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The aim of this review is to provide insight into the molecular
mechanisms by which activin A modulates cell proliferation,
apoptosis, and carcinogenesis in vitro and In vivo. Activin A, a
member of the TGF# superfamily, has varlous effects on di-
verse biological systems, including cell growth inhibition in
many cell types. However, the mechanism(s) by which activin
exerts its inhibitory effects are not yet understood. This review
highiights activin's effects on activin receptors and signaling
pathway, modulation of activin signaling, and regulation of cell
proliferation and apoptosis by activin. Based on the experi-
ences of all the authors, we emphasized cell cycle Inhibitors
such as p16 and p21 and regulators of apoptosis such as p53
and members of the bcl-2 family. Aside from activin's inhibition
of cell proliferation and enhancement of apoptosis, other newly
developed methods for molecular studies of apoptosis by ac-
tivin were briefly presented that support the role of activin as an
inhibltor of carcinogenesls and cancer progression. These
methods include subtractive hybridization based on covalent
bonding, a simple and accurate means to determine molecular
profife of as few as 20 cells based on an RNA-PCR approach,
and a messenger RNA-antisense DNA Interference phenom-
enon (D-RNAI), resulting In a long-term gene knockout effects.
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ctivins and inhibins are members of the transform-
Aing growth factor-B (TGF-B) superfamily, which

consists of TGF-f3, activins, bone morphogenic pro-
teins (BMPs), anti-Mullerian hormone (AMH), and others.
These structurally related growth factors have essential
functions in regulating tissue development, homeostasis,
cell proliferation, and apoptosis.

Activin and inhibin were originally isolated based on
their activity in regulating follicle-stimulating hormone
(FSH) release from the anterior pituitary: activin stimulates,
whereas inhibin inhibits FSH secretion (1, 2). In addition to
its endocrine function, activin has been found to possess
various activities in different biological systems, e.g., ery-
throid differentiation, nerve cell survival, Xenopus laevis
embryonic mesoderm induction, bone growth promotion,
and somatostatin induction (3, 4). Subsequently, it was
found that activin regulates a wide variety of cellular events,
including cell proliferation, differentiation, and apoptosis.
For example, in addition to its endocrine function in the
pituitary, activin also controls the activity of hypothalamus
and ovary (reviewed in Ref. 5), indicating that activin has
profound paracrine and autocrine effects on the female re-
productive system.

In addition, activin expression has been detected in
cell lines derived from various human tissues, including
prostate cancer (6-8), breast cancer (9, 10), retinoblastoma
(11), retinal pigment epithelium (12) placenta (13), gut
(14), and bone marrow stroma (15), as well as a number
of in vivo human tissues, including the testis (16), ovary
(17), endometrium (18), placenta (19), oocyte (20), adrenal
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gland (21), pancreas (22), and bone marrow stroma (23).
Activin stimulates proliferation of cells of various origins,
including lung fibroblast, keratinocyte, porcine thyroid
cells, MC3T3-El osteoblasts, and spermatogonial cells (24,
25). Activin also regulates apoptosis of hepatocytes, B lin-
eage cells, prostate cancer cells, and other cells (26-30).
Recently, several studies have documented that activin and
inhibin play critical roles in tumorigenesis in a variety of
tissues (31-33). As these growth factors have profound ef-
fects on many tissues in both physiological and pathological
conditions, activin and its related proteins have been inten-
sively studied. This review mainly focuses on activin sig-
naling and its mediators in regulating cell proliferation, ap-
optosis, and carcinogenesis.

Activin and Activin-Binding Proteins

Activins and inhibins are structurally related; they share
common B subunits (1, 2), which have a nine-cysteine dis-
tribution pattern similar to TGF-f and other members of the
TGF-f superfamily (34). A B subunit is about 14 kDa, and
the most common (8 subunits are A and BB. Activins are
homodimers of $ subunits linked by a disulfide bond. De-
pending on the combination of the subunits, there are three
isoforms of activin, namely activin A (BABA), activin B
(BBBB), and activin AB (BABB). Inhibins are heterodimers
of an o subunit and a B subunit. o subunits, 18-kDa N-
linked glycoproteins, can dimerize with either BA or B to
form inhibin A (afA) or B (apB), respectively. Additional
B subunits have been identified, namely BC, BD, and BE.
BC and BE were found in human and mouse, while fD was
cloned from Xenopus (35-38). It has been shown that $C
can dimerize to form activin C (39). Similar to other mem-
bers of the TGF-B superfamily, both a and B subunits of
activins are synthesized as large inactive precursors that
undergo intracellular processing to release the carboxy-
terminal bioactive mature forms. Dimerization between the
subunits occurs inside the cell.

