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Abstract
Metformin is a hypoglycemiant drug prescribed for the treatment and control of the type 2 diabetes mellitus. Recently, the

potential efficacy of this antidiabetic drug as an anticancer agent has been demonstrated in various mammalian cancer cells.

This report evaluates the mutagenic as well as the recombinogenic potentials of the metformin drug in therapeutically relevant

plasma concentrations (12.5mM, 25.0mM or 50.0 mM). Since the loss of heterozygosity is a process associated with carcinogen-

esis, the recombinogenic potential of such a drug was evaluated by the homozygotization assay using a heterozygous diploid

strain of Aspergillus nidulans. The homozigotization indices (HI) for the genetic markers from the metformin-treated diploids

were not statistically different from the negative control (non-treated diploids). For the first time, this indicated a lack of recombi-

nogenic activity of the antidiabetic drug. The mutagenic potential of the metformin drug was evaluated by the chromosome

aberrations and the micronuclei tests in human lymphocytes cultures. The metformin drug did not show any significant increase

either in the numerical or in the structural chromosome aberrations and did not affect significantly the mitotic index

when compared to the negative control. In the in vitro micronucleus test, the drug did not increase the number of micronuclei

or nuclear buds when compared with the negative control. The data in this study suggest that the metformin drug is not a

secondary cancer inducer, since it has neither showed recombinogenic nor mutagenic activities when used in pharmacological

concentrations.
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Introduction

Metformin, a biguanide family member, is one of the most
commonly prescribed drugs worldwide and is the preferred

initial treatment for the type 2 diabetes mellitus. The reduc-
tion of blood glucose induced by the metformin drug is
mainly due to its actions on the liver and muscle, which

have an insulin-sensitizing effect. In hepatocytes, the drug
inhibits gluconeogenesis and glycogenolysis and stimulates
glycogenesis, whereas in insulin-dependent peripheral tis-

sues, especially in skeletal muscle, the metformin drug
increases the glucose uptake, causing rapid reduction in
the plasma glucose.1,2

Previous in vivo and in vitro studies have demonstrated
that such a drug causes improvement in antioxidant activ-
ities in various tissues, in addition to limiting lipid perox-
idation. The metformin drug’s antioxidant properties
probably result either from a drug direct effect on reactive
oxygen species or from an indirect action on the superoxide
anions produced by hyperglycemia.3 Attia et al.4 evaluated
the effect of metformin on the oxidative stress induced by
diabetes using rats’ bone marrow cells and the biochemical
markers lipid peroxidation and reduced glutathione. The
authors demonstrated that the free radical generation by
hyperglycemia was considerably inhibited by the treatment
with the drug. On the other hand, Onaran et al.5
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demonstrated that pharmacological concentrations of met-
formin were unable to impair the DNA fragmentation
induced by the pro-oxidant agent cumene hydroperoxide
in human lymphocytes in vitro. Despite these contradictory
results, epidemiological studies have revealed that diabetic
patients treated with the metformin drug have reduced risk
of developing various types of cancer.6,7 In fact, there is
increasing evidence of the potential efficacy of this antidia-
betic drug as an anticancer drug.8,9

The metformin probably displays its anticancer activity
through inhibition of the mTOR translational pathway
through the AMPK-dependent or independent mechan-
isms, leading to the G1 arrest in the cell-cycle and to the
subsequent cell apoptosis through the mitochondrion-
dependent pathway. The AMP-activated protein kinase
(AMPK) pathway is a major sensor of the energetic status
of the cell, which has been proposed as a promising thera-
peutic target in the cancer treatment.2,8

The metformin potential anticancer effects have already
been demonstrated in various mammalian cancer cells
lines including pancreas,10,11 prostate,12 lung,13 ovary2,14

and breast cancer (BC) cells.9,15 In the human BC cells,
metformin interacted synergistically with some molecu-
larly targeted agents, such as the anti-Her2 monoclonal
antibody trastuzumab, to suppress the proliferation of
BC stem cells in the HER2-gene-amplified breast carcin-
oma cells.16 In the B16 cell line of mouse, metformin
showed an antimelanoma effect, causing a G2/M cell-
cycle arrest associated with the apoptotic death of the
melanoma cells.17 The combination of classical chemother-
apeutic agents with metformin has also been shown to be
beneficial in the combinatorial cancer therapies.
Preclinical studies in mouse xenographs showed that
oral administration of metformin together with the
widely used chemotherapeutic drugs doxorubicin, pacli-
taxel or carboplatin, is highly effective in blocking the
tumour growth and in preventing relapse in a variety of
cancer cell types.18

