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Dopamine has been recognized as an Important modulator of
central as well as peripheral physiologic functions In both hu-
mans and animals. Dopamine receptors have been Identified In
a number of organs and tissues, which Include several regions
within the central nervous system, sympathetic ganglia and
postganglionic nerve terminals, various vascular beds, the
heart, the gastrointestinal tract, and the kidney. The peripheral
dopamine receptors Influence cardiovascular and renal func-
tion by decreasing afterload and vascular resistance and pro-
moting sodium excretion. Within the kidney, dopamine recep-
tors are present along the nephron, with highest density on
proximal tubule epithelial cells. It has been reported that there
Is a defective dopamine receptor, especially 0 , receptor func-
tion, In the proximal tubule of various animal models of hyper-
tension as well as In humans with essential hypertension. Re-
cent reports have revealed the site of and the molecular mecha-
nisms responsible for the defect In 0, receptors In hyper-
tension. Moreover, recent studies have also demonstrated that
the disruption of various dopamine receptor SUbtypes and their
function produces hypertension in rodents. In this review, we
present evidence that dopamine and dopamine receptors play
an Important role In regulating renal sodium excretion and that
defective renal dopamine production and/or dopamine receptor
function may contribute to the development of various forms of
hypertension. Exp Bioi Mad 228:134-142,2003
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Physiologic Role of Dopamine and Dopamine
Receptors in the Kidney

Dopamine and Dopamine Receptor in the Kid-
ney. Dopamine produces its biologic effects through five
genetically distinct dopamine receptor subtypes: DI' 02' 03'
04' and 05 (I). These receptors are categorized into two
groups known as Of-like (°1 and 05' whose rat homologs
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are 0IA and 0lB) and 02-like (02, 03' and 04) dopamine
receptors based on their ability to stimulate and inhibit ad-
enylyl cyclase, respectively (Fig. 1). Of the cloned dopa-
mine receptors, 0IA' 0lB' 02' and 03 have been identified
in the kidney (1-5). The Dj-Iike receptors are present on the
smooth muscle of blood vessels of most major organs, the
juxtaglomerular apparatus, and on renal tubules (4-8). The
Dy-like receptor exists on the glomeruli, postganglionic
sympathetic nerve terminals, zona glomerulosa cells of the
renal cortex, and renal tubules (4-8).

The source of the dopamine that activates tubular do-
pamine receptors is believed to be nonneuronal. The tubular
cells contain abundant dopa decarboxylase, which is neces-
sary for synthesis of dopamine (9). The substrate L-dopa is
filtered freely from the glomerulus and is actively trans-
ported into tubular cells, where L-dopa is converted to do-
pamine by the decarboxylation process (10, II). Once do-
pamine is synthesized, it is transported out of the cells
where it can interact with dopamine receptors (Fig. 2).

Physiologic Role of Peripheral Dopamine Re-
ceptors. Since the discovery in 1964 that dopamine pro-
duces natriuresis and diuresis (12), a tremendous amount of
progress has been made in understanding dopamine-
mediated effects on renal and cardiovascular function. Se-
lective Dj-like receptor agonists cause hypotension, reduce
afterload, increase blood flow to certain organs, and pro-
mote urinary sodium and water excretion. Selective 02-like
receptor agonists produce hypotension, bradycardia, a de-
crease in afterload, and vasodilation in certain vascular beds
(13, 14). The vasodilation and subsequent hypotension
caused by Dj-like receptor agonists such as fenoldopam
result from activation of °1 receptors located on various
vascular beds (13, 14). On the other hand, compounds such
as bromocriptine, a 02-like receptor agonist, cause vasodi-
lation by activating prejunctional 02-like receptors located
on postganglionic sympathetic nerve terminals and causing
inhibition of norepinephrine release (13, 14). Therefore, the
magnitude of vasodilation and subsequent hypotension seen



