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Sisphenol-A (SPA) is used to produce polymers for production
of polycarbonate and epoxy resins that are used in food con-
tainers and dental appliances. SPA binds to estrogen receptors
and induces estrogenic activity in a number of biological sys-
tems. We recently reported that although Fisher 344 (F344) and
Sprague-Dawley (S-D) rat strains exhibit different sensitivities
to SPA at the level of vaginal epithelial cell proliferation, there
was no difference In immediate early proto-oncogene expres-
sion between the two animal strains. In the present study we
investigated the effects of SPA on expression of another estro-
gen-target gene, vascular endothelial growth factor (VEGF), in
the uterus, vagina, and pituitary of F344 and S·D rats. Adult rats
were ovariectomized and treated with SPA by Intraperitoneal
Injection at concentrations of 0.02 to 150 mg/kg body wt. Ex-
pression of VEGF was monitored by RNase protection assay at
2 hr after treatment. There was a significant effect of dose of
SPA on the type of VEGF isoform expressed in the uterus, va-
gina, and pituitary. SPA induced greater (P < 0.01) levels of
VEGF164 and VEGF120+188 than VEGF110 levels. The lowest SPA
dose that had a significant (P< 0.05) effect on VEGF expression
compared with vehicle treatment was 37.5 mg/kg body wt.;
dose-response curves did not differ between strains. This is the
first report that the primary response of the uterus, vagina, and
pituitary to SPA includes rapid induction of VEGF expression.
Due to the capacity of VEGF to engage pleiotropic signaling
pathways In other cellular systems, we suggest that modulation
of VEFG may playa role in establishing the response of estro-
gen-target organs to estrogenic xenoblotlcs.
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A number of manufactured compounds have been
shown to have estrogenic activity (I). Bisphenol-A
(BPA; 4.4'isopropylidenediphenol) is one such

compound that is particularly abundant in the environment.
BPA is a monomer used in the manufacture of polycarbon-
ate plastics, and it is estimated that producers of plastic
products in the United States alone have the capacity to
manufacture over 2 billion pounds of this compound annu-
ally (2). BPA has been shown to bind to estrogen receptors
and to induce estrogenic activity in a number of assays,
including stimulation of cell proliferation and induction of
progesterone receptor expression in breast cancer cells in
culture (3, 4), stimulation of proliferation and proto-
oncogene expression in rat vaginal epithelium (5, 6), and
stimulation of prolactin release from rat pituitary (5, 7).
Because BPA can leach from polycarbonate plastics widely
used in food packaging and from resins used in dental ap-
pliances, there is a general concern for its potential to cause
adverse effects on human health (8-10).

Responses of the reproductive tract of ovariectomized
rodents, which include changes in gene expression, cellular
hypertrophy and DNA synthesis, and vascular changes.
have been used extensively to evaluate test compounds for
estrogenic activity. Regulation of vascular permeability and
blood vessel growth in the mammalian female reproductive
tract are associated with changes in gene expression of sev-
eral angiogenic factors, including vascular endothelial
growth factor (VEGF) (reviewed in Refs. 11-13). A single
gene encodes VEGF, but alternative exon splicing generates
several VEGF isoforms. Splice variants of 110. l lS, 121,
145. 165. 189, and 206 amino acids have been reported ( 14,
15). and the VEGF isoforms are thought to differ in bio-
logical function (16. 17). VEGF expression is induced by
estrogen in the uterus of many species, including humans
(18-21). Furthermore, VEGF is a primary response gene in
the rat uterus (22), and peak induction of VEGF expression
in the rat uterus occurs within I to 3 hr after treatment with
female sex steroid hormones (12, 22, 23). Differences in
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expression of VEGF isoforms have been reported after 1713-
estradiol (estradiol) administration to ovariectomized rats
(22-24) and sheep (25). So far, VEGF expression in the
mammalian reproductive tract after xenoestrogen (BPA)
treatment has not been described.

Several investigators have shown that the response of a
target tissue to estrogenic stimuli can be influenced by ro-
dent strain differences (26-31). We recently reported that
the vaginal epithelium of the Fisher 344 (F344) inbred strain
of rat is more sensitive to BPA stimulation than the out-bred
Sprague-Dawley (S-D) strain (6). The effects of genetic
background could be reflected by expression profiles of
estrogen-target genes such as VEGF, but few studies have
examined strain differences in gene expression after xen-
oestrogen administration. Thus, we carried out the present
study to investigate the effect of BPA on expression and
modulation of VEGF mRNA in the vagina and uterus of
F344 and S-0 rats.