Several soluble ligand-binding proteins have been de-
scribed. Follistatin can bind both activin and inhibin
through the B subunit with a high affinity (40). Although it
has no effect on inhibin, follistatin inhibits activin activity
by preventing activin from interacting with its signaling
receptors (41). Recent studies also suggest that follistatin
can bind to BMP and inhibit BMP activity (42). a2-
macroglobulin, an abundant plasma protein in the circula-
tion, can bind to activin as well as inhibin, but the binding
affinity is low, and this binding does not affect ligand func-
tions (43). a2-macroglobulin also interacts with other
growth factors such as TGF-B. It was proposed that o2-
macroglobulin may function as a clearance mechanism to
restrict the local action of TGF-B (44). a2-macroglobulin
may have a similar function for activin and inhibin (45).
Recently, a third activin-binding protein, ovine uterine milk
protein, has been identified (46). Similar to a2-
macroglobulin, ovine uterine milk protein does not neutrai-
ize activin actions.
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Activin Receptors and Signaling Pathway

Activin Receptors and Their Activation. The
signal transduction pathway is highly conserved for the
TGF-B superfamily members, involving the receptor-Smad
system. Similar to the TGF-B and BMP, activin needs two
types of cell surface receptors (type I and type II receptors)
for its signaling transduction (Fig. 1). Both receptors are
transmembrane proteins with ligand-binding activity in the
extracellular domain and serine/threonine kinase activity in
the intracellular domain. The activin type II receptors,
ActR-1I and ActR-1IB, are the primary ligand-binding pro-
teins and can bind ligand without type I receptors. However,
the type I receptor, ActR-IB (also called ALK4), is unable
to bind ligand in the absence of the type II receptors. This
ligand-binding feature of activin receptors, similar to that of
TGF-B receptors, is different from that of BMP receptors.
Either BMP type I receptor or type II receptor can individu-
ally interact with BMP (47). Activin receptor expression has
been detected in cell lines from various tissues, including
prostate cancer (6-8), breast cancer (9), keratinocytes (48),
erythroleukemia (49), osteoblasts (50), and teratocarcinoma
(51), as well as in in vivo human prostate (52), ovary (53),
brain tumor (54), oocyte (20), placenta (55, 56), and pan-
creatic cancer (37). Besides binding to activin, both ActR-II
and ActR-IIB have shown to bind BMP in the presence of
a BMP type I receptor (58, 59).

Another receptor, ALK2 (also known as ActR-I or
Tsk7L), was originally identified as a type I receptor for
activin (60). Subsequent studies, however, suggest that

Activin
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~

Figure 1. The activin sigaling pathway. Activin binding to the type |l
receptor (RIl) leads to recruitment of the type | receptor (Ri) and
formation of the receptor heterocomplex. In the complex, the consti-
tutively active type Il receptor phosphorylates the type | receptor at
the GS domain (GS) and activates it. The activated type | receptor is
then able to bind and phosphorylate Smad2 and 3 (R-Smad). Smad2
activation is facilitated by SARA, which presents Smad2 to the re-
ceptor complex. After phosphorylation, the R-Smad dissociates from
the receptor complex and associates with the co-Smad, Smad4. The
resulting Smad complex will be accumulated in the nucleus and bind
to DNA. Dependent on the transcriptional factors (Tx factor) they
interact with, Smad proteins can stimulate or suppress target gene
expression. The specific receptor-Smad interaction is determined by
the L45 loop in the type | receptor and the L3 loop in the R-Smad.
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ALK?2 may serve as a type I receptor for BMP. Indeed, it
binds to BMP7 and activates BMP-responsive reporters (61,
62). In Xenopus embryos, overexpression of ALK2 induces
ventral mesoderm formation as BMP, whereas activin in-
duces dorsal mesoderm formation (63). Furthermore, over-
expression of ALLK2 inhibited activin-induced cell growth
arrest of B cell hybridoma, whereas ActR-IB facilitated this
processing (64). Taken together, these data indicate that
only ActR-IB is a bona fide type 1 receptor for activin,
whereas ALK2 is not.

Upon activin binding, the type 1l receptor forms a tight
complex with type I receptor. Activin binds to ActRII at the
plasma membrane and activates its serine-threonine kinase.
In the receptor complex, this constitutively active type 11
receptor kinase phosphorylates the type I receptor in the
regulatory GS domain, a glycine- and serine-rich segment
prior to the kinase domain, and this phosphorylation leads to
activation of the type I receptor (65-67). The activation
mechanism of type I receptor through phosphorylation in
the GS domain by type II receptor is conserved for TGF-B,
activin, and BMP signaling. The GS domain is a unique
structure feature for the type I receptors of the TGF-g fam-
ily and, to a high degree, is conserved in all type I receptors.
In the crystal structure of the intracellular domain of the
TGF-B type I receptor (TBR-I) in complex with FKBP12, a
modulator of receptor activity (see below), the GS domain
forms an « helix-loop-a helix structure (68). The loop of the
GS domain acts as a wedge that maintains the receptor
kinase in an inactive conformation. It was proposed that
phosphorylation would release the inhibitory effect of the
GS domain (68). In addition, phosphorylation of the GS
domain could also provide a docking site for the receptor
substrate Smad proteins (see below) (69).

Smad Proteins. Once activated, the type I receptor
can bind and then phosphorylate a group of Smad proteins
such as smad 2 for activin, called R-Smads, on the serine
residues of the carboxyl-terminal tail. The phosphorylated
R-Smads will form a heterocomplex with co-Smad such as
Samd4 (70). The resulting Smad complex will translocate
into the nucleus, bind to the promoter region of the target
genes, and regulate their expression. Dependent on different
types of transcription factors they interact with, Smads will
either stimulate or suppress transcription of the target genes
(71, 72). For instance, Smad3 and 4 interact directly and
cooperate with AP1, Spl, and p300/CBP transcription fac-
tors to positively regulate transcription (71). To date, at least
three Smad corepressors have been identified: TGIF, c-Ski,
and Sno-N (reviewed in Ref. 72). All of these Smad core-
pressors interact with the MH2 domain of Smad2 and 3 and
repress TGF-B-mediated transcription by recruiting histone
deacetylase. Since these repressors are associated with
Smad2 and 3, they may be involved in activin-mediated
transcription repression as well. Besides interacting with
transcription activators and repressors, Smad proteins are
also associated with other DNA-binding proteins. For ex-
ample, FAST1 (forkhead activin signal transducer-1) was

identified as a DNA-binding cofactor for Smad2 and re-
quired for activin-induced expression of Mix.2 gene in Xeno-
pus embryos (73). In this model, Smad2 binds to FAST-1,
which acts as a coactivator at its C-terminal domain termed
Smad-interacting domain (SID) (74), and also Smad4. These
three components make up the activin responsive factor
(ARF), which binds to the activin response elements (AREs),
the specific DNA sequence of the Mix.2 promotor (75).