Taking into account that the metformin drug causes cell-
cycle arrest at G1/S2 and G2/M17 and that it suppresses
numerous mitosis-related gene families, including kinesins
and tubulins,19 and also assuming that events occurring
during the cell cycle arrest may influence tumourigen-
esis,20–22 this study evaluates the possible genotoxic effect
of metformin in eukaryotic cells. The mutagenic potential of
the drug was studied in human lymphocytes cultures using
the chromosome aberrations and the micronuclei tests.
Since the loss of heterozygosity (LOH) is a process asso-
ciated with carcinogenesis, the metformin recombinogenic
potential was evaluated by the homozigotization assay
using a heterozygous diploid strain of Aspergillus nidulans.

Materials and methods
Chemicals and reagents

Metformin hydrochloride (1,1-dimethylbiguanide hydro-
chloride CAS no. 1115-70-4), cisplatin (CAS no. 15663-27-
1), colchicine (CAS no. 9754), cytochalasin B (CAS no.
14930-96-2), dimethyl sulfoxide (DMSO CAS no. 67-68-5)
and mitomycin C (CAS no. 50-07-7) were purchased from

Sigma–Aldrich (St. Louis, MO, USA). Gibco RPMI 1640 cell
culture media supplemented with L-glutamine (2 mM), fetal
calf serum (15%) and phytohemagglutinin (2%) were pur-
chased from Invitrogen-Life Technologies (New York,
USA). All other chemicals and solvents used in this study
were of the highest purity. Metformin, cisplatin and mito-
mycin C were dissolved in sterile Milli-Q water. The selec-
tion of the metformin concentrations (12.5, 25.0 and
50.0 mM) in the genotoxic assays was based on the thera-
peutically relevant plasma concentration of metformin
(20mM).23,24

Lymphocyte isolation

This study has been approved by the ethics committee of
the Universidade Estadual de Maringá, Maringá, PR, Brazil.
Informed consent was obtained from the six healthy
donors, aged 20–25 years (three males and three females),
non-smoking, non-alcoholic, not under drug therapy and
with no recent history of exposure to mutagens. The per-
ipheral venous blood was collected in a heparin tube. After
the centrifugation at 1000 rpm for 5 min, the lymphocyte
layer was collected and added to 82% of RPMI 1640
medium supplemented with 15% fetal calf serum, 1%
L-glutamine 200 mM and 2% phytohemagglutinin.

In vitro mammalian chromosome aberration test

The in vitro chromosome aberration test was performed
according to the International Programme on Chemical
Safety (IPCS) guidelines.25 The experiments were con-
ducted in quadruplicate. The lymphocyte cultures were
incubated at 37�C in humidified atmosphere with 5.0%
CO2 for 72 h. At 48 h incubation, metformin (12.5, 25.0 and
50.0 mM) and mitomycin C (0.3 mM), used as the positive
control, were added to each culture individually. In all
experiments, the untreated culture was used as the negative
control. Colchicine (0.8 mM) was added to each flask culture
during the last 2 h of the experiment. After 72 h incubation,
the cells from the culture were treated with a hypotonic
solution (75 mM KCl) for 20 min at 37�C and fixed with a
cold solution of methanol: glacial acetic acid (3:1 v/v). The
cells were fixed with two changes of fixative. Slides were
prepared for the microscopic analysis by dripping three to
four drops of the pre-fixed lymphocyte suspension from a
distance of 30 cm, and then they were dried for five days at
22�C and stained with 5% Giemsa (pH 6.8 Sorensen’s
buffer). A total of 100 well-spread metaphases from each
donor were analysed for structural (chromatid and chromo-
somal breaks, fragments and rearrangement) and numer-
ical (polyploidy) chromosomal aberrations (a total of 400
metaphases per concentration). The cytotoxicity of the met-
formin concentrations (12.5, 25.0 and 50.0 mM) was deter-
mined by the mitotic index (MI) calculated by the number
of dividing cells/total number of the cells� 100.26 The data
were expressed as mean� standard error (SE) of the mean
and they were statistically analysed by the non-parametric
tests, Mann–Whitney U-test and Kruskal–Wallis test
(P< 0.05).
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In vitro mammalian cell micronucleus test

