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Estrogens are gonadal steroid hormones that are present in the
circulation of both males and females and that can no longer be
considered within the strict confines of reproductive function. In
fact, the bone, the cardiovascular system, and extrahypothala-
mic regions of the brain are now well-established targets of
estrogens. Among the numerous aspects of brain function
regulated by estrogens are their effects on mood, cognitive
function, and neuronal viability. Here, we review the supporting
evidence for estrogens as neuroprotective agents and summa-
rize the various mechanisms that may be involved in this effect,
focusing particularly on the mitochondria as an important target.
On the basis of this evidence, we discuss the clinical appli-
cability of estrogens in treating various age-related disorders,
including Alzheimer disease and stroke, and identify the caveats
that must be considered. Exp Biol Med 231:514-521, 2006
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Eclassically been associated with reproductive function

and, with respect to the brain, have primarily been
considered within the confines of the hypothalamus.
However, it is now well recognized that estrogens affect
numerous extrahypothalamic regions of the brain, the
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consequence of which is to regulate such important
functions as mood and cognitive function. In addition, a
substantive and growing body of literature supports the
neuroprotective actions of estrogens, which have been
shown to be effective at protecting against cellular
dysfunction and/or damage. For example, in vitro and in
vivo studies have described estrogen’s protective effects
against such insults as serum deprivation (1-3), amyloid
peptide (AP)-induced toxicity (4-7), glutamate-induced
excitotoxicity (6, 8, 9), hydrogen peroxide (H,0,) @4, 6,
7), oxygen-glucose deprivation (OGD) (10, 11), iron
toxicity (6, 12), hemoglobin (10), and mitochondria toxins
such as 3-NPA (13), N-methyl-4-phenyl-1,2,3,6-tetrahydro-
pyridine (MPTP) (14), and sodium azide (10). The
neuroprotective effects of estrogens have also been demon-
strated in a variety of models of acute cerebral ischemia.
These include transient and permanent middle cerebra]
artery occlusion models (15-17), global forebrain ischemia
models (18, 19), photothrombotic focal ischemia models
(20), and glutamate-induced focal cerebral ischemia models
(21). The protective effects of estrogens have been
described in rats, mice, and gerbils (22, 23). Estrogen-
induced neuroprotection has been demonstrated in adult
female rats, middle-aged female rats, and reproductively
senescent female rats (24). Similarly, these effects of
estrogens have been shown despite the presence of diabetes
and hypertension (25, 26). The neuroprotective effects of
estrogens have been demonstrated against subarachnoid
hemorrhage, a highly prevalent form of stroke in females
(27). Finally, the neuroprotective action of estrogen is not
limited to the female, inasmuch as estrogen protection is
also seen in males (28, 29). Collectively, these results
indicate that estrogens could be valuable candidates for
brain protection in both males and females. We describe the
major mechanisms and cellular/subcellular targets of
estrogen that mediate these protective effects.
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Mechanisms of Action

Estrogen Receptors. Three major forms of estrogen
exist in humans and rodents: the biologically most prevalent
and potent estrogen 17P-estradiol (E2) and, in order of
decreasing potency, estrone (E1) and estriol (E3). These
estrogens are known to exert their actions through members
of the nuclear hormone receptor superfamily, estrogen
receptor-a (ER-a) (30), and the more recently identified
estrogen receptor-B (ER-B) (31-33). Estrogen binding to
these receptors promotes receptor dimerization and trans-
location to the nucleus, where subsequent association of
“activated” receptor with specific DNA sequences in the
promoter region of target genes (34) leads to the regulation
of transcription (35). These receptors differ in their affinities
for ligand, specificities for ligands (36), and tissue
distribution (36, 37). Given the overlap in expression, such
as the coexpression of both ER-a and ER-p mRNA in the
cerebral cortex and hippocampus (3740}, studies have been
performed to ascertain which receptor underlies the neuro-
protective effects of estrogen.

