells in vitro. Biochem Mol Biol Int 37:385-392, 1995.
- 261. Moskaleva EY, Posypanova GA, Shmyren IT, Rodina AV, Muizhnek EL, Severin ES, Katukov VY, Luzhkov YM, Severin SE. AFP-mediated targeting: A new strategy to overcome multidrug resistance of tumor cells in vitro. Cell Biol Int 21:793-799, 1997.
- 262. Severin SE, Posypanova GA, Katukov VY, Zhukova OS, Vorozhtsov GN, Kaliya OZ, Lukyanets EA, Severin ES. Antitumor activity of conjugates of the oncofetal protein AFP and phthalocyanines in vitro. Biochem Mol Biol Int 43:1081-1089, 1997.
- 263. Severin SE, Moskaleva EY, Posypanova GA, Koromyslova IA, Shmyrev IT, Krivonos AV, Myagkikh IV, Feldman NB, Finakova GV, Katukov VY, Luzhkov YM, Nakachian R, Andreani J, Severin ES. *In vivo* antitumor activity of cytotoxic drugs conjugated with human AFP. Tumor Target 2:299–306, 1996.
- 264. Garreau B, Vallette G, Aldercreutz H, Wahala K, Makela T, Bennassayag C, Nunez EA. Phytoestrogens: New ligands for rat and human alpha-fetoproteins. Biochem Biophys Acta 1094:339-345, 1991
- 265. Sotnichenko AI, Severin SE, Posypanova GA, Feldman NB, Grigor MI, Severing ES, Petrov RV. Water soluble 2,3,7,8-tetrachlorodibenzo-p-dioxin complex with human AFP: Properties, toxicity in vivo, and anti-tumor activity in vivo. FEBS Lett 450:49-51, 1999.
- Bradbury RB. Estrogens and related substances in plants. Vitamins Hormones 12:207-233, 1954.
- Sheehan DM. The case for phytoestrogen research. Proc Soc Exp Biol Med 208:3-5, 1995.
- Baker ME, Medlock KL, Sheehan DM. Flavonoids inhibit estrogen binding to rat alpha-fetoproteins. Proc Soc Exp Biol Med 217:317– 321, 1998.
- Wang XW, Xie H. Stimulation of tumor cell growth by alphafetoprotein. Int J Cancer 75:596–599, 1998.
- Greenberg F, Faucett A, Rose E, Bancalari L, Kardon NB, Mizejew-ski GJ, Haddow JE, Alpert E. Congenital deficiency of alpha-fetoprotein. Am J Obstet Gynecol 167:509-511, 1992.
- Sher C, Shohat M. Congenital deficiency of AFP and Down's syndrome screening. Prenat Diag 17:884

 –885, 1997.
- Gershwin NME, Castles JJ, Makishima R. Accelerated plasmacytoma formation in mice treated with alpha-fetoprotein. J Natl Cancer Inst 64:145-149, 1980.
- Mizejewski GJ. Immunologic prospects for mammalian alphafetoprotein. Clin Immunol Newslett 2:37–39, 1981.
- 274. Mizejewski GJ, Jacobson HI: Alpha-fetoprotein is a dual regulator of growth in estrogen responsive tissues. In: Mizejewski GJ, Jocobson HI, Eds. Biological Activities of Alpha-Fetoprotein. Boca Raton, FL, CRC Press, Vol 1:pp71-82, 1987.
- Mizejewski GJ, Warner AS. Alpha-fetoprotein can regulate growth in the immature and adult hyophysectomized mouse uterus. J Reprod Fertil 85:177-185, 1988.
- Mizejewski GJ, Keenan, JF Setty RP. Separation of the estrogenactivated growth regulatory forms of alpha-fetoprotein in mouse amniotic fluid. Biol Reprod 42:887–898, 1990.
- Leffert HI, Sell S. Alpha-fetoprotein biosynthesis during the growth cycle of differentiated fetal rat hepatocytes in primary monolayer culture. J Cell Biol 61:823-829, 1974.
- Toder V, Bland M, Gold-Gefter L, Nebel J. The effect of alphafetoprotein on the growth of placental cells in vitro. Placenta 4:79– 86, 1983.
- 279. Hamel S, Hoskin DW, Hooper DC, Murgita RA. Phenotype and function of bone marrow-derived T and non-T cells activated in vitro by alpha-fetoprotein. In: Mizejewski GJ, Jacobson HI, Eds. Biological Activities of Alpha-Fetoprotein. Boca Raton, FL: CRC Press, Vol 1:pp167-177, 1987.
- Leal JA, May JV, Keel BA. Human alpha-fetoprotein enhances epidermal growth factor proliferation activity upon porcine granulosal cells in monolayer culture. Endocrinology 126:669-671, 1980.
