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Ethanol withdrawaf (EW) produces substantial neurotoxic
effects, whereas estrogen is neuroprotective. Given observa-
tions that both human and nonhuman female subjects often
show less impairment following EW, it is reasonable to
hypothesize that estrogens may protect females from the
neurotoxic effects of ethanol. This article is based on the
assumption that the behavioral deficits seen following EW are
produced in part by neuronal death triggered by oxidative insults
produced by EW. The EW leads to activation of protein kinase C,
especlally PKCe, which subsequently triggers apoptotic down-
stream events such as phosphorylation of nuclear factor-xB
(NFxB) complex. On phosphorylation, active NFxB translocates
to the nucleus, binds to DNA, and activates caspases, which
trigger DNA fragmentation and apoptosis. in contrast, estrogens
are antioxidant, inhibit overexpression of PKCe, and suppress
expression of NFxB and caspases. Estrogen treatment reduces
the behavioral deficits seen during EW and attenuates molecular
signals of apoptosis. The effects of ethanol and estrogen on each
step in the signaling cascade from ethanol exposure to
apoptosis are reviewed, and potential mechanisms by which
estrogen could produce neuronal protection against the neuro-
toxicity produced by EW are identified. These studies serve as a
guide for continuing research into the mechanisms of the
neuroprotective effects of estrogen during EW and for the
development of potential estrogen-based treatments for male
and female alcoholics. Exp Biol Med 230:8-22, 2005
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Introduction

Alcohol is the one of the most abused drugs in the
world. One survey indicates that 7.4% of the U.S. adu|t
population are or have been alcohol dependent or abusers
(1). The economic cost to society from alcohol abuse and
alcoholism was an estimated $185 billion in 1998 (1),
Alcoholic dementia, which consists of global severe
amnesia and intellectual impairment, is the second-leading
cause of adult dementia in the United States, accounting for
10% of all cases (2). Prolonged use of ethanol results in
dependence, and discontinuation of ethanol produces j
severe withdrawal syndrome marked by anxiety, ataxia,
hyperalgesia, seizures, coma, and even death (3-6).

Traditionally, alcoholism has been considered a male
disease because there were substantially more drinkers angd
alcoholics in the male than in the female population (7, 8),
In recent years, the roles of women have changed with
concomitant increases in alcohol use, such that almost half
of American women now drink (9). Evidence indicates that
the incidence of female alcoholism and the frequency of
women seeking help for the disorder is increasing,
demonstrating that alcoholism is a social and clinical
problem not only in men but also in women (10-12).

Alcoholism in women is associated with a variety of
clinical issues related to both mental health and physical
health effects, and alcohol is one of the major reasons that
cause women to seek medical care (9). Psychiatric
diagnoses in all categories are more prevalent in female
alcoholics than in female nonalcoholics (13). Alcoholic
women under age 40 are five times more likely attempt to
suicide than nonalcoholic women (14). Many reproductive
and other physical problems, such as pain complaints (15),
renal failure (16), heart diseases cardiomyopathy, arrhyth-
mia, neurological disorders, cancer, liver cirrhosis, and
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traffic accidents (17), are associated with alcohol abuse (9).
The increasing use of alcohol among women, in combina-
tion with this wide range of adverse effects on women’s
health, indicates a significant need for better therapeutic
strategies for treating alcohol abuse in women.

Estrogen was originally considered a female hormone
but has been recognized to play important roles in both
males and females, including neuroprotection. The intent of
this review is to examine the evidence for estrogen
providing neuroprotective effects against the neurotoxic
effects of chronic ethanol. We will outline a general model
for molecular events that lead to the behavioral deficits
produced by exposure to ethanol and will describe how
estrogen can interfere with many of these steps, thereby
reducing the impact of ethanol (Fig. 1). Chronic exposure to
ethanol results in increased amounts of oxidative damage;
translocation of PKC; activation of PKC and NFkB, which
results in DNA fragmentation; and ultimately increased
neuronal death through apoptosis or other mechanisms that
are responsible for the observable behavioral deficits. The
next section of this review will describe these effects of
ethanol. There is increasing evidence that estrogen decreases
oxidative damage, translocation of PKC, and DNA
fragmentation, with resultant decreases in neuronal death
and behavioral deficits. The third section will summarize the
neuroprotective effects of estrogen. The last scction of this
review will examine the evidence that estrogen opposes
these molecular mechanisms for neurotoxicity. The useful-
ness of this review is twofold. First, it contributes to a better
understanding of alcoholism in women and to our ability to
design a better treatment. Second, we will demonstrate that
nonfeminizing estrogens may be useful agents for preven-
tion or treatment of alcohol-induced neurotoxicity.

Neurotoxic Effects of Ethanol

Ethanol-induced tissuc injury and cell death have been
extensively studied from the periphery to the central
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Figure 1. Ethanol withdrawal as well as exposure to large doses of
ethanol produce increases in reactive oxygen species and behav-
ioral deficits linked to neuronal death. Estrogen may act at any or all
of these steps in the proposed cascade of events. PKCs, protein
kinase ¢ ¢; NFkB, nuclear factor-xB.

nervous system (CNS; Refs. 18-20). Ethanol can damage
virtually every organ and tissue because of its ability to alter
membrane integrity and affect key biochemical processes
throughout the cells. Exposure to chronic ethanol and the
abrupt withdrawal from ethanol produce neurotoxic effects
such as oxidative stress and neuronal death (21-23),
Substantial losses of hippocampal neurons have been
reported during the ethanol intoxication period and at
different times following withdrawal of ethanol (24-26).
There is evidence that ethanol withdrawal (EW) produces
neurotoxicity separate from that produced by exposure to
ethanol (27, 28; see also section 4.1). Because of this, we
have attempted to address separately the effects of chronic
ethanol and EW throughout this review.