It was thought that phosphorylation by receptors is re-
quired for Smad nuclear translocation. However, a recent
study with in vitro nuclear import assay demonstrated that
both phosphorylated and unphosphorylated Smad2 have
similar nuclear import ability (76). Hence, phosphorylation
seems to be dispensable for the nuclear translocation, but is
required for R-Smad proteins to dissociate from their reten-
tional factors and to promote the heterocomplex formation
between R-Smad and co-Smad.

Smad proteins consist of the amino-terminal Mad ho-
mology 1 (MH1) domain, the carboxyl-terminal MH2 do-
main, and the middle linker region. Both MH1 and MH?2
domains are highly conserved in the amino acid level
among the Smad proteins. The MH1 domain is mainly in-
volved in DNA binding (except for Smad 2, which does not
bind to DNA directly) and in interaction with other tran-
scription factors. The MH2 domain contributes to transcrip-
tional activation, Smad-Smad interaction, Smad-receptor in-
teraction, and association with other binding proteins and
transcription factors (47, 74, 77). The linker region provides
a binding site for Smad ubiquitination regulatory factors
(Smurfs), the ubiquitin E3 ligases, and thus participates in
Smad ubiquitination and proteosome-mediated degradation
(78-81). The linker region also contains phosphorylation
sites for ERK and Ca®*-calmodulin-dependent kinase 1I,
and phosphorylation of the linker region by these kinases
negatively regulate Smad activity (82, 83) (see below).

On the basis of their structure and function, Smad pro-
teins can be divided into three groups: R-Smads, co-Smads,
and anti-Smads. The R-Smads includes Smadl, 5, and 8,
which mediate BMP signaling, and Smad2 and 3, which
transduce signaling from TGF-B and activin (47, 74, 77,
84). The only co-Smad, Smad 4, is essential for all TGF-,
activin, and BMP signaling by forming a complex with
phosphorylated R-smads. The anti-Smads, Smads6 and 7,
do not mediate signaling. Instead, they inhibit signal trans-
duction by binding to the activated type I receptors as a
pseudosubstrate, or by associating with the activated Smad
1 as a decoy in the case of Smad 6 (85). Smad7 is able to
interact with all type I receptors and functions as a general
inhibitor for TGF-B, activin, and BMP signaling, whereas
Smad6 is more specific for BMP signaling.

Specificity of Receptor-Smad Interaction.
Smad2 and 3 bind to and are phosphorylated by the acti-
vated TGF-8 and activin receptors, whereas Smadl, 5, and -
8 are activated by BMP receptors. The specific receptor-
Smad interaction is determined by the discrete structure
motifs in the type I receptors and R-Smads. Mutagenesis
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studies have identified the L45 loop in the kinase domain of
the type I receptors and the L3 loop in the MH2 domain of
the R-Smads as determinants for specific receptor-Smad
interaction (62, 86-89). The amino acid sequence of the L45
loop is conserved among the type 1 receptors that have
similar substrate specificity; that is, the TBR-I and ActR-IB
have a similar L45 loop sequence, which is different from
that of the BMP type I receptors (88). Interestingly, al-
though another group of type I receptors, including ALK2
and ALKI1 (also known as TSR-1), which have a distinct
L45 loop sequence different from that of the BMP type I
receptors, these type I receptors can also phosphorylate
Smad 1 and related Smad 8 (61, 62, 90). Similarly, Smad2
and 3 share the same L3 loop sequence, which is distinct
from that of Smad 1, 5, and 8 (62, 87).

Modulation of Activin Signaling

The physiological and pathological functions of activin
are tightly modulated at different levels of the signaling
transduction (85). Extracellularly, ligand activity is influ-
enced by ligand-binding proteins or accessory receptors. On
the plasma membrane, receptor activity is regulated by re-
ceptor-associated proteins, and receptor availability is con-
trolled by degradation. In the cytoplasm, Smad activity is
modulated via phosphorylation by receptors and other ki-
nases and also by other post-translational modifications
such as ubiquitination.

Regulation of Ligand Activity. As discussed
above, follistatin neutralizes activin actions. It inhibits ac-
tivin-induced FSH release from the pituitary (2). Follistatin
also antagonizes activin on inducing dorsal mesoderm for-
mation (91). Interestingly, activin increases the expression
and secretion of follistatin in rat anterior pituitary cells (92—
95). Thus, follistatin modulates activin activity via a nega-
tive feedback mechanism (Fig. 2).