The OECD guideline no. 48727 recommended the in vitro
micronucleus (MNvit) assay. Experiments were done in
duplicates. The lymphocyte cultures were incubated at
37�C in a humidified atmosphere with 5.0% CO2, for 72 h.
After 24 h, each lymphocyte culture was individually trea-
ted with metformin (12.5, 25.0 and 50.0 mM) and mitomycin
C (0.3 mM) as the positive control, whereas an untreated
culture was included as the negative control. The cytokin-
esis was blocked at 44 h of incubation with cytochalasin B
(final concentration 12.5 mM), after the start of the culture.
At the end of the incubation period (72 h), the lymphocyte
cultures were treated with a cold hypotonic solution
(75 mM KCl) and fixed three times in a cold solution of
methanol: glacial acetic acid (3:1 v/v). In the second fixative
solution, 1% of formaldehyde was added in order to pre-
serve the cytoplasm. The slides were prepared for the
microscopic analysis by dripping three to four drops of
the pre-fixed lymphocyte suspension from a distance of
30 cm, dried in cold air and stained with 5% Giemsa (pH
6.8 – Sorensen’s buffer). A total of 1000 binucleated cells
were analysed for each treatment for the presence of micro-
nuclei and buds (a total of 2000 cells per concentration). The
cytokinesis block proliferation index (CBPI) was deter-
mined as recommended by Surralles et al.,28 as follows:
CBPI¼N1þ 2N2þ 3 (N3þN4)/500, where N1–N4 are the
cells with one to four nuclei in 500 cells counted for each
experiment. The data were expressed as mean� standard
deviation (SD) of the mean and they were statistically ana-
lysed by the Z-test and the non-parametric Mann–Whitney
U-test (P< 0.05).

In vivo homozygotization assay

The diploid UT448//A757 strain of A. nidulans, carrying
markers on chromosomes I, II and IV (Table 1), was pre-
pared by the Roper’s technique.29 Since the diploid strain is
heterozygous for the nutritional markers, it may grow in
minimal medium (MM), consisting of Czapek-Dox
medium, supplemented with 1% (w/v) glucose and solid
medium containing 1.5% (w/v) agar. When growing on the
complete medium (CM),30 the diploid strain may originate
auxotrophic mitotic segregants, recognized as normally
growing yellow, green or white sectors on the UT448//
A757 diploid green colonies. For the recombinogenic
assay, metformin (12.5, 25.0 and 50.0 mM) was added to
molten MM. For the toxicity measurements, the UT448//
A757 diploid colonies diameters were determined during

six days after incubation at 37�C. The growth rates in the
presence (treatment) and in the absence (control) of the
hypoglycemiant metformin were compared by the one-
way variance analysis followed by the Bonferroni post-
test (P< 0.05) (results not shown). The chemotherapeutic
drug, cisplatin (6 mM), was used as the positive control for
the recombinogenic test.30 The colonies of the UT448//
A757 diploid strain of A. nidulans were grown onto petri
plates containing MM (negative control or untreated con-
trol) (Figure 1a), MMþ cisplatin (positive control) and
MMþmetformin (treatment) (Figure 1b). These plates
were incubated for six days at 37�C and, then, visually
inspected for diploid sectors arising on the original diploid
strains colonies. The obtained treated (metformin and cis-
platin) and the untreated diploids were purified on the
MM, individually transferred to CM plates and then pro-
cessed by spontaneous haploidization. The haploidization
process, or rather, the loss of one member of each chromo-
some pair through successive mitotic divisions, resulted in
the haploid condition of the nuclei. After the haploidiza-
tion, each diploid produced haploid mitotic segregants
(Figure 1 (c) to (d)) which were individually transferred to
different supplemented medium (SM) for phenotypic ana-
lyses. The SM consists of MM supplemented with all the
nutritional requirements of the master strains, excepting
one, in each medium type. The mitotic crossing-over
causes homozygotization of the heterozygous-conditioned
genes. If the metformin induces mitotic crossing-over in the
original diploid strain, only heterozygotes (þ/� or�/þ) or
homozygotes (þ/þ) diploids will develop in the MM and
the nutritional markers will segregate among the haploids
in the proportion of 4þ to 2�. However, if the drug fails to
induce the crossing-over, the proportion will be 4þ to 4�

(Figure 2). This is due to the fact that the initial selection
process limits the growth of �/� diploids.31 The ratio of
prototrophic to auxotrophic segregants is described by the
homozygotization index (HI), or rather, an HI equal to or
higher than 2.0 indicates the recombinogenic effect of the
metformin. The metformin recombinogenic potential was
assessed by comparing the homozygotization indices of
the nutritional markers by the Yates Corrected Chi-square
test, Contingency Table (P< 0.05).