Ethanol dependence develops when experimental
animals or humans consume large quantities of ethanol
over a long period of time. When ethanol intake is abruptly
terminated after the long-term consumption, experimental
animals experience the withdrawal signs that closely
resemble those observed in humans (29, 30). Such signs
and symptoms range from the psychological levels to
behavioral levels such as anxiety, tremor, hyperexcitability,
seizure, coma, and even death. The clinical significance of
EW signs and symptoms is inferred from the fact that they
motivate alcoholics to relapse into the original patterns of
alcohol abuse to avoid painful discomfort. This is an
important issue because alcoholics voluntarily or involun-
tarily encounter the withdrawal phasc because of the
intermittent nature of alcohol consumption. Furthermore, it
is likely that most alcoholics seek for the clinical help
during withdrawal. Consequently. reducing the intensity of
the chronic ethanol toxicity and withdrawal syndromes has
become one of the major therapeutic strategies for alcohol-
ism. However, existing drugs for treatment of EW, such as
diazepam and chlordiazepoxide, are limited because of
impaired cognition, sedation, and dependence liability (31).

The importance of developing adequate treatment for
EW guided researchers’ attention to characterize EW
toxicity at the variety of in vivo and in vitro levels. Clinical
and nonhuman studies have assessed the neurotoxicity
during EW. Cerebella obtained from alcoholics a few days
to a few months after death showed a dose-dependent
increase in loss of Purkinje cells ranging from 15.2% to
33.45% (32, 33). Similarly, rats exposed to ethanol for 20
weeks showed 20%-25% loss of Purkinje cells (34).
Postnatally administered ethanol in rats resulted in 24%
loss of Purkinje cells (35). A comparable loss of Purkinje
cells was observed at 2 weeks of EW from a relatively short-
term treatment with a high dose of ethanol in rats (5 weeks,
7.5% wiv; Ref. 36). This cerebellar damage may account for
the behavioral deficits observed in human alcoholics and
experimental animals following exposure to ecthanol.
Alcoholics show impaired motor and cognitive functions,
particularly deficits in gait and balance (37). Similarly, rats
that show loss of Purkinje cells following EW have
impaired motor coordination as shown by a shorter latency
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to fall from an accelerating rotarod than do the control
groups (36).

Other brain regions besides the cerebellum may be
involved. Chronic ethanol treatment followed by withdrawal
resulted in a reduced hippocampal or cortical neuron
population (38), whereas continuous ethanol exposure
resulted in no loss of the hippocampal neuron population
in rodents (27, 28). Intermittent ethanol injection (IP) for 1
month in rats produced a significant loss of hippocampal
pyramidal cells, whereas continuous exposure did not (39).
Moreover, repeated EW episodes increased the severity of
electroencephalogram spiking, an index of epileptiform
activity in the hippocampus (40). Because intermittent
administration is associated with a cycle of high blood
ethanol levels alternated with repeated withdrawal phases,
these findings suggest that it is the withdrawal of ethanol
that is harmful to neurons rather than the continuous ethanol
exposure.

These findings suggest that the behavioral disruption
produced by chronic exposure to ethanol and to EW is
triggered, at least in part, by neurodegenerative processes.
The next section tums to evidence that estrogen can be
neuroprotective.

Neuroprotective Effects of Estrogen

Estrogen classically was viewed as a female gonadal
hormone (41) but is now recognized as active in males and
females and is recognized to have centrally mediated
neuromodulatory actions (42-47). For example, 17pB-
estradiol (E2) treatment attenuates neuronal damage induced
by cerebral ischemia in rodents (48, 49) and correlates with
decreased ischemic brain damage in postmenopausal
women (50). In in vitro models of neuroprotection, E2
treatment exerts neuroprotective effects on diverse neuronal
cell types under serum-deprived conditions (48), p-amy-
loid-induced toxicity, excitotoxicity, and oxidative stress
(46, 51, 52). However, the cellular mechanisms by which
estrogens exert neuroprotective effects are not clearly
understood. Understanding these mechanisms is crucial to
determining its potential as a pharmacotherapeutic agent for
neurodegenerative disorders.

The best-known mechanism for the actions of estrogen
is through regulation of the expression of target genes
through two estrogen receptors located in the nucleus (53-
55). Estrogen receptor-a (ERa) appears to be concentrated
in the uterus and in brain regions such as the amygdala,
hypothalamus, and hippocampus (56, 57). The more
recently described estrogen receptor-p (ERP) appears to be
localized in the prostate, ovary, cerebral cortex, the medial
preoptic area, the bed nucleus of the stria terminalis,
amygdala, and hypothalamus (58, 59). The nuclear
receptor-mediated effects of estrogen take hours to days
to manifest (60). However, a substantial body of recent
evidence suggests that neither receptor subtype mediates
certain neuroprotective effects of estrogens (61-65), which

suggests the possibility of other mechanisms that are
independent of nuclear estrogen receptors (66).