Materials and Methods
Animals, Treatments, and sample Collection. All

animal studies were performed under protocols and proce-
dures approved by local Institutional Animal Care and Use
Committee, in accordance with NIH standards established
by the Guidelines for the Care and Use of Experimental
Animals and the American Veterinary Medical Association.
Mature (6-8-week-old) female S-D and F344 rats were ob-
tained from Harlan Sprague Dawley, Inc. (Indianapolis, IN).
Animals were ovariectomized (OVX) I week after arrival
and were used in experiments 3 weeks after the surgery.
Rats were given animal chow and water ad libitum and were
maintained on a 12-hi light/dark cycle with lights on at 0600
hr. BPA (Aldrich Chemical Co., Milwaukee, WI) was dis-
solved in ethanol and diluted in sesame oil. To determine
the time course of expression of VEGF mRNAs in response
to BPA, a pilot study was carried out in S-D rats (n = 15)
administered 200 mglkg body wt. BPA intraperitoneally.
Uteri, vaginas, and pituitaries were removed at 0, 2, 3, 6,
and 24 hr after BPA treatment, were immediately placed in
liquid nitrogen, and were stored at -80DC for ribonuclease
protection assays (RPA; described below). Quantitation of
the RPA revealed an overall maximal increase in VEGF
mRNA level at 2 hr after BPA administration (data not
shown). VEGF mRNAs declined slowly thereafter and at 24
hr were similar to control levels. Results of our time course
experiment agree with other studies examining the time
course of VEGF mRNA expression in the uterus in response
to estradiol (22-24). On the basis of this study, animals (n
= 4 per group) were injected intraperitoneally with various
doses of BPA (0.02, 0.2, 2.0, 10, 18.75, 37.5, 75, or 150
mglkg body wt) or sesame oil vehicle (Sigma, St. Louis)
and sacrificed 0 or 2 hr later.

RPA for VEGF. Total RNA was isolated using TRI-
Reagent (Molecular Research Center, Cincinnati, OH) ac-
cording to the manufacturer's protocol and as we have de-
scribed previously (6, 32). Each RNA preparation was as-
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sessed visually for integrity by stammg with ethidium
bromide and electrophoresis in a denaturing 1% agarose gel
(6, 32). Only intact RNA was used for the RPA. Concen-
trations of the final preparations were calculated from A260
reading using a Shimadzu UV-1201 spectrophotometer (6,
32). Reproductive tract tissues were analyzed individually
for each animal; however, pituitaries were pooled by treat-
ment group prior to analysis.

The 570-bp rat VEGFl64 cDNA in pBluescript was
provided Dr. S. Hyder (University of Texas Medical Center,
Houston, TX). The plasmid was linearized using BamHI.
Antisense riboprobes were generated from linearized tem-
plates using the MAXIscript Kit (Ambion, Austin, TX), T7
RNA polymerase, and the incorporation of a_32P_UTP
(New England Nuclear, Boston, MA; 800 Ci/mmol) accord-
ing to the manufacturer's protocol. The VEGF template
generated a 590-bp probe, containing 570 bp of antisense
VEGF and 20 bp of vector sequence. An antisense ribo-
probe specific for rat cyclophilin was used to normalize
lanes for differences in loading among lanes. This probe
was generated from the template pTRI-cyclophilin (Am-
bion; a probe length of 165 nucleotides) and produced a
protected fragment of 103 nucleotides. Cyclophilin mRNA
expression does not appear to be upregulated by estrogens
in the rat uterus (33, 34). An RNA molecular weight marker
(Century Marker Template; Ambion) was also run in each
gel, using T7 RNA polymerase to produce marker tran-
scripts of lengths of 100, 200, 300, 400, and 500 bp.

VEGF mRNA was quantified in uterine, vaginal, and
pituitary samples using the RPA II kit (Ambion), as we have
previously described in detail (6, 32). After hybridization
and RNase digestion, the protected hybrids were separated
on 6% polyacrylamide denaturing gel. The gel was dried
and exposed to x-ray film (Biomax AR, Eastman Kodak
Company, Rochester, NY). The optical densities (00) of
autoradiograms from the protected bands of the RNase pro-
tection assay for VEGF isoforms and cyclophilin of the
individual animals were measured and quantified using an
imaging densitometer and Molecular Analyst Software
(GS670, Bio-Rad, Hercules, CA). The mRNA levels for
VEGF were normalized against cyclophilin mRNA levels
by dividing the 00 of the autoradiographic band by the 00
of the corresponding cyclophilin band of each specimen,
and the results were expressed as arbitrary units.