Results
In vitro mammalian chromosome aberration test

Table 2 shows the results of chromosome aberration ana-
lysis. As expected, the frequency of chromosome aberra-
tions in the positive control (mitomycin C) was higher
when compared with the negative control. On the other
hand, metformin at all tested concentrations (12.5mM,
25.0 mM or 50.0 mM) did not show any significant differ-
ence in the frequency of structural and numerical aberra-
tions when compared to the negative control (Table 2,
Figure 3). With regard to the mitotic index, metformin
did not significantly affect the mitotic activity when com-
pared to the negative control at all tested concentrations
(Table 2).

Table 1 Genotype and origin of Aspergillus nidulans strains

Strain Genotype Origin

A757 yA2(I), methA17(II), pyro A4(IV) FGSC

UT448 wA2(II), ribo A1 (I), paba A124 (I),

bi A1 (I), Acr A1 (II)

Utrechta

Note: FGSC: Fungal Genetic Stock Center; meth: methionine; pyro: pyridoxine;

ribo: riboflavin; paba: paraminobenzoic acid; bi: biotine; Acr: acriflavin resistance;

y: yellow conidia; w: white conidia.
aHolland.
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Figure 1 Diploid and haploid segregants obtained after the treatment of the UT448//A757 strain with metformin. (a) Growth of the UT448//A757 diploid strain in the

absence of metformin. (b) Origin of a metformin-treated diploid (arrow) in plates containing MMþ25 mM metformin. (c) Haploid mitotic segregants (arrows) derived from

the metformin-treated diploid shown in (b). (d) yellow, white and green haploid segregants derived from the diploid obtained with 50mM of metformin. (A color version of

this figure is available in the online journal)

Figure 2 Origin of heterozygous (þ/� and�/þ) and homozygous (þ/þ) diploids caused by mitotic crossing-over between paba gene and centromere. (*) Not grow in

MM (Pires and Zucchi31)

Table 2 Total chromosomal aberrations (CA) and Mitotic Index (MI) in human lymphocytes treated with metformin

Treatment

(48 h)

Concentrations

(kM)

Chromosome aberrations
Total

CA

Abnormal cells

(mean�SE)

CA/cell

(mean�SE)

Mitotic index

(mean�SE)Cog Cag Cob Cab Frag Rear Pol

Negative Control 0 0 0 0 0 0 0 0 0 0 0 2.7� 0.38

Positive Control 0.1 8 8 31 37 4 3 0 75 14.50�3.75 0.187�0.061* 2.0� 0.32

Metformin 12.5 0 1 1 2 1 0 1 5 0.75�0.75 0.012�0.012 2.9� 0.18

25 0 1 0 4 0 0 0 4 1.00�0.75 0.010�0.007 3.18�0.49

50 0 2 3 1 0 0 2 6 1.50�1.50 0.015�0.015 3.05�0.53

Note: Positive Control: mitomycin C; Cog: chromosome gap; Cag: chromatid gap; Cob: chromosome break; Cab: chromatid break; Frag: fragment; Rear: rearrange-

ment; Pol: polyploidy. Four hundred metaphases were scored for each treatment; to mitotic index 4000 lymphocytes were scored for each treatment.

*P<0.05 versus negative control (Mann–Whitney U-test).
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In vitro mammalian cell micronucleus test (MNvit)

The number of micronuclei for the metformin treatment, the
positive (mitomycin C) and the negative (untreated culture)
controls are shown in Table 3. The treatment with metfor-
min in concentrations ranging from 12.5 mM to 50.0 mM did
not lead to a significant increase in the number of micro-
nuclei when compared to the negative control (Table 3,
Figure 4). On the other hand, the positive control (mito-
mycin C) increased the number of micronuclei in compari-
son to that of the negative control. The CBPI values,
obtained with the metformin treatment, were not decreased
significantly when compared to those with the negative
control (Table 3).