There is evidence that neuroprotective effects of
estrogen are mediated through nuclear receptor—independ-
ent mechanisms (46, 67, 68). Researchers began to suspect
such mechanisms when they noted that both the estrogen
receptor agonist 17B-estradiol (E2) and its inactive isomer
17a-estradiol are equally neuroprotective (61, 69-71) and
that neurotoxicity could be attenuated by estrogens in cell
types that Jack functional estrogen receptors (72). Similar
findings have been observed with a novel 2-adamanty]
estrogen analogue, ZYC3 [2-adamantyl-estra-(1,3,5,10)-
trien-3-ol-17-one], in our laboratory (42). Both E2 and
ZYC3 protected against cell death induced by glutamate in
HT-22 cell lines and ischemia/repcrfusion injury induced by
temporary middle cerebral artery occlusion. However,
neither E2 nor ZYC3 bound ERa or ERp in a ligang-
competition binding assay. The exact cellular nature of
these nuclear receptor-independent mechanisms is not
known, but a role of mitochondrial mechanisms has been
proposed (73). Alternatively, there is evidence that estrogen
may act at each of the steps in ethanol-induced neuro-
toxicity and apoptosis. This evidence will be reviewed in
the next section.

Protection by Estrogen Against Oxidative Damage
and Apoptosis Induced by Ethanol
and Ethanol Withdrawal

Oxidative Stress. Oxidative stress results from an
imbalance between the endogenous antioxidant defense
system and free radical generation. Although oxidative
imbalance occurs during normal physiology, the defense
mechanisms are usually able to rectify the imbalance and
repair damage. However, excessive oxidative challengeg
impair the brain antioxidant defense systems and can
activate secondary events leading to apoptosis by affecting
DNA integrity, protein function, and membrane lipids (74—
76) and ultimately producing neuronal death (77-80),
Oxidative stress has been implicated in a variety of
neurodegenerative disorders, including sclerosis, Parkin-
son’s disease, and Alzheimer’s disease, and may play an
important role in the behavioral deficits produced by ethano]
(77-80).

Ethanol enhances oxidative stress directly through
generation of oxidative free radicals and lipid peroxidation
(21-23) and depletion of endogenous antioxidants such as
a-tocopherol, glutathione, ascorbate, and vitamin E (81). Ag
mentioned previously, EW appears to cause as much or
more damage as does chronic exposure to ethanol. There ig
evidence that EW indirectly generates reactive oxygen
species (ROS) through various receptor systems. Although
ethanol has effects on many receptor systems, itS major
effects are mediated primarily through GABA and gluta-
mate receptors (18, 82). Chronic exposure to ethanol leads
to homeostatic downregulation of GABA receptors and
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upregulation of glutamate receptors (18). In consequence,
sudden withdrawal of ethanol results in an increase in
glutamate levels and activity of glutamate receptors, which
are known to be neurotoxic, and a decrease in levels of
GABA and activity of GABA receptors, which appear to
prevent neurotoxicity (18). In agreement with these
findings, there is evidence that EW produces neurotoxicity
indirectly through its effects at GABA, and glutamate
receptors as well as through changes in intracellular calcium
levels.

The cellular mechanisms by which estrogen reduces
oxidative stress are not clearly understood (as reviewed
previously), but estrogen does block the oxidative stress
produced by downregulation of GABA, upregulation of
glutamate, and increases in intracellular calcium levels,
which are three of the major pathways by which ethanol
produces ROS and oxidative damage. Our laboratory has
generated some data, as yet unpublished, that estrogens may
directly block production of ROS. The following sections
review the evidence for the effects of ethanol and estrogen
on these mechanisms and discuss the possibility that
estrogen might block the neurotoxic effects of ethanol
through any or all of them.

Direct Generation of Reactive Oxygen Species. -
Mitochondria are one of the major subcellular targets of
oxidative stress, including oxidative stress from ethanol
toxicity. Significant fractions (approximately 2%) of oxygen
are converted to the superoxide radical and its reactive
metabolites (reactive oxygen species) in and around
mitochondria (83). Ethanol is oxidized to acetaldehyde by
cytochrome P450, which increases reactive oxygen species,
with concomitant changes in redox balance (84, 85). Pro-
oxidants are generated during ethanol metabolism in
chronically ethanol-fed cell cultures (86), and rats given
chronic ethanol show enhanced production of oxidative
markers, such as thiobarbituric acid-reactive substances,
hydrogen peroxide, and OH--like species (87). In human
studies, erythrocyte membranes of alcoholic patients
showed elevated lipid peroxidation (88) and decreased
levels of the antioxidant glutathione and one of its synthetic
enzymes, glutathione-synthetase (89).

The reactive oxygen species produced during ethanol
metabolism have been shown to alter mitochondrial
membrane potential and permeability in cultured hepato-
cytes (90) and have been associated with mitochondrial
dysfunction in brain, heart, skeletal muscle, and kidney (91~
94). Lipid peroxidation reflects the interaction between
oxygen and the polyunsaturated fatty acids of membrane
lipids, generating breakdown products (95). Because the
CNS contains a high content of unsaturated membrane lipid,
and membranes are a preferred target of both reactive
oxygen species and ethanol (96-99), protecting the CNS
neurons from oxidative challenges may have a therapeutic
potential for alcoholism (100).

In contrast to the pro-oxidant effects of ethanol,
estrogens may have direct inhibitory effects on generation

of reactive oxygen species. The E2 attenuated the increase
in intracellular peroxide induced by hydrogen peroxide (46)
and dose dependently inhibited the generation of reactive
oxygen species in human coronary artery smooth muscle
cells (101), and 17a-estradiol, which has little effect at
nuclear estrogen receptors, also inhibited the generation of
reactive oxygen species, and these effects of both
compounds were not blocked by the estrogen receptor
inhibitor ICI 182,780, which suggests that these effects are
not mediated by nuclear estrogen receptors (101). However,
ICI 182,780 did antagonize the antioxidative effects of
estrogen on lipid peroxidation induced by ferric nitrilotria-
cetate in cultured rat hepatocytes (83). Whether this effect is
mediated by nuclear-estrogen receptors or not, it is clear that
estrogens decrease lipid peroxidation and the production of
reactive oxygen species.

