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Abstract
Diabetic nephropathy (DN) is one of the major complications that develop as consequence of chronic and uncontrolled hyper-

glycaemia. Hyperglycaemia initiates various processes, one of which is protein glycation, leading to the formation of advanced

glycation end products. Alteration of intracellular signalling, gene expression, release of proinflammatory molecules and free

radicals are examples of such changes and they contribute to the initiation of diabetic complications. In the current manuscript,

we studied the effect of pyridoxamine (PM) on protein glycation, oxidative stress, interleukin-1a (IL-1a), IL-6, C-reactive protein

(CRP), gene expression of tumour necrosis factor-a (TNF-a) and transforming growth factor-b1 (TGF-b1) in relation to microalbu-

minuria and kidney functions in a model of alloxan-induced diabetic rats. We have observed that onset of microalbuminuria has

preceded the gradual increase of blood sugar level in diabetic rats. In diabetic rats, gene expression of TNF-a and TGF-b1

recorded a gradual increase and marked increase was observed after one and two weeks of alloxan administration, in comparison

with normal rats. PM induced significant decrease in kidney malondialdehyde content and the gene expression of TNF-a and

TGF-b1, in addition to levels of serum glucose, fructosamine, urea, creatinine, IL-1a, IL-6, CRP and urine microalbumin.

Histopathological examination of kidney tissues showed certain improvements as compared with diabetic control. In conclusion,

our results may provide a supporting evidence for the therapeutic benefit of PM in DN.
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Introduction

Diabetic nephropathy (DN) is a clinical syndrome charac-
terized by decline in glomerular filtration rate and persist-
ent albuminuria and arterial hypertension, in the absence of
clinical or laboratory evidences of any other kidney dis-
ease.1 It remains the most common cause of end stage
renal disease (ESRD), accounting for more than 40% of
patients treated with dialysis, and its treatment delays the
onset of ESRD.2 DN has been traditionally considered a
non-immune disease; however, accumulating evidences
now indicate that immunological and inflammatory mech-
anisms may play a significant role in the development and
progression of DN.3 Chronic hyperglycaemia is the major
initiator for diabetic vascular complications. Enhanced
polyol hexosamine pathways, activation of protein kinase
C (PKC), oxidative stress and over-production of advanced
glycation end products (AGEs) may collectively contribute
to induce such complications.4 The interaction of AGEs with

their RAGE receptors located on many cell types may alter
intracellular signalling, gene expression, release of proin-
flammatory molecules (cytokines) and free radicals, which
are mostly responsible for the subsequent diabetic compli-
cations.5 Among the most well known proinflammatory
cytokines are interleukins, (IL)-1, IL-6, IL-18), and tumour
necrosis factor-alpha (TNF-a)).6 IL-6, for example,
has been associated with the glomerular basement
membrane thickening that occurs early in diabetic kidney
disease (DKD).

TNF-a is a multifunctional regulating cytokine that is
involved in the inflammatory response in diabetes.7,8 It is
highly expressed in adipocyte,9 inhibits insulin signalling
pathway,10 impairs peripheral glucose uptake and alters
the expression of major genes that control glucose and
lipid metabolism.11,12 In addition, TNF-a has been linked
to an increase in the permeability of the glomerular wall.13

Transforming growth factor-b1 (TGF-b1) is also an
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important mediator in the pathogenesis of DN.14,15.It is a
prosclerotic cytokine that is responsible for promoting col-
lagen matrix formation and contributes to the progression
of DKD. Its concentration also increases as a consequence of
hyperglycaemia and AGEs.16–18 Despite the standard of
care and treatment of DM, the prevalence of ESRD in
diabetic patients has increased.19 New molecular entities
and even existing medications with new applications are
being studied for the treatment of DKD. These agents
focus on interrupting the pathogenesis of DKD by inhibit-
ing the formation of AGEs and/or inflammatory cyto-
kines to prevent fibrosis in the glomerulus.17 Several
anti-AGEs agents have been tested in diabetic animal
models and proved to be protective.20 Pyridoxamine
(PM), a derivative of the vitamin B family, acts as an
inhibitor for AGEs and advanced lipoxidatin end prod-
ucts.21 In animal models, it delays the development of DN
and reduces albuminuria of both type 1 and type 2
DN.22,23 In diabetic rats, PM was shown to inhibit the
progression of retinopathy22 and attenuated the accumu-
lation of AGEs on aortic collagen.24 The development of
specific interventions of PM against AGEs is in progress
and currently under preclinical evaluation, particularly
those effects associated with diabetes.25,26 In preclinical
and in some clinical trials, PM showed conflicting
results.2,8,25 In a phase II study of patients with diabetes
and overt nephropathy, PM showed a beneficial effect on
the progression of renal disease.25 On the other hand, a
trial enrolling patients demonstrated some serious
adverse drug events and did not show any benefit in
DKD patients.17

The multiple activities and promising safety of PM sug-
gest that it can be a candidate as a medication or medicinal
food for treating AGEs correlated disorders. This study,
therefore, aimed to determine the effects of PM on alloxan
diabetic rat model. The changes in oxidative stress, renal
function and proinflammatory cytokines in relation to
microalbuminuria and histopathological examination of
kidney tissues were also evaluated.

