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Cadmium (Cd®*) is a common environmental pollutant and a
Major constituent of tobacco smoke. Exposure to this heavy
Metal, which has no known beneficial physiological role, has

een linked to a wide range of detrimental effects on mammalian
reproduction. Intriguingly, depending on the identity of the
s'tel'oidogenic tissue involved and the dosage used, it has been
Teported to either enhance or inhibit the biosynthesis of
Progesterone, a hormone that is inexorably linked to both
Normal ovarian cyclicity and the maintenance of pregnancy.

hus, Cd®>* has been shown to exert significant effects on
Ovarian and reproductive tract morphology, with extremely low
dosages reported to stimulate ovarian luteal progesterone
biOSynthesis and high dosages inhibiting it. In addition, Cd>*
€xposure during human pregnancy has been linked to de-
Creased birth weights and premature birth, with the enhanced
levels of placental Cd?* resuiting from maternal exposure to
industrial wastes or tobacco smoke being associated with
decreased progesterone biosynthesis by the placental tropho-
blast. The stimulatory effects of Cd®* on ovarian progesterone
Synthesis, as revealed by the results of studies using stable
Porcine granulosa cells, appear centered on the enhanced
Conversion of cholesterol to pregnenolone by the cytochrome
P450 side chain cleavage (P450scc). However, in the placenta,
the Cd2*-induced decline in progesterone synthesis is commen-
Surate with a decrease in P450scc. Additionally, placental low-
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density lipoprotein receptor (LDL-R) mRNA declines in response
to Cd** exposure, suggesting an inhibition in the pathway that
provides cholesterol precursor from the maternal peripheral
circulation. Potential mechanisms by which Cd** may affect
steroidogenesis include interference with the DNA binding zinc
(Zn®*)-finger motif through the substitution of Cd?* for Zn** or by
taking on the role of an endocrine disrupting chemical (EDC)
that could mimic or inhibit the actions of endogenous estro-
gens. Divergent, tissue-specific (ovary vs. placenta) effects of
Cd** also cannot be ruled out. Therefore, in consideration of the
data currently available and in light of the potentially serious
consequences of environmental Cd®* exposure to human
reproduction, we propose that priority should be given to
studies dedicated to further elucidating the mechanisms
involved. Exp Biol Med 229:383-392, 2004
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admium (Cd**) is a heavy metal that is dispersed
‘ throughout the modemn environment mainly as a

result of pollution from a variety of sources (1, 2).
Much of that released into the environment in recent years
can be traced to occupational exposure and the wastes
associated with mining, smelting, and electroplating as well
as the intensive use of consumer products such as nickel/
Cd** batteries, pigments, and plastics (2, 3). Its high
concentrations in the soil and water supply has made it
easily detectable in meat, fish, and fruits, although tobacco
smoke may be one of the most common sources of Cd®*
contamination in the general population (4). The metal has
no known beneficial biological function and prolonged
exposure to it has been linked to toxic effects in both
humans and animals (3). Cd** has a long biological half-life
of 15-30 years (5), mainly due to its low rate of excretion
from the body, and accumulates over time in blood, kidney,



384 HENSON AND CHEDRESE

and liver (1, 5-7) as well as in the reproductive organs,
including the placenta, testis, and ovaries (3, 7-10).
Specifically, human exposure to the metal is associated
with increased incidences of renal disease, hypertension,
osteoporosis, and leukemia, as well as cancers of the lung,
kidney, urinary bladder, pancreas, breast, and prostate (11).
The practically ubiquitous nature of Cd®* and its deleterious
effects on human health makes it a serious problem of
worldwide scope and has lead, therefore, to numerous
patient-based investigations by biomedical researchers
throughout Asia (11-13), the Middle East (14), Australia
(15), Europe (3, 7-9, 16), and the Americas (17-19).