Statisti~al Analysis. A general linear model proce-
dure with repeated measures was used to examine the rela-
tionship among VEGF expression and strain, type of VEGF
isoform, and dose level. Analyses were performed sepa-
rately on data collected from the uterus and vagina. The
ANOVA was followed by Dunnett's t test to identify the
dose at which VEGF mRNA levels differed from the control
mean. Statistical significance is noted where P < 0.05.

Results and Discussion
The known VEGF gene splice variants and the regions

of their transcripts that would be protected by the RNA



probe used in this study are described in Fig. I. The mam-
malian VEGF gene consists of at least eight exons, and
alternative splicing results in a number or variant mRNA
molecules that have the potential to encode different pro-
teins with biological activity (14-17. 35).

The predominant forms of VEGF in tissues from adult
rats include transcripts encoding VEGFI20,YEGFI64' or
VEGF I88 amino acid-containing proteins (22. 36). VEGF I44

and VEGF 110 splice variants in tissues have been described.
but are of much lower abundance (16. 37. 38). In human
tissues, virtually identical VEGF splice variants have been
described. but generally contain one more amino acid than
the rodent counterpart (12, 13. 39, 40). In addition, a
VEGF206 has been described in human fetal liver and
placenta (37, 38).

We used RNase protection assay to determine the level
of VEGF mRNAs splice variants expressed in uterus. va-
gina, and pituitary after BPA treatment of F344 and S-D
rats. We observed protected RNA fragments of 570. 419,
312, and 260 nucleotides in length (Fig. 2). The undigested
probe ran as a 590-bp fragment in separate experiments. and
in preliminary tests the probe produced no bands after hy-
bridization with tRNA and subsequent digestion with
RNase (data not shown). On the basis of sequence compari-
son of the probe we used for RPA to the previously de-
scribed splice variants ofVEGF mRNA (14-16.18.35), we
concluded that the protected fragments represented

VEGF I64, VEGFI20+lllll, and VEGF110 (see Fig. I). Our
results using RPA agree with those studies and others (22.
24) using reverse transcription-Pf'R to examine VEGF ex-
pression in the rat uterus. Because the RPA probe used in
the present study protected equally sized nucleotide bands
for both the 188- and 120-amino acid forms of VEGF. we
were unable to distinguish between expression patterns of
VEGF 11l8 and VEGF 12o : however. the signal was most
likely due to VEGF I20 expression. based on reports that
VEGF I20 is more highly abundant than VEGF1llKin rat re-
productive tissues. including uterus and pituitary (22. 24.
36). VEGF110 has been described in rat tissues and has the
unusual characteristic of retaining the first three exons, in-
stead of the first five, as well as having an apparent splice
within the seventh exon (36). The small, approximately
260-bp band detected by our probe is either nonspecific or
another yet to be characterized isoform. A VEGF I44 splice
variant of low abundance in tissues of rats and other species
has been described (18, 22, 36-38), but was not detected by
the probe used in this study.

There was a significant interaction effect between dose
of BPA and type of VEGF isoform for both the uterus
(P < 0.01) and vagina (P < 0.01: Fig. 3). VEGF1M and
VEGF120+188 were more abundant than VEGF110 in both the
uterus and vagina, and our finding agrees with the observa-
tions of others in rat reproductive tissues (22. 24. 36). The
function served by either VEGF isoform in the uterus and
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Figure 1. Schematic model for the generation of molecular species of VEGF by alternative splicing of mRNA is shown in the top panel. The
probe used for RNase protection assays in the present study is shown in Ihe middle panel. and the corresponding protected fragmenls are
shown in the bottom panel.
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Figure 2. Dose response for SPA induction of VEGF isoforms in S-D and F344 rat uterus (top) and vagina (bottom). Mature. ovariectomized
rats (n = 4 per dose) were injected intraperitoneally with various doses of SPA (0.02. 0.2. 2.0. 10, 18.75,37.5,75, or 150 mg/kgbody wt) or
sesame oil. Total RNA was extracted at 2 hr after SPA administration and subjected to RNase protection assays. Representative autoradio-
grams for VEGF and cyclophilin are shown. Lanes represent individual samples obtained at the indicated doses of SPA treatment.