- 281. Keel BA, Eddy KB, Cho S, May JV. Synergistic action of purified α-fetoprotein and growth factors on the proliferation of porcine granulosa cells in monolayer culture. Endocrinology 129:217–225, 1991.
- 282. Jacobson HI, Bennett JA, Mizejewski GJ. Inhibition of estrogen-

- dependent breast cancer growth by a reaction product of α -fetoprotein and estradiol. Cancer Res **50**:415–420, 1990.
- Semenkova LN, Dudich El, Dudich IV, Shingarova LN, Korobko VG. Alpha-fetoprotein as a TNF-resistance factor for human hepatocarcinoma cell line HepG2. Tumor Biol 18:30

 –40, 1997.
- Semenkova LN, Dudich El, Dudich IV. Alpha-fetoprotein-induced apoptosis of human hepatoma cells. Tumor Biol 19:261–274, 1998.
- 285. Semenkova LN, Dudich EI, Dudich IV. AFP-mediated apoptosis is realised via Ca²⁺ and tyrosine-kinase independent pathways and do not require protein and RNA synthesis. Tumor Biol. 19(S2):26, 1988.
- Semenkova LN, Dudich EI, Khromikh LM, Gorbatova EA. Abrogation of α-fetoprotein-induced apoptosis in tumor cells by endogenous exogenous IL-2. Eur Cytokine Network 9:448, 1998.
- 287. Dudich I, Dudich E, Semenkova LN, Gorbatova EA, Shingarova L, Korobko V. Comparative study of the biological activity of TNFR55 and TNFR75-selective TNF-α mutants using various types of tumor cell lines. Eur Cytokine Network 9:489, 1998.
- 288. Dudich E, Seminkova L, Gorbatova E, Dudich I, Shingarova L, Korobko V. α-Fetoprotein-induced apoptosis in tumor cells is differentially modulated by RNFR55 and TNFR75-dependent signaling. Eur Cytokine Network 9:488, 1988.
- 289. Dudich EI, Seminkova LN, Dudich IV, Gorbatova EA, Nikolaeva MA, Tokhtamysheva N, Tatulov EB, Sukhikh GT. α-Fetoprotein causes apoptosis in tumor cells via activation of caspase-3 and bypasses fas-and TNFR1-dependent signaling. Eur J Biochem 266:750-761, 1999.
- 290. Dudich E, Semenkova L, Gorbatova E, Dudich I. Targeting modulation of the TNF-induced apoptosis in tumor cells by human alphafetoprotein: New approach for anticancer therapy. J Interferon Cytokine Res 19:1140, 1999.
- Dudich E, Semenkova L, Gorbatova E, Dudich I, Khromykh L, Tatulov E, Grechko G, Sukhikh G. Growth-regulative activity of human alpha-fetoprotein for different types of tumor and normal cells. Tumor Biol 19:30-40, 1998.
- 292. Goncharova O, Dudich E, Semenkova L, Gorbatova E, Dudich I. Synergy of α-fetoprotein and estradiol in suppression of tumor cell growth. Tumor Biol 20(S2):42, 1999.
- Mizejewski GJ, Vonnegut M, Jacobson HI: Studies of the intrinsic antiuterotropic activity of murine alpha-fetoprotein. Tumor Biol 7:19-28, 1986.
- 294. Bennett JA, Mizejewski GJ, Allen SHG, Zhu SJ, Jacobson HI: Transformation of apha-fetoprotein to a negative regulator of estrogen-dependent growth by ligands of the steroid/thyroid hormone receptor superfamily. J Cancer Res Clin Oncol 34:244, 1993.
- 295. Festin, SM, Bennett JA, Fletcher PW, Jacobson HI, Shaye DD, Andersen TT. The recombinant third domain of human alphafetoprotein retains the antiestrotrophic activity found in the full-length molecule. Biochem Biophys Acta 24789:307-314, 1999.
- Hajeri-Germond M, Naval J, Trojan J, Uriel J. The uptake of AFP by C-1300 mouse neuroblastoma cells. Br J Cancer 51:791-794, 1985.
- Lobenhofer EK, Huper G, Inglehart JD, Marks JR. Inhibition of mitogen-activated protein kinase and phosphatidylinositol 3-kinase activity in MCF-7 cells prevents estrogen-induced mitogenesis. Cell Growth Diff 11:99-110, 2000.
- 298. Musgrove EA, Sutherland RL. Cell cycle control by steroid hormones. Semin Cancer Biol 5:381-389, 1994.
- Matsushime H, Quelle DE, Shurtleff SA, Shibuya M, Sherr CJ, Kato JY. D-type cyclin-dependent kinase activity in mammalian cells. Mol Cell Biol 14:2066–20767, 1994.