Cd** Exposure and Reproduction

Various effects of Cd** on reproductive endocrinology
have been described, but definitive conclusions about its
actions on target tissues vary depending on the experimental
model and the dosage employed. Exposure of rodents to the
metal resulted in a down-regulation of pituitary hormones;
including gonadotropins, prolactin, ACTH, growth hor-
mone, and thyroid-stimulating hormone (20). Similarly, in
pseudopregnant rats and in cultured granulosa cells from
both rats and humans, Cd** inhibited progesterone synthesis
(10, 21, 22). Because tobacco smoke is a source of cd*
contamination, the reproductive organs of smokers are
generally considered to be at increased risk of exposure to
toxic levels of Cd**. Thus, enhanced Cd** concentrations
and lower progesterone levels were evidenced in the
follicular fluid and in the placentas of smokers compared
with those of nonsmokers (4, 8), and exposure of hamsters
to realistic environmental dosages of tobacco smoke had
severe repercussions on reproductive structures. Exposure
was linked to a decline in the number of corpora lutea, as
* well as a reduction in their vascular area. It caused blebbing
of the ciliated cells in the oviductal epithelium and resulted
in a decrease in the ratio of ciliated to secretory cells in the
ampulla. Exposure also resulted in decreased uterine length
and an in€reased number of uterine implantation sites (23).
Although the results of studies conducted in cultured human
trophoblast cells indicated that Cd** inhibited placental
progesterone synthesis (24-26), some reports suggest that,
in many instances, Cd** stimulates steroidogenesis. Thus,
Cd** administrated to female rats during estrus and diestrus
resulted in increased serum progesterone levels (10, 27) and
stimulated progesterone synthesis in both cultured porcine
granulosa cells (6) and JAr choriocarcinoma cells, a
malignant trophoblast cell line (28). Therefore, although
the results of many studies concur in suggesting a significant
impact on reproduction, the specific mechanisms of action
on steroidogenesis are still subject to conjecture.

Effects of Cd?* in.the Ovary

The stimulatory and inhibitory effects of Cd** on
progesterone synthesis (see Fig. 1) were recently inves-
tigated using the steroidogenically stable JC-410 porcine

granulosa cell line (29), which was genetically modified
with gene constructs containing the promoter region of the
cytochrome P450 side chain cleavage (P450scc) gene linked
to a luciferase reporter gene (30). P450scc is a hormonally
regulated rate-limiting steroidogenic enzyme that catalyzes
the conversion of cholesterol into pregnenolone, the
immediate precursor of progesterone (31). It was observed
that low (0.6-3 pM) and high (5 uM) concentrations of
CdCl, in the culture media had opposite effects on the
P450scc promoter activity (32). Although these concen-
trations are somewhat arbitrary by nature, dosages were
chosen from the lower ranges of previous in vivo and in
vitro studies (as reviewed, 16). As illustrated in Figure 2, at
low concentrations, CdCl, stimulated P450scc gene pro-
moter activity in a dose- and time-dependent fashion; while
at high concentrations, it inhibited P450scc gene promoter
activity. Low concentrations of CdCl, increased P450scc
mRNA levels and progesterone synthesis but did not affect
cell count, protein content, or cellular morphology in
cultured nontransfected JC-410 cells. High concentrations
of CdCl, inhibited P450scc gene promoter activity and
caused a reduction in cell number and cellular protein
content as well as changes in cell morphology. Overall,
results suggested that Cd** exerted a dual action in
granulosa cells; low concentrations activated, while high
concentrations inhibited expression of the P450scc gene.
These studies were conducted in serum-free culture
conditions in which CdCl, stimulated expression of the
P450scc gene and progesterone synthesis. Therefore,
because synthesis of progesterone in JC-410 stable
granulosa cells is entirely dependent on an intracellular
source of cholesterol (33), it is reasonable to speculate that
the effects of Cd** were independent of changes in the
metabolism of low-density lipoprotein (LDL) or LDL
receptor (LDL-R) function. This may explain why Cd**
also elevates progesterone levels in estrous and diestrous
rats (10, 27) in cultured porcine granulosa cells (6) and in
choriocarcinoma cells (28). Effects in these studies were
observed at Cd** concentrations that were dramatically
lower than the concentrations (5-20 uM) reported to induce
endocrine disruption in cultured human trophoblasts (24—
26). Such lower concentrations may represent typical tissue
burdens to which humans and animals are commonly
exposed. Based on these results, therefore, it is reasonable to
conclude that exposure to even low concentrations of Cd**
is sufficient to significantly affect the steroidogenic path-
way.