In cell-culture systems that express, either naturally or
experimentally, one of the two known estrogen receptors
(ER-a or ER-B), pharmacological strategies that use estro-
gen-receptor antagonists, such as tamoxifen and ICI
182,780, have supported the requirement of these receptors
in mediating the effects of estrogen on cell survival (41, 42).
Some studies support the role of ER-a (43), whereas others
implicate ER-B in mediating estrogen-induced protection
(44). In vivo studies have also been performed to address the
role of these estrogen receptors in mediating neuroprotec-
tion. For example, Dubal et al. (16) reported that the
protective effects of low-dose estrogen (resulting in plasma
levels that are approximately 25 pg/ml) against experimen-
tally-induced stroke were abolished in ER-a knockout
(ERaKO) mice. However, ER«KO mice are exposed to
much higher levels of estrogen than their wild-type
counterparts (45), likely because of the absence of negative
feedback at the level of the hypothalamus. As such, the
“threshold™ for the protective effects of estrogen may have
been much higher. Consistent with this idea, administration
of higher concentrations of estradiol (approximately 200 pg/
ml) to ERaKO mice was effective at reducing infarct
volume (46, 47). Thus, depending on the region of the brain,
either ER-a or ER-B may be involved in mediating
estrogen’s protective effects. An added complexity results
from the observation that ER-a and ER-p can exist and act
not only as homodimers, but also as heterodimers (32, 48,
49), which suggests a functional interaction between ER-a
and ER-B. Thus, an “appropriate™ balance between the
levels of ER-a and ER-f may be required to mediate
estrogen-induced neuroprotection, and alterations in the
ratio between these receptors may determine whether
estrogen is protective or damage promoting (as has been
seen in reproductively senescent animals [50, 511).

Identification of the receptor(s) that mediate the

protective effects of estrogen have been complicated by
the suggestion that there are membrane-associated estrogen
receptors (52-55). On the one hand, it has been suggested
that these membrane receptors are simply subpopulations of
ER-a and/or ER-B, but other investigators have argued that
the membrane estrogen receptor represents a completely
distinct and novel class of estrogen receptor (56). However,
the extent to which these membrane receptors are involved
in mediating estrogen-induced neuroprotection is still
unclear and will undoubtedly be clarified with further
research and eventual cloning of potentially new estrogen
receptors.

Regulation of Signal Transduction Path-
ways. The classical mechanism of hormone action states
that, because of their lipophilicity, estrogens cross the
plasma membrane to bind to intracellular estrogen receptors,
resulting in translocation of the activated estrogen receptor
into the nucleus and eventual regulation of gene tran-
scription. However, this “genomic” mechanism of action is
insufficient to explain the broad scope of estrogen’s actions,
including the rapidity of some of estrogen’s actions in the
brain. Altemate mechanisms have indeed been recognized,
including the regulation of signal transduction pathways
typically associated with growth-factor action. These
include, but are not limited to, the reported ability of
estrogen to elicit the Ras/Raf/fERK(MAPK) pathway (57—
60), the PI-3K/Akt pathway (59, 61-63), and the cAMP/
PKA/CREB pathway (63, 64) and to modulate the NFxB
pathways (65, 66). These pathways have all been linked to
the regulation of cell survival, although the importance of
one or more of these pathways in mediating the protective
effects of estrogen may be cell or context dependent. The
activation of these signaling pathways in response to
estrogen has been reviewed in greater detail by us and
others previously (67-69). In the following sections, we
highlight the mitochondria as important mechanistic targets
for estrogen-induced neuroprotection.

Mitochondria and Neurodegenerative Dis-
eases. Mitochondria are subcellular organelles that serve
not only as the primary source for cellular energy, but are
also the major source of intracellular free radicals. Thus,
mitochondria supply high-energy ATP molecules and
monitor cellular health, and they sit at a strategic position
in the hierarchy of cellular organelles to make cell decisions
regarding the survival or death of cells (70, 71). These
mitochondrial roles are critical in the brain, given its high
energy demand that is driven by the need to maintain ion
gradients across the plasma membrane, which, in tum, is
critical for the generation of action potentials. Although the
brain represents only 2% of the body weight, it receives
15% of cardiac output and uses 20% of total body oxygen.
This intense energy requirement is continuous and implies
that even brief periods of oxygen or glucose deprivation can
result in neuronal death.

Among the factors underlying the degeneration of
neurons in such neurodegenerative diseases as Alzheimer’s



516 SINGH ET AL

disease (AD) is the generation of excessive amounts of
reactive oxygen species (ROS) (72, 73). In fact, mitochon-
dria from patients with AD are hypofunctional (74, 75)
because of a catalytic defect in respiratory complex IV (C-
IV) of AD-associated mitochondria (76, 77). Furthermore,
when mitochondrial DNA (mtDNA) from patients with AD
were inserted into transformed cells depleted of their
endogenous mtDNA, the resulting phenotype included the
formation of cytoplasmic hybrids (cybrids), increased
oxidative stress, propensity towards apoptosis, and C-IV
impairment (78, 79), suggesting that many of the cellular
defects found in association with AD reflect mitochondrial
defects. Although such mitochondrial impairment could be
interpreted as a consequence of the disease, rather than as a
primary causal factor (80), mitochondrial dysfunction is
clearly involved in the progression of neuronal death and, as
such, represents a viable therapeutic target.