coexpressed in proximal tubules and other parts of the neph-
ron (2-6, 8). It is the activation of Dj-like receptors that
causes inhibition in Na,K-ATPase and Na,H-exchanger ac-
tivity in proximal tubules and in other parts of the nephron
such as medullary thick ascending limb (mTAL) and corti-
cal collecting duct (CCD) (28-30). Similar results were re-
ported in fibroblast LTK cells transfected with D)A recep-
tor, where the Dj-like agonist fenoldopam caused inhibition
of the Na,K-ATPase activity (32). These results are consis-
tent with the observation that the activation of Dj-like re-
ceptors promotes sodium excretion (16,17,25). Other stud-
ies have shown that simultaneous activation of both dopa-
mine receptors, Dj-like and D2-like, is required to promote
natriuresis and to inhibit Na,K-ATPase activity in proximal
tubules (33).

Role of D2-like Receptors. Unlike the Dj-like recep-
tor, the role of Drlike receptor in the kidney is not yet well
defined. However, there are reports suggesting that the ac-
tivation of D2-like receptors produces antidiuresis and an-
tinatriuresis (34, 35). Consistent with this observation, the
activation of D2-like receptors has been reported to cause
stimulation of the Na,K-ATPase activity in rat renal proxi-
mal tubules as well as in LTK-murine cells transfected with
the D2Long receptor cDNA (36, 37). Recently, we have
found that D2-like receptors are linked to the stimulation of
MAP kinase in rat renal proximal tubules and opossum
kidney (OK) cells (37). Furthermore, we observed that the
activation of MAP kinase by D2-like agonists might be a
signaling mechanism responsible for the stimulation of
Na,K-ATPase activity as well as mitogenesis, seen in the
proximal tubule and OK cells (38). In a recent report, the
activation of D2-like receptors in OK cells is shown to in-
hibit the Na,K-ATPase activity and to hyperpolarize the
epithelial cells, actions associated with the opening of K+
channels (39). This observation adds to the complicity of the
D2-like receptor signaling and function in the kidney.

Dopamine Receptors and G Proteins. Dopamine
receptors belong to the super-family of G-protein-coupled
receptors. The Dj-like receptors are coupled with G, and Gq

protein (40, 41). The Drlike receptors are linked to the
pertussis toxin-sensitive proteins, likely. with G, in the
proximal tubule (36, 37).

Dopamine Receptors and Adenylyl Cyclasel
Protein Kinase A. A correlation between dopamine in-
fusion and urinary cAMP excretion has initially implicated
a role for adenylyl cyclase as one of the second messengers
involved in dopamine-mediated cellular effects (Figs. 2 and
3) (42). Later, dopamine was shown to inhibit the Na,H-
exchanger via cAMP-dependent as well as cAMP-
independent mechanisms in the brush border membrane
vesicle preparations (28, 40, 43, 44). Dopamine-mediated
increase in cAMP leads to activation of protein kinase A,
which, in turn, causes phosphorylation of the Na,H-
exchanger and subsequent inhibition of its activity (28, 45,
46). There are also reports implicating the role of the cAMPI
PKA pathway in dopamine-mediated inhibition of the
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Dopamine Receptor-Mediated Regulation of So-
dium Transporters. Role of O,-like Receptors. The
Na,H-exchanger and the Na,K-ATPase provide a primary
mechanism for the regulation of sodium ansport across the
proximal tubules in the kidney (Fig. 2). These two sodium
transporters have been identified as final effector proteins
for the action of dopamine (27-31). Numerous studies in
isolated tubular preparations have shown that dopamine
produces inhibition in the activities of Na,H-exchanger and
Na,K-ATPase, a mechanism by which dopamine reduces
tubular sodium reabsorption and thereby increases sodium
excretion. Both the Dj-like and the D2-like receptors are

with D2-like receptor agonists is dependent on existing sym-
pathetic vasoconstrictor tone.