These antioxidant effects are functional, as E2 protects
cultured neurons against oxidative cell death caused by the
neurotoxic fB-amyloid peptide (71) and protects neurons in
in vivo models of chronic neurodegenerative diseases such
as Alzheimer’s disease (102). The neuroprotective effects of
estrogens are likely due to their antioxidant effects, as
illustrated by recent studies in which the antioxidant and
neuroprotective effects were seen at identical concentrations
(63, 70, 103). Taken together, these findings agree with the
proposed mitochondrial mechanism for the neuroprotective
effects of estrogen (73). To date, there is no direct evidence
that estrogen attenuates the neurotoxic effects of ethanol
through this mechanism, but the correlation suggests a
reasonable avenue for further study.

Upregulation of Glutamate. As described in the
previous section, ethanol directly generates reactive oxygen
species during its metabolism. In contrast, there is evidence
that EW indirectly generates reactive oxygen species
through activation of excitatory neurotransmitter receptors.
Formation of the hydroxyl radical (OH+) has been detected
in the brain of ethanol withdrawn rats and shown to
correlate with EW seizure activity and with indices of cell
degeneration (104). Extracellular glutamate generates OH:
radicals in the brain of rats (105, 106), possibly through
activation of the N-methyl-p-aspartate (NMDA) subtype of
glutamate receptors, and dose dependently increases death
of NT2 neurons (107). Free radicals, in tum, increase
glutamate release (108, 109) and reduce glutamate uptake
(110).

The possibility that the increase in OH: radicals during
EW is mediated by glutamate is supported by a study in
which excitatory neurotransmitters, such as aspartate and N-
acetyl aspartyl glutamate, correlated with oxidative markers
in the cerebrospinal fluid of abstinent human alcoholics
(67). When tested 24 hrs after withdrawal of ethanol, 82%
of chronic alcoholics had significantly higher free radical
markers than normal levels, and levels declined for 2 to 3
weeks of EW (111). In contrast, there was no rise, in the
level of free radical markers in nonalcoholic human subjects
after an acute alcohol load. Similarly, others have made a
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connection between increased levels of excitatory amino
acid neurotransmitters during EW signs and enhanced
oxidative markers (112).

Estrogens can attenuate the oxidative stress and cell
death induced by glutamate. The E2 reduced lipid
peroxidation induced by glutamate and attenuates the
increase in intracellular peroxide induced by hydrogen
peroxide (46). Estrogen pretreatment blocks neuronal death
induced by glutamate and reduced oxidative stress (113).
Finally, E2 treatment blocked the DNA degradation caused
by glutamate (71). However, no studies have directly
examined whether the neuroprotective effects of estrogens
administered during EW directly block the actions of
glutamate or produce their effects on other systems.

Downregulation of GABA. A number of studies have
shown that the ROS and lipid peroxidation produced by
oxidative stress inhibits GABA function. Exposure to
oxygen radicals and peroxides decrease the functional
activity of GABA, receptors by affecting the ability of
agonist recognition sites to bind to the various binding sites
(114). Lipid peroxidation also inhibits GABA uptake (1135).
These events have functional importance, as spinal chord
injury produces increases in glutamate levels and decreases
in GABA levels, which are associated with edema and cell
death (116). Treatment with an antioxidant reduced edema
and cell death and blocked the changes in glutamate and
GABA (116). These findings show that oxidative stress
reduces GABA activity. Studies indicate that increase in
GABA neurotransmission and GABA, receptor activity
protect against cerebral ischemia in animal models as well
as in clinical trials (117, 118). However, no studies have
directly tested whether GABA agonists attenuate oxidative
insults.

Recent work from our laboratory has shown that
estrogen reverses enhanced oxidative markers (thiobarbitu-
ric acid-reactive substances) induced by EW and that the
GABA, antagonist bicuculline enhanced the oxidative
markers (Jung et al., in submission; Rewal et al., in
submission). This finding supports the hypothesis that
decreases in GABA receptor function are associated with
oxidative stress in general and, more important, with the
oxidative stress induced by EW. The GABA 4 receptors are
also important mediators of the behavioral effects of EW.
Rats trained to discriminate the GABA, antagonist
pentylenetrazol from saline will select the drug lever when
exposed to various stressors including EW in the absence of
pentylenetetrazol (119). It is of interest that females show
much less substitution by EW than do males, that
ovariectomized females show a response comparable to
that of males, and that E2 replacement in the OVX females
results in levels of substitution comparable to that of the
intact females (120). These behavioral findings support the
possibility that estrogens attenuate the severity of EW
through a GABAergic mechanism. However, further
mechanistic studies will be necessary to confirm whether
the antioxidant and anti-EW effects of estrogen were

mediated by effects on GABA A receptors or through other
mechanisms,

Increases in Intracellular Calcium. Calcium has long
been known to play an important role in mediating EW
(121-123) and has well-known roles in mediating oxidative
stress (124—126). Intracellular calcium levels play a pivotal
role, as they mediate the antioxidant and EW-related effects
of NMDA glutamate receptors (127-129) and activate
protein kinase C (PKC), which is another important player
in producing cell death due to oxidative damage from EW
(130-133). Finally, L-type calcium channel blockers are
neuroprotective, as they attenuated cell damage produced by
EW (134).