- Endoh H, Sasaki H, Maruyama K, Takeyama K, Waga I, Shimizu T, Kato S, Kawashima H. Rapid activation of MAP kinase by estrogen in a bone cell line. Biochem Biophys Res Commun 235:99-102, 1997.
- 301. Razandi M, Pedram A, Greene GL, Levin ER. Cell membrane and nuclear estrogen receptors (Ers) originate from a single transcript. Studies of ERα and ERβ expressed in Chinese hamster ovary cells. Mol Endocrinol 13:307–319, 1999.
- 302. Etindi RN, Manni A, Martel J. The effects of TGF-α and estradiol on poly-phosphoinositide metabolism in MCF-7 breast cancer cells. Breast Cancer Res Treat 24:61-70, 1992.
- lacovelli L, Sallese M, Mariggio S, DeBlasi A. Regulation of Gprotein-coupled receptor kinase subtypes by calcium sensor proteins. FASEB J 13:1-8, 1999.
- 304. Krupnick JG, Goodman OB, Keen JH, Benovic JL. Arrestin/Clathrin

- interaction localization of the clathrin-binding domain of nonvisual arrestins to the carboxyl terminus. J Biol Chem **272:**15011–15016, 1997.
- McNiven MA, Cao H, Pitts KR, Yoon Y. The dynamin family of mechanoenzymes: Pinching in new places. Trends Biol Sci 25:115– 120, 2000.
- 306. Oakley RH, Laporte SA, Holt JA, Barak S, Caron MG. Association of B-arrestin with G protein-coupled receptors during clathrinmediated endocytosis dictates the profile of receptor resensitization. J Biol Chem 274:32248-32257, 1999.
- 307. Bηnemann M, Hosey M. G-protein coupled receptor kinases as modulators of G-protein signalling. J Physiol 517.1:5-23, 1999.
- Ceresa BP, Schmid SL. Regulation of signal transduction by endocytosis. Curr Opin Cell Biol 12:204–210, 2000.
- 309. Bennett JA, Zhu S, Pogano-Mirachi A, Kellom TA, Jacobson HI. AFP derived from a human hepatoma prevents growth of estrogendependent human breast cancer xenografts. Clin Cancer Res 4:2877– 2884, 1998.
- Dudich E, Semenkova L, Gorbatova E, Dudich I, Khromykh L, Tatulov E, Grechko G, Sukhikh G. Growth regulative activity of human AFP for different types of tumor and normal cells. Tumor Biol 19:30-40, 1998.
- Moro R, Villacampa MJ. Short sequences of high homology between structures of AFP and albumin. Tumor Biol 7:115–121, 1986.
- Wu JT, Monir-Vaghefi SM, Clayton F. Human AFP and albumin: Differences in zinc binding. Clin Physiol Biochem 5:85-94, 1987.
- Mizejewski GJ, Antelman, DE, Keenan JF, Preiss IL. Effects of heavy metals on alpha-fetoprotein in maternal sera and amniotic fluid of pregnant mice. Toxicology 64:19-32, 1990.
- 314. Nishi S, Matsue H, Yoshida H, Yomato R, Saki M. Localization of the estrogen-binding site of AFP in chimeric human-rat proteins. Proc Soc Natl Acad Sci U S A 88:3102–3105, 1991.
- Nishi S, Shahbazzadeh D, Azuma M, Sakai M. Estrogen-binding site of rat AFP. Tumor Biol 14:234, 1993.
- Jaziri M, Migliore-Samour D. Specific binding sites on human phagocytic blood cells for Gly-Leu-Phe and Val-Glu-Pro-lle-Pro-tyr: Immunostimulating peptides from milk proteins. Biochem Biophys Acta 1160:251-261, 1992.
- Nguyen JT, Turck CW, Cohen FE, Zuckerman RN, Lim WA. Exploiting the basis of proline recognition by SH3 and WW domains: Design of N-substituted inhibitors. Science 282:2088-2092, 1998.
- Medeiros-Neto G, Kim PS, Yoo SE. Congenital hypothyroid goiter with deficient thyroglobulin: Identification of an endoplasmic reticulum storage disease with induction of molecular chaperones. J Clin Invest 98:2838–2844, 1996
- Marquardt T, Ullrich K, Zimmer P, Hasilik A, Deufel T, Harms E. Carbohydrate-deficient glycoprotein syndrome (CDGS): Glycosylation, folding and intracellular transport of newly synthesized glycoproteins. Eur J Cell Biol 66:268–273, 1995.