Follistatin

Inhibin — Activin |— Antivin

FKBP12 —] Receptors — BAMBI

IFNy

TNFe —» Smad7— Smads —Erk ¢—Ras

F—CcaMKil

TGIF— Target genes «—p300/CBP
ski ¥ AP1

lflgure 2. Regulators of activin signaling. The activin signaling is
tightly controlled at a different level, from ligand, receptor, Smad, to
ghe target genes. Both follistatin and Smad 7 regulate activin signal-
ing via a negative feedback loop because their expression is stimu-
lated by activin. The biue arrow donates the signaling flow, the red
line donates the negative regulation, and the black arrow donates the
positive regulation. See the text for details.

Although activin and inhibin are structurally related
(sharing the same B subunit), their functions are very dif-
ferent. The nomenclature of activin and inhibin reflects their
activity in regulating the secretion of FSH by the pituitary
(2). In fact, inhibin antagonizes activin activity in multiple
biological systems. In addition, activin promotes gonado-
tropin-releasing hormone-mediated luteinizing hormone se-
cretion from the pituitary, induces androgen production in
theca cells, and stimulates granulosa cell proliferation and
follicle growth, whereas inhibin exerts opposite effects on
these biological activities (2, 24). Furthermore, inhibin an-
tagonizes activin activity on erythroid differentiation and
chondrogenesis (96-98). To date, most data indicate that
inhibin exerts its functions by inhibiting activin activity.
However, several lines of evidence suggest that inhibin may
have its own signaling pathways. There are specific inhibin-
binding sites in the pituitary, testis, ovary, and in tumors
derived from inhibin knockout mice (99). In addition, sev-
eral studies have indicated the existence of specific inhibin-
binding proteins (97, 100). However, the identity of inhibin-
binding proteins remains to be clarified.

Since both activin and inhibin can bind to the activin
type Il receptors, it was proposed that inhibin blocks activin
activity by competing for the binding sites of the signaling
receptors (97, 101, 102). This hypothesis gained support
from the recent studies by Vale and his colleagues (103).
Inhibin has a low binding affinity to the ActR-II, and this
binding is dramatically increased by B-glycan, a transmem-
brane cell surface proteoglycan (103). However, the binding
of inhibin to ActR-II prevents the recruitment of ActR-IB.
Consequently, inhibin sequesters the type II receptor and
thus blocks activin signaling. Furthermore, B-glycan ex-
pression increases the inhibitory effect of inhibin in the cells
that otherwise respond poorly to inhibin. B-Glycan, also
known as a type 11l receptor for TGF-, binds to TGF-( and
brings it to its signaling receptors (104). This function of
B-glycan becomes manifest in the case of TGF-B2, which
has a low affinity to the TGF-B type II receptor, TBR-IL
The binding of TGF-B2 to TBR-II is greatly enhanced by
B-glycan. Therefore, B-glycan has dual functions: on one
hand it promotes TGF-f signaling by facilitating TGF-@-
receptor binding; and on the other hand, it mediates the
antagonistic effect of inhibin on activin signaling. It is pos-
sible that B-glycan is the long-searched-for inhibin receptor.

Recently, a novel factor named antivin has been de-
scribed from zebrafish (105). Antivin is structurally related
to mouse Lefty, a member of the TGF-@ superfamily. Over-
expression of antivin diminished mesoderm formation at the
blastula stage of embryos. This activity was mimicked by
Lefty and was suppressed by activin or activin receptors. It
was proposed that antivin may inhibit activin signals by
competing for receptor binding (105). In this sense, the
action of antivin is similar to that of inhibin.

Regulation of Receptor Activity. The next level
of signaling modulation is at the receptors. Several receptor-
associated proteins have been identified. FKBP12 is a ubiq-
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uitous, abundant cytosolic protein that binds to immunosup-
pressants FK506 and rapamycin and is responsible for the
immunosuppression effect of these drugs (106). Yeast two-
hybrid screening identified FKBP12 as a binding protein for
the type I receptors of the TGF- family, including ActR-IB
(107). The studies with the TGF-B receptors revealed that
FKBPI2 binds to the GS domain of the type I receptor (108,
109). This binding physically hinders phosphorylation in
the GS domain of the type I receptor by the type II receptor,
thereby inhibiting receptor activation (68, 108). Because
FKBP12 dissociates from the TGF-B receptors upon ligand
stimulation, the role of FKBP12 in TGF-B signaling path-
way is thought to prevent leaky signaling in the absence of
ligand (108). It is highly likely that FKBP12 plays a similar
role in regulating the activity of the receptors for activin and
BMP signaling.

Another group of proteins that play a role in signaling
modulation at the receptor level is BAMBI (BMP and ac-
tivin membrane-bound inhibitor). BAMBI was identified by
its activity to inhibit both BMP and activin signaling during
Xenopus embryogenesis (110). It is a transmembrane pro-
tein with the extracellular domain similar to that of BMP
type I receptors. Its short intracellular domain shows no
homology to other proteins. BAMBI is a general inhibitor
for the TGF- family: it inhibits activin and BMP signaling
in Xenopus embryos and attenuates signaling of TGF-f,
activin, and BMP in mouse embryonic carcinoma P19 cells.
Biochemical studies revealed that BAMBI interacts with all
the type 1 receptors except ALK2 and this interaction may
lead to the formation of signaling-incompetent receptor
complex (110). Interestingly, BAMBI is co-expressed with
BMP4 in both Xenopus and mouse embryos and is con-
trolled by BMP signaling (110, 114).