Mitochondrial failure also contributes to cell death in
more-acute circumstances, such as sudden ischemia of
neurons during a stroke or of the myocardium during a heart
attack. Neurons are dependent almost entirely on mitochon-
drial ATP production for their high energy demand, and are
at risk when ATP levels drop, even transiently. Damage to
mitochondria causes disruptions in ATP production and a
concomitant increase in ROS that can overwhelm the
antioxidant defense systems of the cell (71, 81). Such
mitochondrial deficits are implicated as key events in the
pathogenic cascades leading to both necrosis and apoptosis
(82, 83). Oxidative stress, coupled with excessive Ca®*
loading, causes mitochondria to undergo a catastrophic loss
of the inner mitochondrial membrane integrity, leading to an
eventual collapse of the mitochondrial membrane potential
(Aym), a process called permeability transition (PT) (70).
This collapse of AYm can be accompanied by mitochondrial
swelling and release of cytochrome ¢ and Apaf-1 (84) into
the cytoplasm, leading, in turn, to the activation of caspases
and apoptotic cell death (81, 83, 85, 86). This process
undermines cellular and mitochondrial integrity by causing
membrane peroxidation and interfering with oxidative
phosphorylation. The resulting loss of ATP production
causes ATPase failure, loss of ion homeostasis, and necrosis
due to osmotic failure (71, 85).

Mitochondria as a Target of Estrogen-induced
Neuroprotection. The possibility that estrogens exert
their potent neuroprotective effects through a mitochondrial
mechanism is based on several observations. These effects
may be exerted either directly or indirectly. Indirect effects
of estrogen on the mitochondria may be mediated by signal
transduction pathways that are not only elicited by estro-
gens, but are also important regulators of mitochondrial
function. For example, estrogen can elicit the activation of
the PI-3K/Akt pathway (59, 61-63), which, in tumn, can
result in the phosphorylation of the proapoptotic protein
BAD. When phosphorylated, BAD is rendered inactive and
prevents BAX-mediated release of cytochrome c from the
mitochondria (87). Further, estrogens have been shown to

affect concentrations and localization of antiapoptotic
proteins (88-90), which appear to exert their antiapoptotic
effects through maintenance of mitochondrial membrane
potential in the face of cellular stresses (91).

Although mitochondria can be protected via indirect
mechanisms (i.e., through regulation of signal transduction
pathways or mobilization of antiapoptotic proteins), estro-
gen may also exert its protective actions directly. Supporting
evidence comes from the observation of estrogen binding
sites in the mitochondria, including the FO/F1 ATPase (92,
93). In fact, we showed that ER-B localizes to the
mitochondria (90). Importantly, we have demonstrated that
estrogens, after insults that are known to compromise the
function of the mitochondria, are protective and help
maintain the normal function of this vital organelle (13,
94). These findings are summarized as follows.

By use of oxidative stress—inducing mitochondrial
toxins (13) or H,O, (94), 17B-estradiol (E2) pretreatment
ameliorated the insult-induced decrease in cellular ATP,
One possible mechanism for these effects is that estrogens
are potent lipid peroxidation inhibitors (94). Estrogens are
highly lipid soluble and largely reside in the membrane
component of cells (95, 96), where they are ideally suited to
affect oxidation of unsaturated bonds in phospholipids. This
membrane localization allows estrogens to interact syner-
gistically with such abundant antioxidants as glutathione
(97, 98), where they can apply their cytosolic reducing
potential to the membrane (99). In fact, we provided
evidence that estrogen prevents lipid peroxidation by
sacrificing itself to oxidation, resulting in a quinol product.
Interestingly, the oxidized estrogen was redox-cycled back
to the parent estrogen by taking advantage of the plentiful
and replenishable source of cellular reducing potential, such
as glutathione or NAD(P)H (100, 101). This estrogen redox
cycle is operative in the brain and serves, together with the
“classic” antioxidant mechanism (102), as a defense
mechanism against ROS.

Estrogens can also affect mitochondrial function by
directly or indirectly influencing mitochondrial Ca®* load-
ing. Brinton er al. (88, 103) demonstrated that, with mild
glutamate stimulation, estrogens enhance Ca®* flux into
cells, and this effect may be involved in estrogen’s ability to
increase memory function through an N-methyl-p-aspartate
(NMDA)-mediated mechanism (104-106). With excitotoxic
stimulation (as with high glutamate concentrations) (88,
103) or pro-oxidant stimulation (13, 94), however, estrogens
prevented both cytosolic and mitochondrial influx of Ca?*,
thus providing a protection against excessive Ca®* influx.