Effects of Cd** During Pregnancy and in the
Placenta

In human pregnancy, maternal exposure to Cd** is
associated with low birth weight (34, 35) and an increased
incidence of spontaneous abortion (36). Although pharma-
cokinetic studies have demonstrated that the metal does not
readily reach the fetus, it accumulates in high concentrations
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in the placenta (8, 37-39). In both perfused human placentae
(40) and in vivo rodent studies (41), observable symptoms
of Cd** toxicity included lysosomal vesiculation, nuclear
Chromatin clumping, and mitochondrial calcification in
trophoblast cells. In perfused human placentae, exposure
to Cd?* also precipitated a decline in the secretion of human
Chorionic gonadotropin (hCG; Ref. 40), a polypeptide
hormone vital to early pregnancy maintenance. The
Placental trophoblast, which is the site of hCG synthesis,
is also responsible for the production of progesterone (42), a
steroid hormone that plays a vital role in pregnancy
Maintenance by promoting uterine myometrial quiescence
(43). The potential for environmental Cd** to affect
Placental progesterone production by Cd?** was evidenced
by Piasek et al. (8), who determined an almost twofold
increase in Cd** that was commensurate with an almost
0% decline in progesterone in the placentas of women who
Smoked during pregnancy. It is interesting to note, therefore,
that maternal exposure to high levels of environmental Cd>*

-cholesteryl linoleate is bound to a specific LDL receptor and
e chain cleavage (P450scc), on the inner mitochondrial matrix,
progesterone by 3B-hydroxysteroid dehydrogenase (3p-HSD).
although in the placental trophoblast, this mechanism is down-

led to a significant increase in the incidence of premature
delivery in the Jinzu River basin in Japan, where itai-itai
disease, the most severe manifestation of chronic Cd%*
poisoning is still reported (13). Indeed, older women with
higher body burdens of the metal are at a greater risk for
placental Cd®* accumulation and subsequent adverse
pregnancy effects, as maternal reserves may accumulate in
placenta during pregnancy (16). Therefore, in a study
investigating Cd** levels in maternal, umbilical cord, and
newborn’s blood following environmental exposure, mater-
nal and newbom blood Cd** levels were not correlated with
one another, while cord levels (as an index of placental
burden) were highly correlated with maternal Cd** concen-
trations, which were significantly elevated in smoking
mothers (19). This phenomenon, which has been replicated
in rodents that exhibited a 16% increase in placental Cd**
burden following just 5 days of inhalation exposure to
environmental tobacco smoke (44), may help to explain the
increased incidence of premature delivery in smoking
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Figure 2, Effects of CdCl, on JC-410 cells stably transfected with
P450scc-2320-LUC. Celis were exposed to the indicated concen-
trations of CdCl,. After 24 hrs incubation, cells were collected and
assayed for luciferase activity. (A) Data of relative light units (RLU)
divided by (B) total protein content were expressed as a fold over
mean control value for each treatment and analyzed by one-way
ANOVA, followed by Fischer least significant difference test. Each
point represents the mean = SEM of three independent replications.
Asterisk represents P < 0.05. Originally published in Smida et al.,
Biology of Reproduction 70:25~-31, 2004.

women. Indeed, high concentrations of placental Cd** that
are directly related to maternal smoking have also been
associated with an increase in trophoblast thickness, along
with other quantifiable changes in placental morphology
(17). In addition, Egawa er al. (45) determined that rats
exposed to cigarette smoke between Days 14 and 16 of
pregnancy exhibited an enhanced frequency of oxytocin-
induced uterine myometrial contractions compared with rats
breathing room air. The authors concluded that the effects of
smoking on myometrial contractile activity could contribute
to the increased risk of premature delivery reported in
smoking mothers. With regard to this and related mecha-
nisms, clinical studies have reported that both active (46)
and passive exposure (47) to tobacco smoke during
pregnancy constituted significant risk factors for preterm
delivery, an effect that may be exacerbated among African

Americans (48). In addition, tobacco smoke’s effects on the
placenta via similar Cd**-related mechanisms (36) might
also be linked (49-51) to low birth weights and an enhanced
incidence of intrauterine growth restriction (IUGR).