Calcium ions appear to induce cell death through other
mechanisms than a pro-oxidant mechanism. For instance, on
intracellular overload of calcium, mitochondria take up
cytosolic calcium, which in turn induces opening of
permeability transition pores and disrupts the mitochondrial
membrane potential. This, along with release of cyto-
chrome-c from mitochondria, activates caspases, nuclear
fragmentation, and cell death (135). Cell injury also occurs
when the intracellular calcium pool is disturbed, which in
tumn disturbs calcium-dependent enzymes, transglutami-
nases, various proteases, phosphorylases, and kinase (136),

Estrogen reduced intracellular levels of calcium at »
dose that was neuroprotective against B-amyloid (137). In
another study, estrogen reduced apoptotic cell death
measured by means of caspase-3— and TUNEL-positive
cells in rat glioma cells (126). Both intracellular calcium and
apoptotic cell death were decreased in this study, suggesting
that the antioxidant activity was related with calcium levelg
and antiapoptosis (126). Their finding that estrogen lowers
the ratio of proapoptotic member protein Bax to antiapop-
totic Bcl-2 further supports this notion, as does a study in
which E2 upregulated Bcl-2 expression in cultured rag
hepatocytes undergoing oxidative stress (83). Similar results
were seen in another study in which hydrogen peroxide or
glutamate dose dependently increased neuronal death in the
NT?2 cell line, whereas pretreatment with estrogen or Bcl-2
enhanced reduced oxidative stress and neuronal viability
(113).

Summary. The direct effects of ethanol on oxidative
stress appear to be minor as small doses are antioxidant and
damage occurs only after massive acute doses or chronic
administration, likely because metabolism of ethano]
produces ROS. The EW results in upregulation of
glutamate, downregulation of GABA, and increases in
intracellular calcium levels, all of which produce oxidative
stress. Estrogen counteracts the increases in oxidative stress
of all three mechanisms. Currently, it is not clear how
estrogen produces these effects, whether by directly
decreasing activity of NMDA receptors, by increasing
activity of GABA, receptors, or by other factors that can
reduce calcium levels. Further research is needed to
determine how these factors interact with each other to



ESTROGEN NEUROPROTECTION AND ETHANOL WITHDRAWAL 13

reduce ethanol/EW-induced oxidative damage in the
presence and absence of estrogen receptor involvement.

Apoptosis. Apoptosis is a conserved form of cell
suicide and was originally referred from the morphological
alteration of active cell death characterized by cell and
nucleus shrinkage, condensed chromatin, and membrane
blebbing (138). Although the occurrence of apoptosis has
been known for decades, it is only recently that ethanol has
been found to trigger widespread apoptosis (139). Ethanol
triggered apoptotic neurodegeneration in the developing rat
forebrain and in adult rat hepatocytes (140, 141). Human
monocytes isolated from healthy subjects after binge alcohol
drinking, as well as the brain tissue of alcoholics, also
showed evidence of apoptotic neuronal cell death (142,
143). As is the case for other neurodegenerative insults,
apoptosis associated with ethanol toxicity appears to be
associated with increased intracellular pro-oxidant levels,
especially in mitochondria, leading to increased suscepti-
bility to apoptotic cell death in arterial walls (144) and in
hepatocytes (145-147). Similarly, inhibition of intracellular
antioxidants exacerbated ethanol-induced hepatocyte apop-
tosis (148), suggesting a direct relation between oxidative
stress and ethanol-induced apoptosis.

Similar phenomena have been observed at the cellular
level. Exposure to ethanol for 15 days produced no changes
in a transcriptional regulator protein (phosphorylated cyclic
AMP-response element-binding protein) or Ca®*/calmodu-
lin-dependent protein kinase levels in the frontal, parietal,
and piriform cortex, whereas significant decreases were seen
in both areas following EW (149). Our laboratory compared
cellular toxicity of chronic ethanol and EW using a human
neuroblastoma cell line (SK-N-SH cells). The SK-N-SH
cells were exposed to ethanol (25-100 nM) for 3 or 5 days
and then divided into two groups based on the presence and
absence of EW. Using a calcein assay, cell viability was
measured immediately following withdrawal of ethanol in
one group (continuous exposure group) and at 8 hrs after
EW in another group. The group tested at 8 hrs after EW
showed more cell death than the continuous exposure group,
and this phenomenon was correlated with duration of
ethanol exposure (unpublished observation).

In contrast to the proapoptotic activity of ethanol, the
neuronal protection induced by estrogens is mediated
through antiapoptotic activity. The E2 attenuated apoptotic
ovarian cell death induced by the estrogen antagonist
tamoxifen (150), decreased the rate of apoptotic endothelial
cell death induced by hydrogen peroxide (151), and blocked
the DNA degradation caused by glutamate (71). These
studies found that the antiapoptotic effects of E2 were
estrogen receptor independent (71).

As shown in Figure 1, we suggest a cascade of events in
which oxidative insults induced by chronic ethanol or by
EW leads to activation of protein kinase C, especially
PKCe, which subsequently phosphorylates IkB (the NFxB
inhibitor) of NFkB-IkB complex. On phosphorylation, a
cell death signal NFxB is released to its active form and

translocates to the nucleus. The NF«B then binds to DNA,
induces the expression of target genes, and results in DNA
fragmentation and apoptosis through activation of caspases
(152—154). Ethanol and estrogen produce opposing effects
at each of the steps, which suggests that estrogens may be
useful treatments for EW. The following sections review the
evidence for each step of this proposed mechanism for the
interaction of ethanol and estrogen.