The third way to modulate the signaling transduction at
the receptor level was shown by recent observations of deg-
radation. The E3 ubiquitin ligases Smurf 1 and 2 can inter-
act with TGF- receptors via Smad7 and can enhance turn-
over of TBR-I and Smad7 (79, 112). As Smad 7 also inter-
acts with activin and BMP type I receptors, it is possible that
Smad7 targets Smurfs to those receptors and mediates their
degradation,

Regulation of Smad Activity. Smad activity is
controlled by multiple signal inputs. R-Smads are activated
by receptor phosphorylation at the carboxyl-terminal tail,
and this activation is modulated by Smad-interacting pro-
teins. For example, Smad anchor for receptor activation
(SARA) has been suggested to facilitate TGF-B receptor-
mediated activation of Smad2 by bringing receptors and
Smad together (69, 113). Since it specifically interacts with
Smad2 and Smad3, but not with other Smads, SARA may
also play a similar role in activin signaling.

The receptor activation of R-Smads is also regulated by
anti-Smads. It has been demonstrated that Smad7, but not
Smadeé, inhibits activin-mediated Smad? activation in B cell
hybridoma HS-72 cells (114). Smad7 is able to bind tightly
to the activated type I receptors and, thus, it prevents bind-

ing of R-Smads to the receptors (115, 116). By blocking
R-Smad activation, Smad7 interferes with activin-mediated
erythroid differentiation, growth arrest, and apoptosis of
HS-72 cells (117, 118). Consistent with the notion that
Smad7 participates in negative feedback regulation of ac-
tivin signaling, the expression of Smad7 is induced by ac-
tivin (115, 116) (Fig. 2). In addition, Smad activity is ma-
nipulated by cross-talk signals from other pathways.

As mentioned above, Smad?2 and 3 are phosphorylated
in the linker region by ERK protein kinase upon the acti-
vation of EGF receptor-Ras pathway (82) and by Ca®-
calmodulin-dependent kinase II (83, 119, 120). Phosphory-
lation by these kinases imposes an inhibitory effect on
Smads by attenuating their nuclear translocation. A recent
study showed that protein kinase C (PKC) phosphorylates
Smad2 and Smad 3 in the MH1 domain (121). PKC phos-
phorylation abrogates Smad3 binding to DNA and its tran-
scriptional activity. Although Smad phosphorylation in the
MH1 domain and the linker region has a negative influence
on Smad activity, it was reported that hepatocyte growth
factor activates Smad2, presumably via phosphorylation at
the same serine residues phosphorylated by TGF-3 and ac-
tivin receptors (122).

The negative regulator Smad7 is also a site where sig-
nals from other pathways converge. Its expression is stimu-
lated by interferon-y via the Jak kinase-STAT pathway
(123), as well as by tumor necrosis factor-a and interleu-
kin-1 via the NF-kB/RelA transcription factors (124).
Cross-talk between the Smad pathway and other signaling
pathways also occurs in the nucleus. For instance, Smad3
has been found to interact with vitamin D receptor (125,
126). As discussed above, Smads also interact with a variety
of transcriptional activators and repressors, and these tran-
scription factors receive signaling inputs from many other
pathways.

The protein amount of Smads is controlled by ubiqui-
tination and proteosome-mediated degradation at both the
basal and the activated levels. The basal protein level of
Smad 1 is regulated by Smurf | and 2, whose overexpres-
sion leads to Smad | ubiquitination and subsequent degra-
dation (78-81). Ubiquitination-mediated degradation also
participates in signal turn-off. It has been demonstrated that
upon TGF-§ activation Smad 2 undergoes ubiquitination
and then proteosome-mediated degradation (127). Because
Smurf 2 has higher binding affinity to activated Smad 2, it
may mediate Smad 2 turnover upon TGF-$ stimulation
(80). Thus, Smurfs appear to involve degradation of both
receptor and Smad. Whether Smurf 2-mediated Smad 2 deg-
radation is also involved in regulation of activin signaling
remains unknown.

Regulation of Cell Proliferation and Apoptosis
by Activin

Cell Proliferation. Although activin and TGF-B play
very different roles in tissue development and in the repro-
duction system, they do share many similarities in signaling.
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For instance, both of them share the same receptor-binding
properties. Their type I receptors exhibit the same substrate
specificity, namely they phosphorylate and activate Smad 2
and 3. Since they use the same set of Smads, it is conceiv-
able that they may also share some of the regulatory mecha-
nisms. In terms of cellular functions, both TGF-B and ac-
tivin stimulate production of extracellular matrix proteins
such as fibronectin and type I collagen (24). Increased ex-
pression of activin was associated with fibrosis of liver and
lung, a pathological process known to be stimulated by
TGF-B (128, 129). In addition, both activin and TGF-B have
antiproliferative effects on many types of cells, including
epithelial cells, lymphocytes, prostate cancer cells, and
others.

TGF-B functions as a tumor suppressor in early stages
of tumorigenesis. Many tumor cells escape the growth-
inhibitory effect of TGF-f3 by acquiring mutations in the
genes of TGF-B-signaling components, TGF-f3 receptors,
and Smads (47). Some tumor cells have also developed a
similar mechanism to elude the antiproliferative effect of
activin.

Similarly, loss of function mutations of ActR-IB have
been identified in human pituitary tumors (130). Subsequent
studies showed that those mutations have a dominant nega-
tive effect on activin signaling: the derived ActR-IB mu-
tants blocked activin-induced expression of junB, as well as
a reporter in human chronic myeloid leukemia K562 cells
(131). The receptor mutants also inhibited activin-mediated
cell growth arrest.