vagina, however, remains unknown. YEGF likely plays a
role in the striking alterations in vascular permeability and
changes in neovascularization observed in the uterus during
the reproductive cycle (41). Both VEGF 120 and YEGF I64

can induce endothelial cell proliferation and increase per-
meability, although differences in their heparin-binding
properties, potencies, and tissue distribution have been re-
ported (16, 17). Although YEGF 110 is seemingly rare and of
low abundance in rat tissues, it has a potential to produce a
functional VEGF peptide, based on the observation that this
type of variant has also been reported as a functional pep-
tide, YEGF I 15, in the mouse (40).

YEGF expression is more sensitive to BPA in the
uterus than in the vagina (Fig. 3). In the uterus, when com-
pared with control levels, the lowest dose of BPA that had
a significant effect (P < 0.05) on YEGF expression was 37.5
mglkg. In the vagina, however, it was not until the dose of
150 mglkg BPA that YEGF164 and YEGF120+188 levels
differed significantly (P < 0.05) from control. Levels
YEGF! 10 in the vagina were never significantly different
than control at any dose used in this study.

We did not observe strain differences in sensitivity to
BPA-induced YEGF expression; the patterns of the dose-
response curves were similar for both strains of rat. In ad-
dition, the time course and dose response for BPA-induced
VEGF expression in these strains of rats is essentially simi-
lar to what we observed for c-fos (6). Thus, it seems un-
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likely that YEGF plays a role in the different sensitivities of
the uterus or vagina to estrogenic stimuli in these two strains
of rats. However, the fact that vaginal response required a
substantially larger dose of BPA reinforces the concept that
tissue differences must be taken into account when utilizing
rat reproductive tract tissues to assess the estrogenic activity
of a test compound.

The pituitary gland is an established target of estrogens,
and it was of interest to determine if BPA could induce
YEGF expression in the pituitary. As seen in Fig. 4, BPA
induced YEGF mRNA expression in the pituitary in a dose-
responsive manner. Higher expression levels of YEGF I64

and YEGF12o+188 compared with YEGF 110 were seen after
treatment with 37.5, 75, and 150 mg/kg body wt BPA. The
pituitary response to BPA was similar in both F344 (Fig. 4)
and S-D rats (data not shown). In addition, induction of
YEGF in the pituitary was rapid, within 2 hr after a single
injection of BPA (data not shown), and similar to the dy-
namics we observed in the vagina and uterus and to what
was observed for estradiol-induced YEGF expression in the
rat pituitary (24). Interestingly, YEGF expression in the
pituitary was upregulated by estradiol only in the anterior
lobe (24). Although the function of YEGF in the pituitary is
not known, the gland is a highly vascularized structure with
a unique hypothalamic-pituitary portal (HPP) system that
plays a key role in its physiology. YEGF may playa role in
maintenance and regulation of this vascular network or act
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Figure 3. Effect of SPA dose on VEGF isoform expression. VEGF mANA levels for uterus (left) and vagina (right) are depicted graphically
on the y axis as arbitrary 00 units relative to cyclophilin mANA. VEGF expression was analyzed separately in F344 (e) and Sprague-Dawley
(.) rats. Values are means ± SEM. n = 3; asterisks indicate P < 0.05 versus the corresponding control (0 dose).

as a mediator of vascular permeability of the HPP system
and thereby play a role in the exchange of hormones be-
tween the blood and the pituitary.

Our studies are the first demonstration that BPA will

rapidly stimulate expression of VEGF mRNA splice vari-
ants in classic estrogen-responsive tissues of the rat. It has
been well established that BPA produces estrogenic re-
sponses in uterotrophic assays (42), and our observations
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suggest that BPA may act as an endocrine disruptor directly
in several target organs, e.g., uterus, vagina, and pituitary, as
well as indirectly by altering pituitary function and perhaps
hypothalamic-pituitary interactions. This study and others
may have far reaching implications, given the high abun-
dance of BPA in the environment, the potential for exposure
to BPA, the unique ability of VEGF to promote so many
events necessary for angiogenesis, and observations that
VEGF activity is associated with the progression of impor-
tant pathologies, including cancer (17).

We thank Betsy Osborne and Jonathan McGarry for help with figure
preparation.
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