At higher doses dopamine also activates 13-adrenocep-
tors and e-adrenoceptors (15). Studies from our laboratory
and others have shown that the natriuretic and diuretic re-··
sponse elicited by D J-like receptor agonists involves
changes in intrarenal hemodymanics (increase in renal
blood flow and glomerular filtration rates) as well as a direct
tubular action (12, 16). At lower doses it is the direct action
on renal tubules that accounts for the natriuresis and diuresis
caused by selective Dj-like receptor agonists (8, 13, 16, 17).

A positive correlation has been reported among sodium
intake, renal dopamine production, and urinary sodium ex-
cretion both in experimental animals and humans (18, 19).
Several studies have shown a role for dopamine in the regu-
lation of sodium excretion during acute volume expansion
as well as during acute increase in sodium intake (20-25).
The increased sodium excretion seen in animals placed on
high sodium intake is accompanied by an increase in urinary
dopamine excretion (24) and a decrease in Na,K-ATPase
activity in the proximal tubules (26). These effects of do-
pamine can be blocked by Dj-like receptor antagonists (21,
22,25,26), suggesting a role for Dj-like receptors in main-
taining body sodium homeostasis during increases in so-
dium intake.
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Figure 1. Dopamine receptor subtypes and their second messen-
gers; (+), stimulation; (-), inhibition.



Na,K-ATPase activity in proximal tubules (32, 33) and in
other parts of the nephron, such as mTAL and CCD (31).
Dopamine-related phosphoprotein-32 (DARPP-32), which
is present in large quantities in mTAL (47), has also been
reported to play a role in dopamine-mediated inhibition of
Na,K-ATPase activity in this segment of the nephron (48).

The stimulation of D2-like receptors causes a decrease
in cAMP via the G, proteins. Studies from our laboratories
have shown that a decrease in cAMP is the first biochemical
signal that leads to a cascade of events ultimately resulting
in the stimulation of Na,K-ATPase (36).

Dopamine D1-lIke Receptors and Phospholi-
pase C/Protein Kinase C. Numerous studies have pro-
vided evidence for the role of the phospholipase C (PLC)
and protein kinase C (PKC) in dopamine-mediated inhibi-
tion of the Na,K-ATPase activity in the proximal tubule
(Fig. 2) (49-54). Inhibitors of PLC and PKC have been
shown to block the inhibitory effects of dopamine and D

J
-

like agonists on the phosphorylation and activity of Na,K-

136 RENAL DOPAMINE RECEPTORS

Figure 2. Hypothetical scheme of dopamine
synthesis and D1-like receptor signaling path-
way that causes inhibition of sodium transport-
ers in proximal tubles of rat kidney. lrAADC,
L-aromatic amino acid decarboxylase; AC, ad-
enylyl cyclase; PLC, phospholipase C; PKA,
protein kinase A; PKC, protein kinase C; PIP2,
phosphatidylinositol bisphosphate; IP3, inosi-
tol trisphosphate; L-DOPA, L-dihydroxyphenyl-
alanine; DAG, diacylglycerol.

ATPase (49, 53, 54). Further studies have suggested that the
activation of the Dj-like receptors stimulates PLC by regu-
lating the expression and the activity of PLC131 and PLOyl
isoforms in the kidney cortex (55). Dopamine and Dj-like
agonists also stimulate the PKC activity in proximal tubules
(56, 57). Further studies suggest that it is the PKC8 and
especially PKq isoforms regulated by D) receptors that
may be involved in dopamine-mediated inhibition of Na,K-
ATPase activity (53, 58). The stimulation of these isoforms
of PKC might be causing phosphorylation and, as a result,
inhibition of the Na,K-ATPase activity (57, 59). The role of
phosphatidyl inositide 3-kinase (PI3-kinase) is also demon-
strated by PKC-mediated inhibition of the Na,K-ATPase
activity in proximal tubular cells (59). Stimulation of PI3-
kinase via activation of D2 and 0 3 receptors has also been
reported (60, 61). Additionally, stimulation of PI3-kinase
has also been associated with the stimulation of Na,K-
ATPase activity (62), and the inhibition of Na,K-ATPase
activity is the cause of the increase in PI3-kinase (63).