Materials and methods
Animals

Forty adult male Wistar albino rats weighing 170� 20 g,
supplied by the Egyptian Organization for Biological
Products and Vaccines (Cairo, Egypt), were used in this
study. Rats were housed in stainless steel rodent cages
under environmentally controlled conditions and allowed
one week for acclimatization at room temperature with a
12-h dark/light cycle before beginning the experimental
work. Rats were fed rodent chow (El-Nasr
Pharmaceuticals and Chemicals Industry, Egypt) and
allowed free access to drinking water. The protocols for
animal experimentation and the handling of animals were
in accordance with the Animal Welfare Act and the Guide
for the Care and Use of Laboratory Animals established by
Zagazig University, Zagazig, Egypt.

Experimental protocol

Diabetes was induced by administration of a single dose of
alloxan intraperitoneally (90 mg/kg body weight) and
serum glucose was checked after interval days. Rats that
achieved serum glucose level more than 200 mg/dL were
expressed as diabetic and enrolled in the study. Three
experimental groups of eight animals each were used –
normal control (NC) group: normal rats received drug-
free vehicle; diabetic control (DC) group: diabetic rats
received drug-free vehicle and PM-treated diabetic group:
diabetic rats treated with PM 180 mg/kg daily27 for six
weeks using oral gavage. This dose is within the range of
safe and effective PM doses (100–400 mg/kg/day) that have
been used previously in diabetic models.23,28–30 Another
two diabetic groups of rats (n¼ 8 each) were included to
detect the gene expression of TNF-a and TGF-b1 in the
kidney after one and two weeks of alloxan treatment.

Blood and urine sampling

Urine samples were collected after 2, 4, 6, 21 and 42 days of
alloxan administration, after six weeks of PM treatment and
processed for determination of microalbumin content in
urine. Blood samples were collected parallel to urine sam-
ples at the specified days and processed for blood sugar
determination. At the end of the six weeks of treatment,
rats were fasted overnight, blood samples were collected
via retro-orbital bleeding and centrifuged directly for
serum separation. Samples were processed instantly for
determination of glucose, creatinine, urea, fructosamine,
IL-1a and IL-6.

Tissue collection

Following blood collection, rats were killed by decapitation.
Kidneys were removed instantly, rinsed with cold normal
saline and dried with filter paper. One specimen was
quickly frozen in liquid nitrogen (�170�C) and stored at
�20�C for determination of malondialdehyde (MDA) and
gene expression of TNF-a and TGF-b1. The other specimen
was kept in 10% formalin–saline at 4�C for at least one week
(1ry fixation); then the specimens were dehydrated with a
series of ascending grade ethanol from 75 to 100%. Tissues
were placed thereafter in xylol and embedded in paraffin.
Cross-sections of about 2mm thickness were sliced using a
microtome (Leica RM 2155, England) and stained with
haematoxylin and eosin31 for microscopical examination.

Analytical methods

Serum glucose was determined according to Trinder32

using commercial kits provided by Spinreact Kits, Spain.
This method has intra-assay and inter-assay coefficient of
variation (CV) values of 0.8 and 1.6%, respectively, and a
detection limit of up to 600 mg/dL. Fructosamine was
determined according to the method of Schleicher and
Vogt33 using QCA Kits, Spain. This method has intra-
assay CV of 1.7% and inter-assay CV of 1.9%, with a detec-
tion upper limit of 800mmol/L (143 mg/dL). Creatinine was
determined according to the method described by Henry,34

using Diamond Kits, Egypt. The intra-assay CV and
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inter-assay CV values of creatinine assay are 2.1 and 4%,
respectively, with a detection limit of up to 20 mg/dL. Urea
was determined according to the method of Fawcett and
Scott35 using Diamond Kits, Egypt (intra-assay CV¼ 3.2%,
inter-assay CV¼ 4.6%, with a detection upper limit up to
200 mg/dL). Microalbumin content in urine was deter-
mined according to the method of Gall et al.36 using
Orgentec ELISA Kits, Germany (intra-assay CV¼ 3.3%
and inter-assay CV¼ 5.1%, with a detection upper limit of
up to 25 mg/L). Serum IL-1a and IL-6 were determined by
ELISA using RayBio� Rat IL-1a and RayBio� Rat IL-6
ELISA Kits supplied by Ray Biotech, Inc., Norcross, GA,
USA. C-reactive protein (CRP) was determined according
to the method of Banerjee et al.37 using BD Biosciences
ELISA kits, USA.