Collectively, therefore, clinical and experimental ob-
servations suggest that elevated concentrations of Cd>* are
at least one cause of the reduced levels of progesterone
measured in the placentae of smokers, an effect that might
contribute to premature delivery. Thus, it is possible that
limited availability of cholesterol and/or inhibition of the
steroidogenic genes could be mechanisms by which high
Cd** concentrations contribute to inhibited progesterone
synthesis, as described in the pseudopregnant rat model (21)
and in cultured human (10) and rat (22) granulosa cells. To
this end, we demonstrated that Cd** inhibited progesterone
secretion in cultured human placental cells (5, 24) via a
deleterious effect on LDL-R mRNA (25). However, because
a number of steroidogenic enzymes are required for
progesterone synthesis (see Fig. 1), it was quite possible
that inhibition by Cd* might be multifaceted, affecting
multiple sites in the steroidogenic pathway. Among the
steroidogenic enzymes expressed by the primate placenta
and involved in progesterone synthesis, P450scc and 3pB-
hydroxysteroid dehydrogenase (3B-HSD) are vital compo-
nents. P450scc catalyzes the conversion of cholesterol into
pregnenolone, which is then converted into progesterone via
38-HSD (52). Syncytiotrophoblasts, formed in culture (as in
vivo) from cytotrophoblast progenitors, adapt to facilitate
this transition (53-55). Therefore, we continued our studies
by investigating the influence of Cd** on the expression of
the P450scc and 3B-HSD genes, and their enzymatic
activities, in cultured human placental cells.

Progesterone secretion was reduced by coculture with
CdCl,, both prior to and during differentiation of cyto-
trophoblasts into syncytiotrophoblasts, or following com-
pletion of the differentiation process (5, 24-26).
Cytotrophoblasts progressed to syncytiotrophoblastic ma-
turity regardless of treatment, while treatment with CdCl,
following differentiation inhibited 25-hydroxycholesterol
(25-OHC)-stimulated progesterone secretion (26). Because
25-OHC readily traverses the plasma and mitochondrial
membranes and taking into consideration that 3B-HSD is
not a rate-limiting step in the steroidogenic pathway, the
conversion of 25-OHC to progesterone represents an index
of P450scc activity. Therefore, results indicated that Cd**
did not interfere with progesterone synthesis/secretion by
simply inhibiting morphological change but rather by
exerting a direct inhibitory effect on the biosynthetic
pathway. Moreover, no significant differences were ob-
served in cell protein or lactate dehydrogenase (LDH)
activity, an enzyme that serves as an indicator of cell injury
and death, as a result of coculture with CdCl,. These
findings were reminiscent of our previous report of no
significant Cd®* induced decline in cell viability, as assessed
by both DNA fragmentation assay and the conversion of 3-
(4, S-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bro-
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Figure 3. Effects of CdCl, on (A) P450scc and (B) 3-HSD mRNA
transcript abundance, as determined by competitive RT-PCR, in
human trophoblasts cultured for 96 hrs. Values represent means *+
SEM of four separate placental cultures. Different lowercase letters
(a, b) indicate significant (P < 0.05) differences. Originally published

in Kawai et al,, Biology of Reproduction 67:178-183, 2002.

mide (MTT) to formazan (25). Collectively, therefore,
Tesults suggested that Cd** suppression of progesterone
synthesis in placental cell cultures could not be attributed to
cell death by either apoptosis or necrosis. As illustrated in
Figure 3, exposure to CdCl, caused a dose-dependent
decline in P450scc and 3B-HSD mRNAs (26). Similarly,
P450scc activity, as determined by the formation of
Progesterone from 25-OHC, was inhibited in cells cocul-
tured with CdCl,, indicating that P450scc is one site at
which Cd might interfere with placental progesterone
synthesis (Fig. 4). In this respect, it must be recognized
that the formation of progesterone from 25-OHC did not
reflect P450scc activity entirely, as its biosynthesis also
included the conversion of pregnenolone to progesterone by
3B-HSD. However, in later experiments, basal progesterone
Synthesis was inhibited by the addition of aminoglutethi-

mide, a potent inhibitor of P450scc (Fig. 5). Following the
addition of 5 pg/ml pregnenolone over a short period, an
approximately 500-fold increase in progesterone synthesis
(i.e., 3B-HSD activity) was observed in the presence of 90
UM aminoglutethimide. However, coculture with 20 pM
CdCl, had no significant effect on pregnenolone-stimulated
progesterone synthesis, strongly suggesting that CdCl, did
not inhibit 33-HSD activity in cultured human trophoblasts.