Figure 3. Hypothetical scheme of dopamine D2-like receptor signal-
ing that causes stimulation of the MEK1/2-p44/42 MAPK pathway
leading to the stimulation of the Na,K-ATPase activity and the mito-
genic response in proximal tubules of the kidney.

Dopamine D1-like Receptors an~ Phospholi-
pase A2• The role of PLAz has also been suggested in
dopamine-mediated inhibition of Na,K-ATPase in the renal
proximal tubule (64, 65). It is likely that Dj-like receptor-
mediated activation of PKC stimulates PLA2, which in tum
releases arachidonic acid from membrane lipids. Arachi-
donic acid is further metabolized by cytochrome P450 to
produce various metabolites, including 20-hydroxyeicosa-
tetraenoic acid (20-HETE), which utilizes PKC to inhibit
the Na,K-ATPase activity (66). In mTAL and CCD, the
PLA2 pathway interacts with PKA to inhibit Na,K-ATPase
activity (31). In regard to the role of these signaling path-
ways, a recent study reported sequential activation of PKC/
PLAz and PKAlPLA 2 pathways in the inhibition of Na,K-
ATPase by dopamine (67). Early inhibition of Na,K-
ATPase activity by dopamine involves the activation of
PKCIPLA2 pathways, whereas the late inhibition involves
activation of PKAlPLAz pathways (67).

Although dopamine receptor-mediated regulation of
sodium-transporting proteins is present throughout the
nephron length, dopamine receptors located at the proximal
tubule and CCD (compared to other segments of the neph-
ron) seem to play an important role in the natriuretic re-
sponse to exogenously administered or endogenously pro-
duced dopamine (26, 68). It is likely that the proximal por-
tion of the nephron is of greater importance because it is the
site of major fluid and sodium reabsorption, and it is this site
at which dopamine receptor-mediated signaling is selec-
tively defective and unable to regulate Na,K-ATPase and

Na,H-exchanger activity in various forms of hypertension in
humans and animal models; this is discussed below.

Dopamine D2-like Receptors and Tyrosine KI-
nase. Dopamine D2-like receptor activation causes stimu-
lation of Na,K-ATPase activity (Fig. 3) (36, 37). Recent
studies from our laboratory designed to investigate the cel-
lular signaling mechanism for this response have revealed
the involvement of a tyrosine kinase pathway. Inhibitors of
tyrosine kinase as well as MAP kinase blocked the stimu-
latory effect of bromocriptine on Na,K-ATPase activity in
renal proximal tubules. Also, bromocriptine increased phos-
phorylation of p44/42 MAPK in proximal tubules, suggest-
ing that Dz-like receptor activation causes stimulation of
Na,K-ATPase via a tyrosine kinase-p44/42 MAPK pathway
in renal proximal tubules (69). Whereas Dz-like receptors
activate the p44/42 MAPK pathway and promote mitogen-
esis, Dj-like receptors activate the p38 MAPK pathway,
which is involved in apoptosis (70).

Dopamine and Dopamine Receptors
in Hypertension

Dopamine Deficiency In Human Hyperten-
sion. Deficiency in renal dopamine synthesis and/or secre-
tion has been reported in various forms of human hyperten-
sion. Urinary dopamine excretion is lower in salt-sensitive
hypertensive patients than in normal subjects or non-salt-
sensitive patients on high sodium intake (71). Suppressed
dopaminergic activity has also been shown in the prehyper-
tensive stage of primary hypertension (72, 73). Reduced
dopaminergic activity has also been observed in young nor-
motensive subjects with an apparent family history of hy-
pertension before any evidence of hypertension emerged
(73, 74). The exact mechanism for the renal dopaminergic
deficiency in the human primary hypertension is not known.
However, a defect in t-dopa-decarboxylase, the enzyme that
catalyzes the conversion of t-dopa to dopamine, has been
reported in a subject with a family history of hypertension
(73-76). Other studies have shown a decrease in both the
renal tubular uptake of L-dopa and the conversion of L-dopa
to dopamine in a subgroup of salt-sensitive hypertensive
patients (77). Because the suppression of renal dopaminer-
gic activity has been observed in young normotensives with
a family history of hypertension before any manifestation of
the disease, it has been suggested that renal dopaminergic
deficiency may contribute to the development of hyperten-
sion (78).