Kidney MDA and reduced glutathione levels

Lipid peroxidation was quantified by measuring the forma-
tion of thiobarbituric acid reactive substances, expressed in
terms of MDA, according to the method of Ohkawa et al.,38

and oxidative stress activity was determined by measuring
the level of glutathione (GSH) using Bio-diagnostic Kits,
Egypt, following the instructions of the manufacturers.

RNA isolation and reverse transcriptase polymerase
chain reaction assay for TGF-b1 and TNF-a genes

For the detection of TGF-b1 and TNF-a by semi-quantitative
reverse transcriptase polymerase chain reaction (RT-PCR),
RNA was extracted using SV Total RNA isolation system
(Promega, Madison, WI, USA), reverse transcribed into
cDNA and amplified by PCR using RT-PCR kit
(Stratagene, USA). The oligonucleotide sequences of for-
ward and reverse primers are as follows: TGF-b1
(Forward primer: 50-TCACTTGTTTTGGTGGATGC-30;
Reverse primer: 50-TTCTGTCTCTCAAGTCCCCC-30);
TNF-a (Forward primer: 50-GGCAGGTCTACTTTGGAG
TCATTGC-30; Reverse primer: 50-ACATTCGGGGATC
CAGTGAGCTCCG-30) and b-actin (forward primer:
50-ACTGCCGCATCCTCTTCCTC-30; reverse primer: 50-
ACTCCTGCTTGCTGATCCACAT-30).

The semi-quantitative determination of PCR products
was performed using the gel documentation system
(BioDO, Analyser) supplied by Biometra. According to
the following amplification procedure, relative expression
of each studied gene (R) was calculated using the formula:
R¼Densitometrical units of each studied gene/densitome-
trical units of b-actin.

Statistical analyses

Results are expressed as mean� SD. Statistical analyses
were performed using GraphPAD Prism version 5.0. The
statistical significance of differences between groups was
determined by one-way and two-way ANOVA tests
with Newman–Keuls post hoc test. The significance of rela-
tionships between variables was calculated by linear regres-
sion analysis. Differences were considered significant at
a P< 0.05.

Results
Metabolic parameters

Table 1 shows the metabolic parameters in sera, kidney and
urine of all groups studied. DC rats demonstrated signifi-
cant increases in levels of serum glucose, fructosamine, cre-
atinine, urea, CRP, kidney MDA and urine microalbumin,
while kidney GSH was significantly reduced. Similar
increase was also observed in the production of cytokines
IL-a and IL-6, as compared with the normal group
(P< 0.05). Treatment of diabetic rats with PM for six
weeks induced significant decrease of these markers, with
the exception of Kidney GSH, which showed a significant
increase compared with the DC group (P< 0.05).

The onset of microalbuminuria in DC started as early as
day 2 of alloxan administration and the flow chart demon-
strated further increase after 4, 6, 21 and 42 days following
alloxan administration (Figure 1a). Interestingly, the onset
of hyperglycaemia was not as quick as that of microalbu-
minuria. Glucose took, to a certain extent, longer than one
week following alloxan administration to show significant
rise (Figure 1b).

Table 1 Metabolic parameters measurements in control rats and diabetic rats treated with pyridoxamine

Parameters NC (n¼ 8) DC (n¼ 8) PM (n¼ 8)

Serum Glucose (mg/dL) 94.3� 11.1 480� 13.2* 156.5�2.9**

Fructosamine (mg/dL) 8.5� 1.2 45.0� 1.8* 19.1�0.3**

Creatinine (mg/dL) 0.23� 0.04 2.50� 0.3* 0.50�0.04**

Urea (mg/dL) 28.5� 2.6 80.3� 8.4* 48.0�0.6**

CRP (ng/mL) 3.39� 0.17 12.1� 0.6* 4.5�0.14**

IL-1a (pg/mL) 21.6� 3.6 86.1� 11.9* 52.6�4.9**

IL-6 (pg/mL) 6.5� 1.6 26.3� 4.5* 14.7�1.9**

Kidney GSH (mmol/g tissue) 4.68� 0.68 1.57� 0.32* 2.47�0.04**

MDA (nmol/g. tissue) 9.4� 2.6 42.8� 2.7* 17.0�3.5**

Urine Microalbumin (mg/mL) 2.7� 0.4 18.0� 1.3* 5.5�0.1**

Rats from normal control (NC) and diabetic control (DC) groups were treated with drug-free vehicle, while rats from PM group were treated with pyridoxamine (180 mg/