Mechanism of Action of Cd**

The mechanisms by which Cd>* affects cell function
and gene expression were recently reviewed by Bhttachar-
yya et al. (1). Cd** can easily enter into the cells through the
L-type voltage Ca®* channels (56) and receptor-mediated
Ca** channels (57) because both cations have similar radii
size and charge (Ca®* = 0.97 A, Cd** = 0.99 A). Cd** can
also displace Ca®* from its normal binding to calmodulin
and protein kinase-C (PKC; Ref. 58). Calmodulin activates
several enzymes of the second messenger pathways that
regulate gene expression, including Ca®*/calmodulin-de-
pendent kinase, phosphodiesterase, and the myosin light-
chain kinase (58). PKC is a family of Ser/Thr kinases that
depends on Ca®* and phospholipids to be activated (59).
Cd** can activate PKC directly with a constant S000-fold
smaller than that of Ca>* (60). Cd** concentrations between
0.1 and 5 uM interfere with the Ca®*-ATPase pumps,
leading to an immediate, transient, but substantial increase
in intracellular Ca* (61, 62). This increase in Ca>* results in
the formation of inositol triphosphate (IP), which triggers
the PKC signal cascade (63). It is known that an increase in
the uptake of extracellular Ca®* potentiates the effects of
FSH and 8-Br-cAMP on transcription of the P450scc gene
and progesterone synthesis in primary cultures of porcine
granulosa cells (64). Therefore, it is reasonable to speculate
that the low concentrations of Cd** may be sufficient to
mimic the effects of Ca®*, resulting in stimulation of the
steroidogenic pathway and synthesis of progesterone.

The results of our studies in stable granulosa cells
suggested that the effect of Cd>* was specific in stimulating
the promoter of the P450scc gene (Fig. 2) because CdCl,
did not affect luciferase activity in cells transiently trans-
fected with the promoterless version of the plasmid vector
used in these experiments and had no effect on expression of
the housekeeping gene, glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH; Ref. 32). Moreover, CdCl, also
stimulated activity of a construct containing only the first
100 base pairs of the promoter; suggesting that a cis-acting
element located in the proximity of the transcription start
site may be involved in the CdCl,-stimulated expression of
the porcine P450scc gene (30). They include consensus
sequence motifs for the proto-oncogenes ¢-jun and c¢-fos, the
cAMP regulatory element binding protein (CREB), the
activator protein-1 (AP-1), and the specific protein-1 (Spl).
Exposure to Cd** activates these transcription factors in a
variety of experimental models. In rat L6-myoblasts, 1 uM
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Figure 4. Effects of CdCl, on P450scc activity, as determined by the formation of progesterone from 25-hydroxycholesterol (25-OHC), in
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Cd** induces transcription of c-jun and c-fos through
mechanisms mediated by PKC (65). It is known that, on
stimulation, c-jun and c-fos form heterodimers that bind to
AP-1 sites in several PKC-activated genes (66). Therefore, it
is reasonable to speculate that PKC stimulation by Cd**
may lead to activation of the P450scc genes through the AP-
1 sites located in its promoter. Spl is a zinc-finger
transcription factor originally defined in the promoter of
the simian virus SV40 (67). Spl plays an essential role in
eukaryotic gene expression, maintenance of homeostasis,
cell cycle control, terminal differentiation, and apoptosis.
The Spl binding motif was also found in other gene
promoters, including those that are highly regulated by
Cd**, such as human metallothionein IIA (68). Further
investigation needs to be conducted to determine the
mechanisms by which transcription factors mediate the
effects of Cd** on the P450scc gene.