Activin has demonstrated the ability to inhibit cell
growth in many human cell types, including prostate cancer
(132), breast (10, 133), B cell leukemia (134), vascular en-
dothelial (135), vascular smooth muscle (136), peripheral
blood granulocyte-macrophage colony-forming unit pro-
genitors (137), and fetal adrenal (20), as well as HS-72
mouse B cell hybridoma (138), mouse plasmacytoma (139),
BALB/c 3T3 mouse fibroblasts (140), rat liver (141), and
rodent hepatocytes (142, 143). However, the mechanism(s)
by which activin exerts its inhibitory effects are largely
unknown. The limited information on the mechanism has
been brought forth by studies in human prostate cancer LN-
CaP cells, human HepG2 hepatoma cells, HS-72 mouse
B-cell hybridoma cells, and other cell models.

In B cell hybridoma, activin stimulates the expression
of cyclin-dependent kinase inhibitor p21CIP1/WAF]1 and
suppresses cyclin D2 expression (117, 144), which lead to
inhibition of cyclin-dependent kinase Cdk4 activity and
consequently to the accumulation of hypophosphorylated
Rb protein. The hypophosphorylated Rb exhibits a higher
binding affinity to the transcription factor E2F and hence
sequesters its activity, E2F-controls expression of the genes
required for cell cycle progression from Gl to S phase
(145). Thus, activin causes cell growth arrest in the Gl
phase. This antiproliferative effect of activin is abolished by
the ectopic expression of Smad7, indicating that Smad pro-
teins are involved in this process (117). Activin also inhibits

growth of pituitary tumor cells by a similar mechanism: it
increases the expression of p21CIP1/WAF1 (31).

Another of the important functions of activin is induc-
tion of erythroid differentiation. Activin stimulates the ex-
pression of a-, B- and e-globin and hemoglobins in purified
erythroid progenitor cells (146). Activin also induces he-
moglobin accumulation and erythoid differentiation in hu-
man chronic myeloid leukemia K562 cells (147).

Apoptosis. Activin not only regulates cell growth
and differentiation, but it also induces programmed cell
death in several types of cells. It appears that activin induces
apoptosis by activating caspases, the proteases responsible
for cell death. Activin-induced apoptosis of hepatoma
HepG2 cells is abrogated by dominant negative forms of
ActR-IIB or Smad 2, whereas overexpression of either
ActR-IB, ActR-IIB, Smad 2, or Smad 4 is sufficient to
stimulate apoptosis in the absence of activin (29). Smad 7
expression abolishes activin-induced apoptosis in B cell hy-
bridoma (117). Taken together, these data indicate that the
receptor-Smad pathway plays a central role in relaying ac-
tivin signal to programmed cell death.

In HepG2 hepatoma cells, activin (90 ng/ml) resulted in
cell growth inhibition, with decreased [*H]thymidine incor-
poration and cell number, which started at 24 h and contin-
ued for 5 days (148). Zauberman et al. (148) determined
that the underphosphorylated form of pRb started to accu-
mulate after a 9-hr incubation with activin, which suggested
that activin’s growth inhibitory effect was mediated at least
in part by inhibition of pRb phosphorylation. Based on
detection by Western blot, CDK4 levels decreased 3-fold
following the 9-hr incubation with activin, whereas p21
protein increased starting at 3 hr and continued with time
until levels reached 16-fold at 24 hr. A 2-fold increase
in p21 mRNA was observed at 24 hr and was determined
to be the result of transcriptional activation by the tumor
suppressor protein p53. In fact, blocking p53 function by
using a miniprotein, which oligermizes with p53 and pre-
vents DNA binding, abrogated activin-induced transcription
from the p21 promoter. These data indicate that in these
cells, Rb hypophosphorylation via modulation of p53, p21,
and CDK4 are involved in activin-mediated cell growth
inhibition.

It was shown in our laboratory, and other laboratories,
that activin treatment resulted in decreased human prostate
cancer LNCaP cell growth, and that overexpression of ac-
tivin inhibited proliferation, induced apoptosis, and de-
creased tumorigenecity in these cells (132). The growth
inhibitory response to activin was dose and time dependent,
with increasingly effective concentrations from 1 ng/ml
(40% decrease) to 100 ng/ml (80% decrease) (149), and
results observed from 24 hr to 5 days (149, 150). Co-
incubation with follistatin, an activin-binding protein, pre-
vented the activin-induced cell growth inhibition (151). The
tumor suppressor gene p53 was upregulated, whereas bcl-2
mRNA was downregulated in LNCaP cells 3 days following
activin treatment (151). Whether bcl-2 downregulation was

80 CELL PROLIFERATION, APOPTOSIS, AND CARCINOGENESIS



a direct effect of p53 upregulation is unknown. It is a pos-
sibility because p53 was shown to downregulate bcl-2 and
upregulate bax in vitro and in vivo (152), and a p53-
dependent negative response element was identified in
the bcl-2 gene (153). A recent study in our laboratory
also determined that the p16 mRNA expression was also
upregulated (154). .