- Oksche A, Schülein R, Rutz C, LieBenhoff V, Dickson J. Vasopressin V2 receptor mutants that cause X-linked nephrogenic diabetes insipidus: Analysis of expression, processing, and function. Mol Pharmacol 50:820–828, 1996.
- 321. Kato A, Yamamoto K, Miyazaki S, Jung SM, Morio M, Aoki N. Molecular basis for Glanzmann's thrombasthenia (GT) in a compound heterozygote with glycoprotein IIB gene: A proposal for the classification of GT based on the biosynthetic pathway of glycoprotein Iib-IIIa complex. Blood 79:3212-3218, 1992.
- Lyons SE, Bruck ME, Bowie EJW, Ginsburg D. Impaired intracellular transport produced by a subset of type IIA von Willebrand disease mutations J Biol Chem 267:4424–4430, 1992.
- 323. Arbini AA, Mannucci PM, Bauer KA. A Thr^{3.59} Met mutation in factor VII of a patient with a hereditary deficiency causes defective secretion of the molecule. Blood **87**:5085–5094, 1996.
- 324. Katsumi A, Senda T, Yamashita Y, Yamazaki T, Hamaguchi M, Kojima T. Protein C Nagoya, an elongated mutant of protein C, is retained within the endoplasmic reticulum and is associated with GRP78 and GRP94. Blood 87:4164-4175, 1996.
- Epstein FH, Nigam SK. Folding of secretory and membrane proteins. N Engl J Med 339:1688-1695, 1998.
- 326. Galarneu L, Par JF, Allard D, Hamel D, Levesque L, Tugwood JD, Green S, Belanger L. The AFP locus is activated by a nuclear receptor of the Drosophila FTZ-F1 family. Mol Cell Biol 16:3853–3865, 1996.

- 327. Richardson BE, Hulka BS, David Peck JL, Huges CL, van den Berg BJ, Christianson RE, Calvin JA. Levels of maternal serum alphafetoprotein (AFP) in pregnant women and subsequent breast cancer risk. Am J Epidemiol 148:719-727, 1998.
- Melbye M, Wohlfahrt J, Lei U, Norgaad-Pedersen B, Mouridsen HT, Lambe M, Michels KB. Alpha-fetoprotein levels in maternal serum during pregnancy and maternal breast cancer incidence. J Natl Cancer Inst 92:1001-1005, 2000.
- Janerich DT. Familial associations between birth defects and cancer.
 Am J Epidem 102:456-457, 1975.
- Jacobson HI, Janerich DT. Pregnancy altered breast cancer risk: mediated by maternal serum AFP? In: Mizjewski GJ, Jacobson HI, Eds. Biological Activities of AFP. Boca Raton, FL, CRC Press, Vol 2:pp93-100, 1989.
- Jaccobson HI, Thompson WD, Janerich DT. Multiple births and maternal risk of breast cancer. Am J Epidemiol 129:865–873, 1989.
- Thompson WD, Jacobson HI Negrini B. Hypertension and risk of breast cancer. J Natl Cancer Inst 81:1571-1574, 1989.
- 333. Page NM, Woods, RJ, Gardiner SM, Lomthaisong K, Gladwell RT, Butlin DJ, Manyonda IT, Loury PJ. Excessive placental secretion of neurokinin-B during the third trimester causes pre-eclampsia. Nature (Lond) 405:797-799, 2000.

- 334. Clayton-Hopkins JA, Olsen PN, Blake AP. Maternal serum alphafetoprotein levels in the pregnancy complicated by hypertension. Prenat Diagnosis 2:47-54, 1982.
- Walters BNJ, Lao T, Smith V, De Swiet M. α-Fetoprotein elevation and proteinuric pre-eclampsia. Br J Obstet Gynaecol 92:341-344, 1985.
- 336. Penque D, Mendes F, Beck S, Farinha C, Pacheco P, Nogueira, Lavinha J, Malho R, Ameral MD. Cystic fibrosis F508del patients have apically localized CFTR in a reduced number of airway cells. Lab Invest 80:857-865, 2000.
- 337. Lamerz R. AFP isoforms and their clinical significance. Anticancer Res 17:2927-2930, 1997.
- Alava MA, Sturralde M, Lampreave F, Pineiro A. Specific uptake of alpha-fetoprotein and albumin by rat Morris 777 Hepatoma cells. Tumor Biol 20:52-64, 1999.
- Uriel J, Bouillon D, Dupiers M. Affinity chromatography of human, rat, and mouse alpha-fetoprotein on estradiol-sepharose adsorbants. FEBS Lett 53:305-308, 1975.
- Tatarinov YS, Terentiev AA, Moldogazieva AK, Tagirova AK. Human alpha-fetoprotein and its purification by chromatography on immobilized estrogens. Tumor Biol 12:125-130, 1991.