In vivo homozygotization assay

The metformin recombinogenic potential was evaluated by
the homozygotization indices (HI) for the riboA1, pabaA124,
biA1 and pyroA4 nutritional markers (Table 4). HI rates for
untreated diploids (negative control) were lower than 2.0
for all analyzed markers. The values of HI for treatment
with 6mM of cisplatin (positive control) were higher than
2.0 for the paba, bi and pyro markers and significantly
(P< 0.05) different from the HI negative control rates. The
treatment in MM did not allow the development of

auxotrophic diploids, specifically those which were homo-
zygous for the nutritional markers ribo, paba and bi. The
treatment of the original UT448//A757 diploid strain
with the metformin (12.5mM, 25.0 mM or 50.0 mM) drug pro-
duced nine prototrophic diploids, all of them with green
conidia (yþ//y). The HI rates for the treated diploids
were less than 2.0 for all the analyzed markers.

Discussion

This study evaluated the mutagenic and recombinogenic
potentials of metformin in eukaryotic cells by using diploid
cells of A. nidulans and human lymphocytes. The data col-
lected in this study demonstrated that the treatment of
human lymphocytes with increasing concentrations of
drug tested did not increase the frequencies of micronuclei
or chromosomal aberrations. This fact indicated that the
hypoglicemiant agent is not a genotoxic compound. Our
results are in agreement with the reports of Attia et al.4

and Aleisa et al.,32 which show the lack of genotoxic activity
of metformin in rats and mice bone marrow cells, respect-
ively. On the other hand, the drug had a significant anti-
mutagenic effect on mouse embryonic fibroblast cells by

Figure 4 Micronucleus (arrow) observed in a lymphocyte binucleated cell after

the treatment with 50mM of metformin. (A color version of this figure is available in

the online journal)
Figure 3 Chromatid break (arrow) observed in a lymphocyte cell after the

treatment with 25 mM of metformin

Table 3 Effect of metformin on micronucleus induction in human lymphocytes in vitro

Test substance

Treatment (48 h)

Concentration (mM) BNC scored

No. of MN No. of buds CBPIa

Experiment Experiment Experiment

I II Mean�SD I II Mean�SD I II Mean�SD

Negative control – 2000 3 1 2.00�1.41 0 0 0 2.10 2.27 2.19�0.12

Positive control 0.1 2000 83 92 87.0�6.36* 8 5 6.5� 2.12* 1.92 1.91 1.92�0.01

Metformin 12.5 2000 1 3 2.00�1.41 0 1 0.5� 0.70 2.16 2.29 2.23�0.09

25 2000 2 2 2.00�0.00 0 0 0 2.22 2.06 2.14�0.11

50 2000 2 4 3.00�1.41 1 0 0.5� 0.70 2.17 2.17 2.17�0.00

Note: BNC: binucleated cells.
aCBPI: Cytokinesis blocked proliferation index mean from 1000 cell per treatment for the study; Positive control: mitomycin C.

*Significantly different from negative control (Z-test).
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its ability to prevent the reactive oxygen species
accumulation.33

The chromosomal aberrations and the micronuclei are
biomarkers of the chromosomal damage and of the genomic
instability events measured in human lymphocytes.34–36 As
cytogenetic aberrations are directly involved in cancer eti-
ology,37 high chromosomal aberrations frequencies have
been showed to be predictive of an increased risk of many
types of cancer, regardless of the cause of the initial chromo-
somal aberrations.38–40 In our analysis, structural and
numerical chromosomal aberrations were in fact induced
by metformin, but this datum was not statistically signifi-
cant. In addition, statistical differences were not observed in
the MI values, which indicate that metformin in concentra-
tions ranging from 12.5 mM to 50mM is not cytotoxic.

The human cytokinesis-block micronuclei analysis,
which allows micronuclei to be scored specifically in binu-
cleated cells prior to the cytokinesis, provides a simple and
fast method to detect and measure chromosomal DNA
damage and chromosomal instability phenotype in mam-
malian cells. The micronuclei arise mainly from chromo-
some or chromatid acentric fragments or from whole
chromosomes that fail to be included in the daughter
nuclei during the mitosis anaphase. The micronucleus is
an ideal biomarker in human cells both for in vitro and
in vivo genetic toxicology studies and has been prospect-
ively associated with an increased cancer risk.40–43 The cur-
rent data demonstrate that the metformin drug does not
induce any chromosomal DNA damage or instability.
Furthermore, the metformin did not affect significantly
the CBPI rates, revealing a lack of cytostatic effects of the
antidiabetic drug.