Protein Kinase C. Protein kinase C is a family of
important regulatory enzymes in the brain that phosphor-
ylates a wide variety of substrates, such as transcription
factors, membrane receptors, ion channels, and nuclear
proteins (155-157). Protein kinase C modulates a number of
cell functions, including cell cycle regulation, proliferation,
neurotransmission, and cellular differentiation (155-157).
Although many functions of PKC appear to be beneficiary
for cell survival, such as cardioprotective effects and axonal
regrowth effects in white-matter lesions of the cerebral
cortex (158-160), prolonged PKC activity under a variety of
conditions can also be neurotoxic (156, 161, 162).
Exogenous stress, including ethanol exposure, activates
PKC, which subsequently triggers downstream events of the
ERK/MAPK (extracellular signal-regulated kinase/mitogen-
activated protein kinase) activation and releases the cell
death NFkB, ultimately resulting in neuronal death (160,
163-165).

Most cells express more than one PKC isozyme, but
differences among the isozymes with respect to activation
conditions and subcellular location suggest that individual
PKCs mediate distinct cellular events (166, 167). The exact
role of individual PKC isozymes in neuronal death or
apoptosis is only now being elucidated, but growing
evidence now suggests that the novel PKC isozymes PKCe
and PKC$ are proapoptotic under certain conditions (168,
169). For example, PKCe has been shown to be required for
the UV-induced activation of apoptotic cell death in an in
vitro model of apoptosis and tumor production (170).
Similarly, PKCe dominant-negative mutants have been
utilized to block apoptosis trigged by a variety of neuronal
insults (171).

Chronic ethanol exposure has also been shown to
increase amounts of PKCg in cell cultures (172, 173) and to
alter the subcellular localization of PKCg (174), an indicator
of activity status for these PKC isozymes. Preventing
production of PKCe by removal of specific amino acid pairs
on the gene responsible for PKCe synthesis diminishes the
progression of EW-associated seizure severity in mice
(175). Further, PKCe-null mice trained to self-administer
ethanol showed a 61% reduction in the number of ethanol
reinforcers per bout as compared to wild-type mice (176).
These findings suggest that PKCe potentiates both the
neurotoxic and the reinforcing effects of ethanol and raises
the possibility that pharmacological inhibition of PKCe may
be useful in the treatment of alcoholism.

Recently, our laboratory found evidence for an
interaction between the neuroprotective effects of estrogen
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and PKCe activity. We demonstrated that estrogen exposure
reduces both the expression and the activity of PKCe in a
cell model of estrogen-induced neuroprotection. In our in
vitro and in vivo neuroprotection models, estrogen-induced
reduction in PKCe activity was correlated with estrogen’s
neuroprotective effects (119). Further, E2 treatment de-
creased cerebellar PKCe activity in ethanol-withdrawn rats
at Day 1 and 2 weeks of EW (119). The effect was greater in
the cerebellar membrane fraction in which active PKC is
located as compared to the cytosol fraction. This is in
agreement with the majority of studies that show that active
PKC is located in the membrane rather than in the cytosol
(177-179). This effect has been confirmed in an in vitro
study in which neuroblastoma cell lines (NG108-15) were
exposed to ethanol (50 mM) for 48 hrs and tested at 48 hrs
of EW (174). Ethanol exposure resulted in a maximum
translocation of PKCe from the perinuclear area to the
cytoplasm, whereas EW relocalized PKCe to the perinu-
cleus. Presumably, PKCe may localize in the cytoplasm
during ethanol exposure but shifts to the perinucleus
membrane areas during EW. The relocalized PKCe to the
perinucleus are likely active PKC because the translocation
was similar to that induced by a PKC activator (174).

These studies led us to hypothesize that estrogen
prevents transport of active PKCe from the cytosol to
membrane fractions. We tested the hypothesis using
cerebella taken from rats exposed to 5 weeks of chronic
ethanol diet and tested during EW. Qur results from an
immunoblotting assay indicate a higher ratio of membrane
to cytosol PKCe expression in the EW group without
estradiol as compared to the EW group with estradiol
treatment (Fig. 2). Addition of E2 to HT-22 cell dose
dependently decreased the membrane-to-cytosol ratio of
PKCe activity (unpublished observation). Taken together,
these findings indicate that at least one mechanism of the
neuroprotective effects of estrogen is mediated through
inhibition of overexpression or membrane translocation of
PKCe. Because a major effect of PKC is to signal cell death
through release of NFxB, the next section tums to the
effects of alcohol and estrogens on NFxB.

Nuclear Factor kB. The next step in the chain of
events leading to cell death is NFxB, which is activated by
PKC (180). Nuclear factor kB usually exists as a molec-
ular complex with an inhibitory molecule, 1xB. Phos-
phorylation of IxB by protein kinases releases IxB from
this complex, allowing active NFkB to translocate to the
nucleus and induce the expression of target genes (181,
182).