Yamato et al. (144) demonstrated that activin caused
G1 cell cycle arrest followed by apoptosis in mouse B cell
hybridoma cells. Activin (50 ng/ml) downregulated protein
expression of cyclin D2, the only D-type cyclin expressed in
the hybridoma cells, and upregulated p21 mRNA expres-
sion as early as 3 hr after activin treatment. This modulation
resulted in decreased levels of cyclin D2/CDK4 complex
and Rb phosphorylation. Expression of CDKs and p16 were
not affected by activin treatment. However, overexpression
of cyclin D2 partially removed activin’s inhibition of Rb
phosphorylation and G1 arrest. These results demonstrated
that the mechanism of activin-mediated G1 arrest in these
cells involves inhibition of CDK4-mediated Rb phosphor-
ylation through combined modulation of cyclin D2 and p21
in hybridoma cells. Activin-induced apoptosis in hybridoma
cells may be mediated through suppression of bcl-2 activity.
Whereas activin upregulated bel-x, expression (155), up-
regulation of bcl-2 in these cells suppressed activin-
mediated apoptosis (156).

Indeed, overexpression of the anti-apoptotic factor
Bcl-2 suppressed activin-mediated apoptosis in B cell hy-
bridoma (156). Furthermore, in the same cells, activin in-
duces the expression of Bcl-Xs, a dominant negative repres-
sor of Bcl-2 and Bcl-XL, both of which inhibit caspase
activity (155). Further studies suggested that protein kinase
C may be a downstream mediator in activin-induced apop-
tosis, as H7, a protein kinase C inhibitor, completely abol-
ished activin-induced Bcl-Xs expression and apoptosis in B
cell hybridoma (155). In human chronic myeloid leukemia
KUS8I2 cells, activin upregulates the expression of Bax,
another repressor of Bcl-2, subsequently activates caspase-3
and caspase-9, and results in DNA fragmentation (147).
Interestingly, continuous expression of Mcl-1, an anti-
apoptotic member of the Bcl-2 family, changes cells re-
sponse to activin. Instead of inducing cell death, activin
treatment leads to hemoglobin accumulation and erythoid
differentiation (147).

Carcinogenesis. Cancer growth is determined by
the relationship between the rate of cell proliferation and the
rate of cell death (157). Since cell cycle regulation depends
largely on the Rb pathway, the importance of this regulatory
mechanism in the development of human cancer cannot be
overemphasized. Virtually all tumors have aberrant expres-
sion of at least one component of the Rb pathway (158).
Examples include inactivation or loss of Rb in retinoblas-
tomas, breast carcinoma, bladder carcinoma, osteosarcoma,
and small-cell lung cancer (159); homozygous deletion or
rearrangement of pl16 in the majority of melanomas, glio-
mas, and leukemias (160); and cyclin D1 amplification in

head and neck cancer, bladder cancer, small-cell lung can-
cer, breast cancer, and esophageal cancer (158).

Defects in the apoptosis mechanism also play an im-
portant role in tumor pathogenesis, allowing neoplastic cells
to survive beyond their normal lifespan, thereby dismissing
the need for exogenous survival factors and allowing the
opportunity for genetic alterations to accumulate, resulting
in deregulated cell proliferation, promoted angiogenesis,
and increased cell motility and invasiveness during tumor
progression (161). The anti-apoptotic effect of bcl-2 dem-
onstrates its importance in cancer progression. Aberrations
in the bcl-2 gene have been demonstrated in human cancers,
including follicular non-Hodgkin’s B cell lymphomas (162)
and human breast cancer (163, 164). Also, bcl-2 expression
was elevated in androgen-independent prostate cancers
compared with normal prostate glands (165, 166). Bcl-2 has
been implicated in resistance to therapy, and reductions in
bel-2 achieved by antisense method increased susceptibility
of cancer cells to apoptosis induction by multiple chemo-
therapeutic drugs (161)

Because activin inhibits cell proliferation via modula-
tion of Rb pathway components and enhancement of apop-
tosis via modulation of the bcl-2 family, it can be said to
have an inhibitory function against cancer development.
Activin may be involved in other aspects of cancer pro-
gression, As detected by mRNA differential display, ac-
tivin exhibited mRNA expression in low-metastatic mouse
melanoma cells, but not in high-metastatic melanoma cells
(167), suggesting that the activin gene may be involved in
metastasis.

The ability of a subset of cells within a primary tumor
to metastasize is determined by a number of factors, includ-
ing growth rate, adhesiveness, motility, secretion of degra-
dative enzymes, and angiogenesis factors (158). The initial
step of cancer metastasis is detachment of cells from the
primary tumor mass. Development of increased metastatic
capacity in glioma cells has been shown to correlate with
decreased NCAM expression (168). Transfection of NCAM
into the highly invasive MDA-MB-231 human breast cancer
cell line resulted in a decreased capacity for penetration of
the artificial basement membrane in vitro, longer tumor la-
tency periods, and slower tumor growth in vivo (169). The
addition of activin increased NCAM expression in embry-
onic chicken limb bud cells (170), suggesting that activin
may help mediate cell-cell adhesion, thereby decreasing
metastatic capacity.

Most tumors can induce angiogenesis for oxygen and
nutrient supply and waste removal. Because angiogenesis
also allows tumor cells to metastasize from the primary or
secondary organ to distant organs, inhibition of angiogene-
sis may be an important approach for preventing tumor
growth and metastasis (171). The possibility that activin
may inhibit angiogenesis is based on activin’s ability to
inhibit growth in vascular endothelial cells (135) and is
shown in a study whereby the activin-binding protein, fol-
listatin, induced proliferation of human umbilical vein en-
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dothelial cells and resulted in angiogenesis in the rabbit
cornea (172). Because the transition of quiescent endothe-
lial cells to the angiogenic phenotype enables the endothe-
lial cells to engage in a series of activities, including pro-
teolytic degradation of the surrounding extracellular matrix
and invasion of the avascular tissue (97), activin’s inhibitory
effect on endothelial cell growth and angiogenesis further
supports its possible preventive role against cancer progres-
sion and metastasis.