While it must be acknowledged that post-transcriptional
regulation might also be at work, the apparent dose-
dependent reduction in the abundance of P450scc mRNA
transcripts in response to Cd** suggested an effect on

transcriptional regulation. In this capacity, the hormonal
regulation and developmental pattern of P450scc expression
are specific to individual steroidogenic tissues. Thus,
hormone receptor binding activates a G protein that
increases intracellular cAMP, which in turn activates
transcription of the P450scc gene (69, 70). Ringler et al.
(71) reported that cAMP regulates progesterone synthesis in
normal human trophoblasts, at least in part, by regulating
the abundance of P450scc mRNA. Therefore, it is believed
that human placental P450scc is regulated mainly at the
level of gene expression and so it is possible that, in the
trophoblast, Cd** inhibits progesterone synthesis by a direct
interference with transcription.

Although a decline in 38-HSD mRNA levels was also
observed following coculture with CdCl,, 3B-HSD activity
was not significantly affected (26). Therefore, perhaps
because of the typically high concentration of 3B-HSD
within human trophoblasts (72), coculture with CdCl,
exerted no significant effects on activity. It is also possible
that 3B-HSD protein could be regulated at both transcrip-
tional and post-transcriptional levels. In this capacity,
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treatment of human trophoblasts with progesterone and
estradiol increased 3B-HSD mRNA levels, but had no
significant effect on protein levels (73), suggesting that 3f-
HSD steady-state mRNA levels in human placenta could be
regulated after transcription. A similar post-transcriptional
regulatory mechanism has been suggested in respect to
follicle-stimulating hormone-induced gene expression in rat
granulosa cells (74). Therefore, Cd** may exert a direct
effect on 3B-HSD transcript abundance but not on a post-
transcriptional regulatory mechanism.

It has been proposed that accumulation of P450scc
mRNA is mainly controlled by the cAMP-dependent
pathway in human trophoblasts (72, 75). Thus, the human
P450scc gene promoter contains consensus sequences that
match known positive cAMP-responsive elements (76, 77).
However, in our study (26), the cAMP analog, 8-bromo-
CAMP, was not effective in blunting the decline in
progesterone secretion elicited by Cd**. In addition,
coculture with CdCl, did not influence the cCAMP content
in cultured cells, suggesting that cAMP in human
trophoblasts may not be involved with the Cd**-induced
inhibition of progesterone secretion. The possibility still
exists, however, that Cd** interferes with the downstream
cascade of the cAMP-protein kinase A-dependent pathway.
Kostrzewska and Sobieszek (78) reported that higher Cd**
concentrations inhibited the phosphorylation of myosin light
chain kinase in the smooth muscle myosin, suggesting that
Cd** interferes with the phosphorylation of protein kinases.
An additional possibility is that the metal may directly affect
transcription of the P450scc gene by interfering with the
DNA binding zinc-finger motif through the substitution of
Cd?* for Zn®* (79). Moreover, cations such as Cd** have

been reported to alter the structure of nucleic acids (DNA,
tRNA) and certain enzymes by reacting with their sulfydryl
groups (80, 81). Therefore, it is possible that Cd** interferes
with progesterone biosynthesis by one or more of the
described mechanisms affecting transcription of the P450scc
gene.

Estrogenic Effects of Cd**

Endocrine-disrupting chemicals (EDCs) are natural or
synthetic agents that can mimic, enhance, or inhibit the
action of endogenous hormones (82). The most commonly
reported EDCs that affect reproduction are the pesticides
that reproduce the effects of estrogens (83), and recent
reports have also highlighted the potential of Cd** to mimic
the effects of estrogen in various tissues. The first of these
observations was made by Garcia-Morales e al. (84), in
MCF-7 human breast cancer cells, who found that 1 pm
Cd** mimicked the effect of estrogens by decreasing the
level of estrogen receptor (ER) mRNA and transcription of
the ER gene and increasing transcription of the progesterone
receptor (PR) gene. The changes in steady-state levels of
protein and mRNA of these genes were due to changes in
transcription that were blocked by the antiestrogen, ICI-
164384, thereby supporting the concept of an ER-mediated
effect of the metal, Moreover, these estrogenic actions were
not mimicked by Zn®*, suggesting the existence of Cd**-
specific effects on transcription (84). More recently, it was
demonstrated that Cd®* activates the ER-o through an
interaction with the hormone-binding domain of the
receptor, in which it binds with high affinity, blocking the
binding of estradiol (85). The interaction of Cd** with the
receptor appeared to involve several amino acids in the
hormone-binding pocket of the receptor, suggesting that the
metal may form a coordination complex with the hormone-
binding domain and thereby activate the receptor (85).
Similarly, in vivo studies conducted in rats showed that cd*
precipitated early puberty onset, increased uterine weight,
and enhanced mammary development. Moreover, Cd**
induced hormone-regulated genes in ovariectomized ani-
mals, including the PR and complement component C3
(86). In the mammary gland, Cd** promoted an increase in
the formation of side branches and alveolar buds and the
induction of casein, whey acidic protein, PR, and C3.
Female offspring, exposed in utero to Cd2+, experienced an
earlier onset of puberty and an increase in the epithelial area
and the number of terminal end buds in the mammary
glands. Therefore, it might be concluded that Cd** mimics
the effects of estrogens and that its effects cannot be
extended to other heavy metals. To this end, the effects of
Cd?* appear to be mediated by the ERa and are independent
of estrogen binding (87). Overall, the information presented
provides strong evidence that Cd** is a potent nonsteroidal
estrogen in vivo and in vitro.
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Conclusions