Nuclear factor kB was initially known for its role in
regulating immune and inflammatory responses (183). Yet
the function of this transcription factor in the nervous
system remains unclear, and its role in neuroprotection or
neurodegeneration is open to debate. The neuroprotective
role of NFkB has been shown in a study where ablation of
NFkB-driven gene expression increases neurodegeneration
in transgenic hippocampal slice cultures (183). Similarly,
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Figure 2. Effects of estrogen and ethanol withdrawal (EW) on the
ratio of membrane to cytosol PKCe expression. The 17f-estradiol
(E2)- or oil-pellet-implanted ovariectomized rats received an ethano|
diet (7.5% wiv) for 5 weeks. For the control group, oil-pellet—
implanted ovariectomized rats received a dextrin diet. Cerebellums
were collected 24 hrs after EW. Sample size was five for each group.
Estrogen prevented the increase in ratio of membrane to cytosol
PKC¢ expression produced by EW.

blockade of the nuclear transport of NFkB subunit
accelerates mouse cerebellar neuronal death (184). These
studies suggest that NFkB is protective because a lack of
NFkB decreases a cell survival. In contrast, NFkB is 4
redox-sensitive transcription factor (185, 186), and activa-
tion of NFkB is brought about by a number of reactive
oxygen species, such as hydrogen peroxide and peroxyni-
trite, whereas antioxidants such as o-tocopherol and
pyrrolidine diothiocarbamate inhibit NFxB activation
(165, 187-190). Experimental evidence indicates that NFxB
is activated under a variety of oxidative insults. For
instance, NFkB-DNA binding activities was increased after
hypoxia/reoxygenation injury (191). Oxidative stress in-
duced by inhibition of a mitochondrial component (complex
I) activated NFkB in SH-SYSY neuroblastoma cells (192).
In agreement, a neurotoxic compound, 6-hydroxydopamine
increased the nuclear translocation and binding activity of
NFkB in rat pheochromocytoma and human neuroblastoma
SH-SYS5Y cells (193). Such induction of NFxB-DNA
binding in the brain has been shown to mediate brain
damage caused by a variety of insults (194, 195). As such,
NFkB can be neuroprotective as well as neurotoxic. The
dual role of the NFxB has been directly tested in retinal
ganglion cells (196). In that study, a pro-oxidant buthionine
sulfoximine (a glutathione synthesis inhibitor) induced
death of retinal ganglion cells. A NFkB inhibitor increased
or decreased the cell survival when a NFkB inhibitor wag
administered after and before the oxidative injury, respec-
tively. What determines the dual role of the NFxB is still an
open question at this moment. At the very least, it seems
clear that NFKB signals cell death following oxidative
damage.

Ethanol. There is an indirect connection between
ethanol and NFxB, as large acute doses or chronic
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administration of ethanol alter the fluidity of mitochondrial
membranes and produce acetaldehyde, which generates
oxidative species (197), including free radicals, hydrogen
peroxide, and hydroxyl radicals, which are all known to
rapidly and significantly activate NFxB (79, 190, 198-201).
The EW also generates reactive oxygen species and thus
may indirectly activate NFxB.

Direct evidence for ethanol-induced NFkB activation
comes from in vitro studies in which both acute and chronic
ethanol were found to activate NFxB. In these studies, acute
ethanol (25-100 mM) induced NFkB activation in hepato-
cellular carcinoma cells (202) and in human osteoblast-like
cell lines (203). Chronic ethanol treatment of rats produced
elevations in free radical formation, hepatic NFxB nuclear
binding (198, 204, 205), and chronic activation of NFxB
(186). These findings suggest that NFxB is activated in
response to challenge by acute and chronic ethanol.
Unfortunately, these findings do not address whether
ethano! produces its effect directly on NFkB or on the
various precursors that lead to activation of NFxB.

Estrogen. Recent studies suggest that estrogen pro-
tects against neuronal death induced by NFxB. In an in vitro
model of liver damage, E2 suppressed NFxB in cultured
hepatocytes undergoing oxidative stress (83). NFkB seems
to mediate the effect of estrogen on the interleukin gene-6,
which is involved in bone resorption in osteoblasts and bone
marrow cells (206). The E2 suppression of interleukin is
associated with decreased binding of NFxB to DNA in
activated peripheral blood T cells (207). The decreased
nuclear binding of NFkB to DNA occurs in the setting of
estrogen-induced increases in IkBa protein levels, an
important inhibitor of NFkB nuclear translocation (207).
These results suggest that estrogen can suppress NFxB
expression, although the exact nature of the interaction
between E2 and NFkB is unclear based on these studies.

Other studies support the hypothesis that the neuro-
protective effects of E2 are mediated through the NFxB
pathway. The E2 attenuates toxin-induced activation of
NFkB in glial cultures (208). Estrogen replacement therapy
produces cardioprotective effects, in part because of its
inhibition of NFxB function (209, 210). In our laboratory,
we examined whether E2 was effective in preventing the
induction of NFxB following cerebral ischemia induced by
middle cerebral artery occlusion in ovariectomized rats.
Using an immunocytochemical detection of both active
NF«B and the phosphorylated form of IxB (phospho-1kB),
we observed a marked increase in NFkB activation
following stroke, an effect that was markedly attenuated
with E2 pretreatment. Similarly, markers of NFkB activa-
tion (phospho-IkB and iNOS) were increased by cerebral
ischemia, and these increases were prevented by E2 at doses
that correlate with neuroprotective effects of estrogen (211).
In this experiment, E2 dose dependently protected SK-N-SH
cells from hydrogen peroxide toxicity, with a potency
similar to that of suppressing the activation of NFxB in this
same cell line (unpublished data).