New Methods for Molecular Studies. Using the
normal rat prostate gland and human prostate cancer cell
lines, we have localized activin and activin receptors by
immunohistochemistry, in situ hybridization, and RT-PCR,
and we have conducted functional studies such as in vitro
cell counting, BrdU incorporation, and apoptosis analysis,
as well as in vivo tumorigenicity assay (6, 7, 149, 151). We
have observed that activin BA and activin 3B subunits and
activin receptor I and II were expressed in normal rat pros-
tatic epithelia (174), as well as in the three prostate cell lines
(6, 7, 175). Furthermore, activin A inhibited growth and
induced apoptosis specifically in the LNCaP cells, but not in
the DU-145 and PC-3 cells. The induction of growth inhi-
bition and apoptosis by activin was found to be associated
with downregulation of bcl-2 and ¢c-myc, and upregulation
of pl6 and p53, as well as several unknown genes (149,
151). In addition to growth change and apoptosis, activin A
induced morphological changes in LNCaP cells as well.
This was accompanied by upregulation of prostatic markers
such as prostatic specific antigen (PSA), prostatic acidic
phosphatase (PAP), and androgen receptor (149). The au-
tocrine function of activin A was further demonstrated by
overexpression of activin A in LNCaP cells, which con-
firmed observation that activin A inhibits growth and in-
duces apoptosis. Furthermore, overexpression of activin in
LNCaP cells reduced tumorigenicity in vivo (132).

In order to compare differential gene expression, we
have further developed a method to generate full-length
cDNA libraries from less than 20 LNCaP cells treated with
or without activin (in vitro) (176), as well as from different
stages of prostate cancer cells (in vivo) (177). This method
is termed RNA-PCR (TCR) (Fig. 3) because the principle of
the method relies upon the thermocycling steps of promoter-
linked double-stranded ¢cDNA synthesis and promoter-
driven transcription to amplify mRNAs. Using a novel sub-
tractive hybridization technique based on covalent bonding
(176), we have identified differentially expressed genes in
both in vitro (8) and in vivo systems (178). Recently, we
have demonstrated that the mRNAs amplified from 20
LNCaP cells and total mRNAs prepared from the conven-
tional method possess similar gene patterns as determined
by the microarray technique, indicating that the RNA-PCR
provides a simple and accurate way for clinicians and bi-
ologists to examine molecular profiling of gene expressions
in small numbers of specific cell types of any specific bio-
logical system. N

Using a novel antisense strategy, we have demonstrated
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Figure 3. An illustration of the RNA-PCR thermocycling procedure.
The cycling steps of d through f can be repeated at least once for the
linear amplification of a mRNA library by in vitro transcription. Ad-
vantageously, the reactions of step a to f can be continuously per-
formed in an RT & T buffer. The cycling of reverse and in vitro
transcription reactions provides more flexibility for the enzymatic
synthesis of single-stranded ANAs, RNA-DNA hybrids, and double-
stranded DNAs that are ready for a variety of biochemical applica-
tions such as probe preparation for specific gene detection, full-
length gene cloning, in vitro translation for protein synthesis, and
gene knockout analysis through a post-transcriptional gene silencing
mechanism.

the suppression of activin-induced apoptosis by the anti-
sense to a differentially expressed gene, apoptosin, in hu-
man prostate cancer cells (179). Furthermore, we have de-
veloped a novel mRNA-cDNA interference phenomenon
for silencing bcl-2 expression in human LNCaP cells (180).
Our study demonstrates that ectopic transfection of a se-
quence-specific mMRNA-cDNA hybrid (D-RNAi), rather
than an antisense RNA (aRNA)-cDNA or a ds-RNA con-
struct, induces specific intracellular gene silencing in hu-
man cells. We have successfully detected specific gene in-
terference of bcl-2 expression by D-RNAi in human LNCaP
prostate cancer cells. Therefore, the application of D-RNAi
might have significant therapeutic potential in other variet-
ies of cancer cells for preventing a specific gene expression
such as bcl-2, increasing the susceptibility of these cancer
cells to apoptotic stimuli, and thus reducing tumor growth.
In addition, this method can also be used to determine the
functional significance of DNA sequences that may be as-
sociated with chromosomes associated with urogenital dis-
eases as identified by the genome project

Conclusions

Activin has a variety of biological functions, including
inhibition of cell proliferation and enhancement of apopto-
sis in multiple in vitro and in vivo systems. Examination at
the molecular level has revealed that these mechanisms in-
volve activin receptors, Smad proteins, components of the
cell cycle, and apoptosis. In addition to its effect on cell
growth, activin’s ability to increase cell adhesion protein
levels and inhibit angiogenesis may be indicative of an in-
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hibitory role against cancer progression and metastasis. Fur-
ther investigation is needed to determine the molecular
mechanisms whereby activin exerts its inhibitory effect on
cell growth, apoptosis, and cancer progression. The RNA-
PCR-derived molecular profile of specific cells, as well as
D-RNAI, would provide useful tools.
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