We propose that, at low concentrations, Cd®* stimulates
transcription of the P450scc gene and the steroidogenic
pathway in the ovary. We also propose that, at high
concentrations, Cd** inhibits activity of the P450scc gene
and progesterone synthesis in the ovary and facilitates
changes in cell morphology and cell death. The effect of
Cd** appears to be mediated via a cis-acting element located
100 bp upstream of the P450scc gene transcription start site.
Conversion of cholesterol into pregnenolone by P450scc is
an obligated step in the steroidogenic pathway. Therefore,
the changes induced by Cd** on the expression of the
P450scc gene in granulosa cells could affect the synthesis of
all steroid hormones in the ovary. We also propose that
cholesterol sequestration via the LDL-R and the conversion
of cholesterol into pregnenolone by P450scc are two sites at
which Cd®* can interfere with progesterone production in
cultured human trophoblasts. Further study is called for to
definitively determine the collective mechanisms by which
Cd** interferes with placental progesterone biosynthesis in
vivo and to better understand their ramifications with respect
to smoking, environmental exposure, normal placental
function, and pregnancy maintenance.

Intriguingly, Cd** has been reported to affect steroido-
genesis directly, both in vivo and in vitro, although
differences in experimental methods and the concentrations
tested may be responsible for variations in results (10, 21,
88, 89). With this in mind, the results of recent studies
support the concept that, depending on its concentration,
Cd** exerts dual effects on steroidogenesis. At low doses,
Cd** stimulates DNA synthesis, cell multiplication, and
malignant transformation (90, 91). Cd** administered in the
mM range is toxic and can be associated with diminished
DNA synthesis, apoptosis, and chromosome aberrations
(92). When used in concentrations over 2-5 pM, Cd*
induces apoptosis, partially via activation of the caspase-9 in
HL-60 cells (93). Therefore, it is possible that the reduction
in cell number, the cellular protein content, and the changes
in cell morphology observed in our experiments with
ovarian cells (32) were due to the apoptotic effects of high
concentrations of CdCl,. However, this does not appear to
be the case in placenta, as trophoblast cells may possess an
enhanced resistance to Cd**-induced cell death (9, 24-26).

To date, studies have been directed toward experiments
to explain the paradoxical, dosage-dependent effects of
Cd** on steroidogenesis; in the view that low doses up-
regulate, while comparatively high doses downregulate
progesterone synthesis. Although when we consider that
women with lower placental Cd** burdens also have lower
placental progesterone levels and are prone to premature
delivery, a negative effect of low Cd** concentrations on
placental progesterone synthesis is suggested. In this
capacity, therefore, it might be that the higher cd**
concentrations used in placental cell cultures for up to 96
hrs simply compensate for the lower placental Cd** burdens

typically observed in vivo, to which the trophoblast i
exposed for many months. Results might then be said t0
suggest a tissue-specific effect of Cd>*, ovary versus
placenta, on steroidogenesis. If this were the case, the most
important question would become: Is the effect of Cd>* on
steroidogenesis really paradoxical at all?
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