As stated above, AYm collapse is a critical event in
promoting the death of neurons (83, 84, 107, 108). In fact,
two methods of analysis revealed the protective effects of
E2 against mitochondrial toxin—induced coliapse of AYym in
neuronal cultures. First, using rhodamine 123 (a mitochon-
dria-specific dye), we demonstrated that pretreatment of
neurons with E2 prevented mitochondrial toxin—induced
mitochondrial depolarization (13). Similarly, using a
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fluorescence resonance energy transfer (FRET) assay to
measure Aym (109), we observed that treatment with either
E2 or its diastereomer 17 a-estradiol (17 «-E2) resulted in a
condition in which increased Ca®" concentrations were
required to cause Aym collapse (99). Collectively, these
data indicated that estrogens protect mitochondria by
preventing Aym collapse and could explain the ability of
estrogens to prevent the release of apoptotic factors from the
mitochondria (70), which is dependent on Aym collapse.

Clinical Implications of Estrogen Neuroprotec-
tion. Epidemiological studies have shown that estrogen
therapy (ET) administered soon after the menopause is
associated with numerous health benefits, including a
reduction in the risk for cardiovascular diseases (110),
decreased incidence of osteoporosis and associated bone
fractures (111), decreased risk for neurodegenerative
diseases (112), increased cognitive performance (113), and
reduced risk for cataract (114). With respect to AD, there
have been several clinical and epidemiological studies that
describe estrogen’s - beneficial effects. For example, the
seminal study by Fillit et al. (115) described a cognitive
improvement in patients with AD who received estrogen
treatment for 6 weeks. Since that study, a growing body of
literature has shown that estrogen therapy may contribute to
the prevention, attenuation, or even the delay of the onset of
AD (116-120). Furthermore, estrogen replacement may also
facilitate other treatments used for the treatment of AD. For
example, in clinical trials that used Tacrine, an anticholin-
esterase drug used for the treatment of AD, a greater effi-
cacy was seen in women receiving estrogen therapy than in
women who were not (121).

Given the aforementioned evidence for the potent
neuroprotective effects of a variety of estrogens in cell and
animal models, as well as the epidemiological evidence of
the efficacy of early postmenopausal treatment, it would
seem to be reasonable that one or more of these compounds
would be assessed in clinical trials for estrogens in stroke,
AD, or other neurodegenerative conditions. However, the
prospect of the clinical use of estrogens for neuroprotective
therapy was dealt a severe blow with findings from the
Women’s Health Initiative (WHI) studies, which were
published beginning in 2002. These studies assessed a
variety of outcome measures that followed years of
continuous daily administration of two hormone prepara-
tions, Premarin (Wyeth Pharmaceuticals, Philadelphia, PA;
Refs. 122, 123) and PremPro (Wyeth; Refs. 124-126).
Premarin is derived from the urine of pregnant mares and
contains an abundance of equine estrogens, whereas
PremPro consists of Premarin and medroxyprogesterone
acetate (MPA). These studies were terminated early because
the risks of therapy appeared to outweigh the benefits of
treatment.

Although informative, the interpretation of the WHI
studies is limited by the hormone preparations used, their
route of administration, the regimen of hormone admin-
istration (i.e., continuous daily therapy versus cyclic

therapy), and the advanced age of the subjects under study
(127, 128). It is well known that oral administration of
estrogens induces prothrombotic factors (129, 130), and this
has accounted for the slight increase in the risk of deep
venous thrombosis, heart attack, and stroke observed among
women treated with Premarin and PremPro. It has also been
suggested that the subjects in the population under study,
who averaged 63 years of age at the time of study entry, had
“silent” cardiovascular disease (131), and that sudden
exposure 1o estrogens exacerbated the already-existing
undiagnosed vascular disease in these women.

Given that we now have extensive knowledge of the
signaling pathways that mediate estrogen-induced neuro-
protection (see above), the structure-activity relationships
for estrogen-induced neuroprotection (1, 132), and the route
of administration that minimizes the negative effects
consequent to the first-pass effect (133), novel drugs and
delivery methods for estrogen neuroprotection can be
investigated in future clinical studies. In brief, there are
safe and effective means to administer estrogens (including
nonfeminizing estrogens) for the treatment of nerve cell loss
associated with chronic neurodegenerative disease and
more-acute nerve cell compromising conditions, such as
stroke and head injury.
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