The homozygotization assay using A. nidulans diploid
cells is a bioassay extensively used to detect genotoxic
effects of several physical and chemical agents such as
X-rays, environmental volatile pollutants, herbicides and
cancer chemotherapeutic compounds, thus providing rele-
vant information about their recombinogenic poten-
tials.21,30, 44–46 A. nidulans is a filamentous fungus with a

well-characterized genetic system whose cells spend most
of their cell cycle in the G2 phase, a phase in which the
chromosomes are duplicated, favouring the mitotic recom-
bination event.47 This study evaluated, for the first time, the
recombinogenic potential of metformin by using the homo-
zygotization assay. The HI rates for the genetic markers
from metformin-treated diploids were not statistically dif-
ferent from the negative control (non-treated diploids) and
demonstrated the lack of recombinogenic activity of this
antidiabetic drug in non-cytotoxic concentrations.
Metformin did not induce the production of homozygous
diploids for nutritional or conidia colour markers and con-
sequently it did not increase the frequencies of prototrophic
haploid segregants derived from such metformin-treated
diploids. This explains the origin of the HI rates which
were lower than 2.0 as shown in Table 4.

The homologous recombination (HR) in mammalian
cells has been shown to be important in the repair of several
types of DNA lesions such as double-strand breaks (DSB),
damage generated during DNA replication and DNA inter-
strand cross links. The HR, which occurs in the S and G2
phases of the cell cycle, leads to a precise DNA damage
repair since the sister chromatid may be used as a repair
template.48–50 Alternatively, although the HR may use the
homologous chromosome for the DSB repair when the cells
are in the G1 phase of the cell cycle, this would indeed lead
to the LOH or to other gene rearrangements, such as trans-
locations. Since DNA damages may induce recombination
between homologous or non-homologous chromosomes,
the recombination process is strongly suppressed in
mitosis.21,49–51

The LOH, which is the loss of the functional allele at a
heterozygous locus, is a process commonly associated with
several genetic disorders such as cancer initiation and pro-
gression, neurofibromatosis type 1-associated glomus
tumours, dermal neurofibromas and ichthyosis with con-
fetti.52–55 Although the LOH events may be caused by sev-
eral mechanisms including deletion and nondisjunctional
chromosome loss, the mitotic recombination process has

Table 4 Homozygotization index (HI) values for markers from UT448//A757 diploid strain after treatment with 50, 25 and 12.5 mM of metformin

Markers

Negative control Positive controla

Metformin

50 kM 25kM 12.5 kM

NSb HI NSb HI NSb HI NSb HI NSb HI

riboþ 291 1.7 265 1.4 108 1.7 253 1.9 294 1.9

ribo 168 189 65 134 152

pabaþ 288 1.7 349 3.3* 109 1.7 253 1.9 293 1.9

paba 171 105 64 134 153

biþ 288 1.7 321 2.4* 109 1.7 253 1.9 285 1.8

bi 171 133 64 134 161

pyroþ 249 1.2 354 3.5* 95 1.2 236 1.6 286 1.8

pyro 210 100 78 151 160

Note: ribo¼ riboflavin; paba¼p-aminobenzoic acid; bi¼biotin and pyro¼pyridoxine.
aPositive control, diploids treated with cisplatin (6 mM).
bNumber of mitotic segregants.*Significantly different from control (Contingency Table, Yates Corrected Chi Square, P< 0.05).
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been shown to be the major pathway leading to the LOH
in vivo.56,57 The mitotic recombination is known to be an
important mechanism for the LOH in the neurofibromatosis
type 2 and in the schwannoma tumours, which are benign
peripheral nerve sheath tumours that occur within the con-
text of the schwannomatosis.58 In the familial adenomatous
polyposis, the mitotic recombination has been described as
an important process of the LOH at the APC tumour sup-
pressor gene, leading to the loss of critical APC functions.59

The current results demonstrate that when different ana-
lysis systems, both in vivo and in vitro, are used, the metfor-
min drug have no genotoxic activity. Since the metformin
alone60 or in combination to chemotherapeutic drugs has
been proposed as a novel treatment for different cancer
types,14 the data in the current study suggest that metfor-
min is not a secondary cancer inducer, since it did not show
mutagenic or recombinogenic activities when used in
pharmacological concentrations.
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