Defective Dopamine Receptors in Human Hy-
pertension. Recently, a defective Dj-like dopamine re-
ceptor (more specifically D1A subtype) has been reported in
primary cells cultured from hypertensive human proximal
tubules (79). The Dj-like receptor agonist stimulated ade-
nylyl cyclase activity in normotensive cells but was unable
to stimulate the enzyme activity in hypertensive proximal
tubule cells. Further studies suggest that the defect was
receptor specific because adenylyl cyclase stimulation by
parathyroid hormone was found to be similar in· the cells
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from both normotensive and hypertensive subjects (79).
Furthermore, the Dj-like receptor or adenylyl cyclase defect
in human cells was suggested to be similar to the defects
found in proximal tubules from animal models of genetic
hypertension. The detailed molecular mechanism of the de-
fect is discussed below. Interestingly, despite a defective
D 1A receptor in the proximal tubule, an exogenous dopa-
mine infusion in essential hypertensive patients caused a
natriuretic response (80). This suggested that the dopamine
receptors located on the distal part of the nephron are up-
regulated (81) and therefore offset the defective dopamine
receptor function at the level of 'the proximal tubule. A
recent study suggested that D. receptor gene polymorphism
is associated with essential hypertension (82). In a group of
essential hypertensive and normotensive patients, polymer-
ase chain reaction was used to amplify the A-48G polymeric
site in the D J receptor gene, and restriction analysis of the
polymerase chain reaction product was used to score A and
G alleles. This analysis showed that essential hypertensive
patients possessing the G allele had a higher diastolic pres-
sure than those lacking the G allele, suggesting that such a
polyphosphism in the D. receptor gene may account for the
higher diastolic blood pressure of essential hypertensive pa-
tients (82).

In another study reported by Felder et aJ. (83), they
measured G protein-coupled receptor kinase 4 gene variants
(GRK4oyAI42V) in the renal proximal tubular cells ob-
tained from essential hypertensive patients. They found that
single-nucleotide polymorphism of GRK4oy, resulting in in-
creased GRK activity, caused serine phosphorylation and
subsequent uncoupling of the D 1 receptor from its G pro-
tein-effector enzyme complex in renal proximal tubule
(83). Moreover, expressing GRK4oyAI42V produced hyper-
tension and impaired diuretic and natriuretic effects of D 1-

like agonist stimulation. These results led the authors to
suggest a novel mechanism for the Dj-receptor-coupling
defect in the kidney that may explain the inability of the
kidney to properly excrete sodium in genetic hypertension
(83).

Defective Dopamine Receptor in Hypertensive
Animal Models. There are several lines of evidence sug-
gesting a defective dopaminergic system in the kidneys of
Dahl salt-sensitive and spontaneously hypertensive rats
(SHR). Similar to human hypertension, Dahl salt-sensitive
rats produce less kidney dopamine and have a poor natri-
uretic and diuretic response in the event of sodium load
(84-86). In addition to the dopamine production deficiency,
defective Dj-like receptor function has been reported in
proximal tubules of Dahl salt-sensitive rats. The defect in
Dj-like receptors results in a loss of the ability of dopamine
to regulate adenylyl cyclase activity (87, 88) and Na,K-
ATPase activity in proximal tubules of salt-sensitive rats
(89, 90). The SHR, as a model, has been extensively used to
elucidate the mechanisms of the defective Dj-like receptor
function in proximal tubules. Dopamine production in SHR
is normal or even increased (91, 92), but dopamine and
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Dj-like receptor agonist-mediated natriuretic and diuretic
responses are diminished compared to normotensive control
Wistar Kyoto (WKY) rats (93, 94). In 1989, Kinoshita et al.
(95) reported that despite equal numbers of Dj-like recep-
tors and intact G protein-adenylyl cyclase complexes, do-
pamine and Dj-like agonists stimulated adenylyl cyclase
activity in proximal tubules of SHR to a lesser extent than
in normotensive WKY rats. This suggested that the defect
resided in the coupling of the receptor with adenylyl cyclase
and that the G proteins and adenylyl cyclase were not them-
selves defective. The defect was specific to Dj-like receptor
because parathyroid hormone stimulated adenylyl cyclase
equally in SHR and WKY rats (95). Also, it has been re-
ported that D. receptors in the proximal tubule membrane
from SHR were resistant to activation by the agonist, and
this was most likely a result of the inability of the receptor
to associate with Gsa (41, 96).