kg daily) for six weeks (n¼ 8 each). Values were presented as mean�SD. *Significant difference from NC at P<0.05. **Significant difference from DC at P<0.05.
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The gene expression of TNF-a and TGF-b1 in the kidney

The diabetic group showed a significant increase in the
gene expression of TNF-a and TGF-b1 after one, two and
six weeks (Figure 2a and b, respectively). Treatment with
PM for six weeks induced a significant decrease in the gene
expression of both TNF-a and TGF-b1 (Figure 2c). Both of
them demonstrated positive correlation with the serum
fructosamine and with urine microalbumin, as shown
in Figure 3.

Histopathological pattern

The microscopical examination of the kidney of NC rats
(Figure 4a) showed normal pattern of renal parenchyma,
tubules and capillaries. Kidneys from diabetic rats (Figure
4b–d) had wedge-shaped necrotic area containing extra-
vasted erythrocytes in the renal cortex (Figure 4b).
Glomeruli in general had proliferative glomerular tufts
that appeared empty joined with oedema in the vascular
wall of renal blood vessels and perivascular tissue (Figure
4c). The blood vessels appeared congested with focal haem-
orrhages in renal medulla (Figure 4d). The kidney tissue
from PM-treated rats (Figure 4e–g) showed thickened base-
ment membrane of glomeruli, congested blood vessels,
peritubular capillaries and perivascular oedema in renal
cortex (Figure 4e). The majority of renal tubules appeared
normal with focal interstitial lymphocytic aggregations
(Figure 4f). Mild regenerative attempts and dilated

peritubular capillaries could be seen (Figure 4g), as com-
pared with DC rats (Figure 4b–d).

Discussion

The hallmark of treatment of DKD and preservation of
kidney function has historically focused on management
of hyperglycaemia and proteinuria using hypoglycaemic
agents, angiotensin converting enzyme (ACE) inhibitors
and angiotensin receptor blockers.17 New treatment strate-
gies have begun to emerge since 2000, which target the bio-
chemical activity of glucose molecules on kidney tissues.
Increased protein glycation and AGEs formation as a con-
sequence of hyperglycaemia are mostly implicated and are
responsible for diabetic complications due to their ability to
alter enzymatic activity, decrease ligand binding, modify
protein half-life and alter immunogenicity.21 Our studies
were designed to evaluate the efficiency of PM as an inhibi-
tor of protein glycation on the development of renal disease
in alloxan-diabetic rats. The latter showed hyperglycaemia
additionally increased formation of fructosamine.
Hyperglycaemia is known to induce shifts in intracellular
ratios of redox coenzymes both in vitro and in vivo.39 Our
results are in agreement with these studies, where a state of
redox imbalance in the kidney tissues of diabetic rats was
observed. Diabetic rats exhibited characteristic changes in
renal function and structure, including increased albumin-
uria and plasma creatinine associated with renal injury. IL-
1a, IL-6, CRP and the gene expression of TNF-a and TGF-b1
were also elevated in diabetic rats. Relating these changes to
hyperglycaemia, we can propose an interaction of AGEs, a
known outcome of protein glycation (even it is not deter-
mined in the present study), with their cellular receptors,
specifically RAGE. The latter can be stimulated not only by
AGEs but other ligands including S100-calgranulins, which
are a group of proinflammatory cytokines, amphoterin and
amyloid-b.40 Expression of RAGE is enhanced in certain
cells during diabetes and inflammation40 Such an effect
might be caused by the interaction of AGEs with RAGE
on macrophages, which causes oxidative stress and activa-
tion of nuclear factor-kB (NF-kB) via activation of P21ras and
the mitogen-activated protein kinase signalling pathway.41