As with the other neuroprotective effects of estrogen,
evidence indicates that the blockade of the neurotoxic
effects of NFxB by estrogen is not mediated by nuclear
estrogen receptors. Estradiol and its stereoisomer 17¢-
estradiol prevent the binding of NFxB to DNA in infected
human coronary artery smooth muscle cells, and these
effects are not blocked by the estrogen receptor inhibitor,
ICI 182,780 (101), indicating estrogen receptor—independ-
ent protection. In addition, estrogen regulation of NFkB has
been observed in the absence of a functional estrogen
receptor binding site in osteoblasts and bone marrow
stromal cell line (206). In contrast, studies reported that
E2-bound estrogen receptor interferes with activation of an
NFxB reporter in HepG2 cells (209, 212). They suggested
that the cardioprotective effects of estrogen therapy are due
in part to the ability of ligand-bound estrogen receptor to
inhibit NFxB function (209, 212). Further, bone-resorbing
cytokines that activate NFkB inhibit ligand-dependent
estrogen receptor activity in the immortalized human
osteoblast cell line (213). Given this, both nuclear estrogen
receptors and receptor-independent pathways are possibly
involved in the mediation of estrogen’s effects on NFkB
neurotoxicity.

Caspases. Translocation of NFkB to the nucleus has
been reported to result in activation of the endogenous
proteolytic enzyme system caspases (214, 215). The NFxB
inhibitor peptide SN50 significantly reduced caspase-3
activity and the TUNEL-positive cells (markers of DNA
fragments), substantiating a role for NFkB in inducing
caspase-3—-mediated apoptosis (215). Caspase-3 cleaves the
endonuclease caspase-activated DNase in the cytosol (216).
The DNase translocates to the nucleus, where it cleaves
chromosomal DNA and induces DNA degradation in the
nuclei essential for cell survival, DNA repair, mRNA
splicing, and DNA replication. Consequently, the cascade
events promote further apoptosis (214, 217, 218).

The EW is associated with increases in the DNA-
binding activity of early gene encoded transcription
factors, which consequently lead to programmed cell death
in the brain (219, 220). Estrogens play an opposite role.
Estradiol attenuated the activation of caspase-3 and
reduced levels of DNA fragmentation observed following
ischemia-induced injury (221). Our laboratory provided
direct evidence that estrogen attenuates EW-induced
apoptosis in rats (119, 222), Two weeks following ces-
sation of ethanol diet (5 weeks, 7.5% w/v), E2 prevented
both DNA fragmentation and the increased caspasc-3
activity in cerebellum (Fig. 3).

These findings demonstrate that both ethanol and
estrogen act at each of these steps in the apoptosis pathway.
Further, there is evidence that estrogen can block the effects
of ethanol on PKC and caspase. However, there is yet no
conclusive evidence describing exactly how ethanol and
estrogen interact.
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Figure 3. Effects of estrogen on TUNEL-positive cells (A) and
caspase-3-positive cells (B) in the cerebellum of ethanol withdrawn
rats. The 17p-estradiol (E2, ethanol withdrawal [EW)/E2 group)- or
oil-pellet (EW/oil group)-implanted ovariectomized rats received an
ethanol diet (7.5% w/v) for 5 weeks. For the control group (dextrin/
oil), oil-pellet-implanted ovariectomized rats received a dextrin diet.
Cerebeliums were collected at 2 weeks of ethanol withdrawal (EW).
The EWI/oil group had a significantly higher number of TUNEL-
positive cells than the dextrin/oil group (P < 0.001) and the EW/E2
group (P < 0.001) in the granular layers of the histological section (10
lobes; F2,27 = 19.9, P < 0.001). Similarly, the EW/ail group had a
significantly higher number of caspase-3-positive cells in the
cerebellar vermis than the dextrin/oil group (P < 0.001) or the EW/
E2 group (P < 0.001) of the histological section (10 lobes; F2,27 =
64.9, P < 0.001). No differences were found between the dextrin/oit
group and the EW/E2 group. Data were collected from two sections
per rat and five rats per group. Reproduced from Jung ME et al. Role
of protein. Alcohol 31:39-48, copyright (2003), with permission of
Elsevier.

Conclusion

There is substantial preclinical evidence that estrogen
may be useful for preventing andfor reducing the neuro-
toxicity induced by EW. Much more work is needed before
conclusions can be drawn about potential clinical efficacy in
human alcoholics. This review has proposed a framework for
evaluating the mechanism of interaction between the neuro-
toxic effects of EW and the neuroprotective effects of

estrogen. To summarize, ethanol is associated both with
oxidative stress and with behavioral deficits related to
neuronal death. The metabolism of ethanol produces
increases in reactive oxygen species, but the most important
source of oxidative stress is produced during EW by
upregulation of systems, which increase oxidative stress
(glutamate and calcium), and downregulation of GABA,
which attenuates activity of these systems. We have
suggested that the neurotoxicity associated with oxidative
stress is produced by an apoptosis signaling cascade outlined
in Figure 1. It is not clear to what degree ethanol can directly
modify the various steps in this signaling cascade, although it
may directly increase activation of NFkB.

In contrast, estrogen reduces oxidative stress mainly
through non-estrogen receptor mechanisms, and these
mechanisms appear to be involved with the signaling
cascade for apoptosis. Evidence indicates that estrogen
inhibits each of the processes such that estrogens are
antioxidant and inhibit overexpression and translocation of
PKCe (119, 176, 223). Unfortunately, it is difficult to isolate
the effects of estrogen at each step to determine the degree
to which estrogen directly affects the step and how much ig
due to its effects on the others.

There are still many questions to be answered
concerning the role of estrogen in modulation of oxidative
and apoptotic processes and how these processes relate to
the mechanisms underlying the neurotoxicity produced by
EW and by chronic ethanol. Further studies should be
directed toward clarifying the interaction between oxidation,
activation of PKC, and activation of apoptotic markers in
response to EW and how estrogen attenuates each of these
steps. Understanding of the nature of such interaction may
provide a step toward better clinical strategies for treatment
of alcoholism in females as well as potential development of
improved pharmacological treatment of EW.
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