In another study, the coupling of D J receptor to Gsa and
to Na,H-exchanger (NHE3) was examined in brush border
membranes obtained from SHR and WKY rats (97). It was
found that the inhibitory effect of D. receptor agonist on
NHE activity in SHR was less than that seen in WKY rats
and that GTPoyS enhanced the inhibitory effect of a D.
receptor agonist on NHE activity in WKY but not in SHR,
suggesting an uncoupling of D. receptor from GsaINHE3 in
SHR (97). It is also reported that the defect in Dj-like re-
ceptor/adenylyl cyclase was organ (only in the kidney) and
nephron segment (only in the proximal tubule) specific (98,
99). The major consequence of the decrease in the ability of
dopamine to stimulate adenylyl cyclase in SHR is the sub-
sequent failure to inhibit Na,H-exchanger in the hyperten-
sive animals (100, 101). The decreased inhibitory effect of
Dj-receptor stimulation on Na,H-exchanger in SHR pre-
cedes the development of hypertension (101). These results
led the authors to speculate that Dj-like receptor genes or
genes that regulate their function probably participate in
raising the blood pressure in genetic hypertension (101).
The stimulation ofPLC and PKC by dopamine and Dj-like
agonist was also reduced in SHR, suggesting a defect in the
coupling of D.-like receptor with Gq/ ll proteins (102, 103).
As a result of the defective coupling of Dj-like receptor
with G proteins and subsequent decreased stimulation of the
associated second-messenger systems (adenylyl cyc1ase-
PKA, PLC-PKC), dopamine and Dj-like agonist failed to
inhibit Na,H-exchanger and Na,K-ATPase activities in
proximal tubules (49, 100, 101). The failure of dopamine
and Dj-like agonist to inhibit sodium transporters provides
a mechanism responsible for the diminished natriuresis and
diuresis in SHR in response to dopamine as well as the
inability of SHR to excrete sodium in response to volume
expansion (93, 94). The impaired Dj-like receptor inhibition
of Na,H-exchanger activity in the SHR preceded the estab-
lishment of hypertension (104).

Further studies in SHR revealed that they had lost high-
affinity binding to the agonist (105, 106), and as a result,
Dj-like receptors were unable to interact with G proteins in



response to the agonist (41, 96). Limited sequencing of the
DIAmRNA (equivalent to the third cytoplasmic loop of
cloned D1A receptor, which is believed to be the G protein-
interacting domain) revealed no mutation in the protein in
SHR (99). However, there are a number of studies that
provide a sequence of events suggesting a molecular basis
for the defect in the D1A receptor (a Dj-like receptor). The
titration of the sulfhydryl groups present on D1A receptors
revealed that sulfhydryl groups may be buried inside the
receptor protein (107), which may be the result of posttrans-
lational modifications or conformational changes in the re-
ceptor protein. In a recent study, Felder et al. (83) reported
a greater agonist-independent phosphorylation of D1A re-
ceptor caused by the higher constitutive activity of GRK4.
Furthermore, the greater phosphorylation of D1A receptor
may also be contributed to by the decreased ability of the
D1A receptor agonist (fenoldopam) to increase the dephos-
phorylating enzyme, protein phosphatase 2A, activity in the
proximal tubule membrane of SHR (108).