NF-kB modulates gene transcription for generation of
proinflammatory cytokines such as interleukine-1a (IL-
1a), IL-6 and TNF-a.41 Distinct from their role as mediators
of immunological reactions and inflammatory processes,
inflammatory cytokines have been associated with signifi-
cant renal effect, which plays a certain role in renal injury
development in type 2 diabetic patients.42–44 TNF-a as a
candidate is a multifunctional regulatory cytokine involved
in the inflammatory response in diabetes and is highly
expressed in adipocytes7–9,45 and can inhibit insulin signal-
ling pathways,10 impair peripheral glucose uptake46 and
alter the expression of genes that control glucose and lipid
metabolism.11,12 Binding of TNF-a to its receptors (TNF-R1)
activates a number of signal transduction pathways, lead-
ing to the expression of transcription growth factors, medi-
ators of inflammatory process and acute phase proteins.47

Regarding TGF-b1, it is an important mediator for the
pathogenesis of DN14,15,48 and may inhibit matrix
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rats at baseline and 2, 4, 6, 21 and 42 days following the administration of a single

dose of alloxan intraperitoneally (90 mg/kg body weight). Results were expressed

as mean�SD. *Significant difference from NC at P<0.05
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degradation, upregulate adhesion molecules and enhance
chemoattraction. The increase observed in the gene expres-
sion of TGF-b1 is mostly attributed to hyperglycaemia.49

This can activate PKC and hexosamine and enhance the
formation of AGEs.50 TGF-b1 is a powerful stimulator for
the synthesis, deposition of collagen and other ECM pro-
teins. It may account even partially for the thickening of the
basement membrane in DN.51 Therefore, the observed
increase of gene expression of TNF-a and TGF-b1 in alloxan
diabetic rats is mostly due to hyperglycaemia and AGEs
and additionally NF -kB effects.

Certain studies indicated that cultured mesangial cells
possess AGE receptors and respond to AGEs by increased
synthesis of matrix proteins and type IV collagen.23,52 These
circulating AGE-peptides are normally cleared by the
kidney; the reverse is true in DN, where their serum con-
centration rises.53 Accordingly, its measurement can predict
expansion of the mesangial layer and thickening of the
basement membrane.54 Our results demonstrated positive
correlations between fructosamine and the gene expression
of both TNF-a and TGF-b1. At the dose of PM tested, we
observed favourable effects on the biochemical parameters,

as illustrated by decreased levels of fructosamine, urea, cre-
atinine and urine microalbumin and decreased gene
expression of TNF-a and TGF-b1 and oxidative stress.
This suppression in oxidative stress also decreases NF-kB
activation, which leads to significant decreases in serum IL-
1a and IL-6 and marked improvement in DN. The histo-
pathological pattern of kidney tissue has provided certain
support for the biochemical data. In the current study, we
were not able to use real-time PCR for gene expression of
TNF-a and TGF-b1 due to technical issues but instead
reverse transcription PCR conjugated with densitometric
analysis of the PCR products was used for semi-quantita-
tive analysis for the expression of these genes relative to b-
actin. The quantitation of AGEs was not performed but
fructosamine was an indicator for serum protein glycation.

PM has been shown to prevent diabetic complications in
animal models by inhibiting the degradation of the protein
glycation intermediate, identified as fructosamine to
AGEs.55 Several experimental and clinical studies have
been conducted lastly on PM. The first one demonstrated
its protective effect on protein backbone against fragmenta-
tion induced via different oxidative mechanisms including
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Figure 2 The gene expression of (a) TNF-a and (b) TGF-b in the kidney of rats one, two and six weeks following the administration of a single dose of alloxan

intraperitoneally (90 mg/kg body weight). The PCR product was separated on (c) agarose gel and the gene expression was calculated relative to b-actin after six weeks

of treatment with PM in diabetic rats. Results were expressed as mean�SD. *Significant difference from NC at P<0.05 and **significant difference from DC at P<0.05
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autoxidation of glucose.56 This protection was attributed to
the hydroxyl radical scavenging properties of PM. A recent
study that used chronic renal failure model of rats (subtotal
nephrectomy) has referred to significant improvements in
the clearance of creatinine, blood urea nitrogen and AGEs
after eight weeks of treatment with PM.20 Currently, a ran-
domized double-blind, placebo-controlled trial is being
conducted in 300 patients with DKD. This is to illustrate
further the effect of PM in decreasing serum creatinine.17

Another clinical study done in Indonesia has demonstrated
mishandling of thiamine, increased degradation of vitamin
B6 and cytosolic metabolic resistance to vitamin B12 in type 2
diabetic patients.57

Conclusion

In conclusion, using agents to interrupt the harmful bio-
chemical reactions that occur between glucose and the
kidney microvasculature is a novel approach for the treat-
ment of DN. Prospective trials are needed to elucidate a
potential role for PM in adjunctive therapy and to confirm
the adequate dose for enhanced renal outcomes in DN.
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