Hypertension in Dopamine Receptor Knockout
Animals. Compelling evidence showing a relationship be-
tween defective D1A receptors or signaling system and hy-
pertension comes from two sets of experiments: one on
cross-breeds of normotensive and hypertensive rats and the
second on mice lacking functional D1A receptors (109). In
the Fz generation from female WKY rats and male SHR
crosses, the defective Dj-like receptor function (inability of
dopamine to inhibit Na,H-exchanger) in the proximal tu-
bules cosegregated with the increased systolic blood pres-
sure (>160 mmHg) and decreased ability to excrete sodium
in response to a Dj-like agonist infused into the renal ar-
teries of the rats. The activation of Dj-Iike receptors inhib-
ited the Na,H-exchanger in rats of the same Fz generation
with systolic blood pressure <140 mmHg (109).

In another set of experiments, mutant mice were gen-
erated that were lacking functional D'A receptors. Com-
pared to the control mice, both homozygous and heterozy-
gous mice had greater systolic, diastolic, and mean arterial
pressure. Renal tubules from homozygous mice had no
binding sites for [, z5I]SCH23982, a Dj-like ligand, and
showed no stimulation of cAMP by dopamine (109). This
provides a reasonable correlation between defective D)A
receptor/signal transduction and the development of hyper-
tension in mice. In addition to the observation made with
D JA receptors, the disruption of D3 receptors has also re-
cently been shown to cause renin-dependent hypertension
(110). However, the mechanism of hypertension caused by
disruption of D3 receptors is different from that caused by
DtAreceptors. The renal renin activity was much greater in
mice lacking D3 receptors (both homozygous and,heterozy-
gous) than in a wild-type control group. A single bolus dose
of losartan, an angiotensin II AT t receptor antagonist,
causes a decrease in systolic blood pressure in the homo-
zygous mice to a greater extent and for a longer time than in
the wild-type mice. During acute volume expansion, blood
pressure was unchanged, GFRs were similar, and urine flow

increased to a similar extent in the wild-type and the mutant
mice (both homozygous and heterozygous). However, the
increase in sodium excretion was attenuated in homozygous
mice compared to the control (110). There is evidence that
shows that a physiologic and biochemical interaction exists
between dopamine and angiotensin II receptors in the kid-
ney (111-113). Intrarenally produced angiotensin has been
shown to counteract fenoldopam-induced sodium excretion
(111).

Also, it has been shown that both Dj-like and Dz-like
receptor agonists cause a decrease in AT I receptor binding
sites in proximal tubular preparations (112-114). Although
the AT t receptor binding sites have not been measured in
the D3 mutant mice, it is possible that the 'absence of D3
receptors might have caused an increase in AT I receptors in
the proximal tubules along with the higher renin production.
Recently, effects of Dz receptor disruption has also been
reported (115). The disruption of Dz receptors caused higher
systolic and diastolic blood pressure in mutant mice. Further
study revealed that hypertension in Dz receptor mutant mice
resulted from an increase in a-adrenergic and endothelin B
(ETB) receptor activities, which produces vasoconstriction
(115).

Concluding Remarks
There is clear evidence that dopamine is an important

modulator of cardiovascular and renal function. A defi-
ciency in dopamine production and/or a dysfunction in do-
pamine receptor contributes to various forms of hyperten-
sion in both humans and animal models. Recently, a study
(83) revealed the molecular nature and the cause of the
defect in D, receptor protein in proximal tubular cells of
animals and hypertensive patients. This study further dem-
onstrated that the defect in D1 receptors might be corrected,
in the proximal tubule cells obtained from hypertensive pa-
tients, by removing the cause of defect, namely, in vitro
treatment of the cells with antisense GRK4 oligonucleotides
(83). However, it is yet to be determined whether correction
of the dopamine receptor, especially D 1 receptor, function
would lead to a reduction in blood.pressure in humans and
experimental models of hypertension.
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