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Abstract
RBM8A (Y14) contains an RNA-binding motif and forms a tight heterodimer with Magoh. The heterodimer is known to be a member of

the exon junction complex that forms on mRNA before export and it is required for mRNA metabolism processes such as splicing,

mRNA export and nonsense-mediated mRNA decay. Recently, deficient cellular proliferation has been observed in RBM8A- or

Magoh-depleted cells. These results prompted us to study the role of RBM8A in cell cycle progression of human tumour cells.

The depletion of RBM8A in A549 cells resulted in poor cell survival and the accumulation of mitotic cells. After release from G1/S arrest

induced by a double thymidine block, the RBM8A-silenced cells could not proceed to the next G1 phase beyond G2/M phase. Finally,

the sub-G1 population increased and the apoptosis markers caspases 3/7 were activated. Silenced cells exhibited an increased

frequency of multipolar or monopolar centrosomes, which may have caused the observed deficiency in cell cycle progression. Finally,

silencing of either RBM8A or Magoh resulted in mutual downregulation of the other protein. These results illustrate that the RBM8A-

Magoh mRNA binding complex is required for M phase progression and both proteins may be novel targets for anticancer therapy.
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Introduction

The exon junction complex (EJC) forms on exon junctions in
association with mRNA splicing and this complex consists
of RBM8A (Y14), Magoh, eIF4A3, Btz, SRm160, Aly and
other proteins.1–3 RBM8A tightly forms a heterodimer
with Magoh and it localizes onto mRNA through the
RNA-binding motif of RBM8A. EJC is required for mRNA
export and the nonsense-mediated mRNA decay (NMD)
pathway and NMD-related factors assemble the decaying
complex onto mRNA through EJC. After the first pioneer
round of translation, EJC is removed from mRNA molecules
and reused in the nuclei.4–6 Recent research revealed that
RBM8A can form a complex with STAT3, which regulates
cytokine regulator pathways and its novel function in
STAT3-mediated transcription has been implied.7,8

On the other hand, Le Hir et al.1 demonstrated the asso-
ciation between RBM8A and Magoh and depletion of one of
these proteins in Drosophila SL2 cells resulted in deficient
cellular proliferation. Furthermore, Sudo et al.9 performed
loss-of-function screening of genes involved in growth in a
human mesothelioma cell line. In addition to the COPA

gene, they demonstrated the contribution of RBM8A to

cell growth in a silencing experiment. Thus, RBM8A

seems to be necessary for cell cycle progression and its

depletion can alter the cell cycle and lead to cell death. On

the other hand, there is a possibility that RBM8A depletion

leads to apoptosis. RBM8A-depleted cells do not replicate

probably because they are undergoing apoptosis and not

because RBM8A depletion alters cell cycle progression.

However, no mechanism has been proposed thus far for

the growth defect in the RBM8A-depleted cells, although

abnormal gene expression was estimated as the cause of

growth deficiency.
Recently, the novel function of Magoh in neural stem cell

division was reported in mice and the contribution of
Magoh to mitotic progression was proposed by Silver
et al.10 Furthermore, Inaki et al.11 revealed the contribution
of Magoh to cyclin-dependent kinase (Cdk) regulation in a
temperature-sensitive cell cycle mutant screening experi-
ment. Because Cdk was required for mitosis progression,
this finding strongly implies the participation of Magoh in
cell cycle progression, independent of EJC formation.
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Interestingly, RBM8A deficiency in humans had differ-
ent phenotypic consequences than Magoh deficiency. The
deletion of chromosome 1q21.1 has been frequently found
in thrombocytopenia-absent radius (TAR) syndrome
patients and RBM8A is mapped to this region. Recently,
Albers et al.12 reported that the TAR syndrome is caused
by the compound inheritance of a 1q21.1 deletion and
rare SNPs in RBM8A. TAR syndrome patients share no
common phenotype with Magoh-deficient mice.
Therefore, it is speculated that Magoh and RBM8A have
independent functions in addition to their shared functions.

In the present study, we studied the role of RBM8A in
cell division in silencing experiments using a human
tumour cell line and our results revealed the role of
RBM8A in cell cycle progression, particularly for mitotic
progression. In our study, depletion of RBM8A resulted in
coordinate decreasing of Magoh protein. Therefore, it is
possible that RBM8A participates in cell cycle progression
through Magoh, with which it associates in centrosome
regulation.

Materials and methods
Cell culture

A549 and HeLa cells were maintained in Dulbecco’s mod-
ified Eagle medium supplemented with 10% fetal bovine
serum and antibiotics. To arrest the HeLa cells at the
G1/S boundary phase, double thymidine treatment was
used. In brief, cells were incubated in 2.5 mM thymidine-
containing medium (Sigma-Aldrich, St Louis, MO, USA) for
24 h in two separate periods that were typically separated
by 12 h.

Silencing of gene expression using siRNA

One day before siRNA transfection, cells were seeded in a
culture plate or dish. The RBM8A gene was silenced using
Stealth Select RNAiTM siRNAs (HSS115052: shown in ‘#1’,
HSS115053: shown in ‘#2’, HSS115054: shown in ‘#3’) and
Magoh silencing was also performed in the same manner
(HSS142861: shown in ‘#1’, HSS142862: shown in ‘#2’,
HSS142863: shown in ‘#3’). siRNAs were obtained from
Invitrogen, Life Technologies (Carlsbad, CA, USA) and
Lipofectamine RNAiMAX (Invitrogen) was used to trans-
fect siRNA. Two double-stranded molecules of the Stealth
RNAi negative control kit, LO (L) MI (M) and HI (H), were
used as negative controls. Because RBM8A partially over-
laps with GNRHR2,13,14 the target sequence of siRNA did
not include the overlapping region.

Flow cytometric analysis

After gene silencing, cells were collected by trypsinization
and fixed with 30% ethanol in phosphate-buffered saline
(PBS). To collect floating M phase cells, the culture
medium was combined with the trypsinized cell suspen-
sion. After fixation, cells were treated with 1 mg/mL
RNase (Sigma-Aldrich) and stained with 1 mg/mL propi-
dium iodide (Sigma-Aldrich). After staining, a
FACSCalibur flow cytometer and Cell Quest Pro software

(Becton Dickinson & Co., Franklin Lakes, NJ, USA) were
used for data analysis.

Western blotting (WB)

To analyse the expression of RBM8A and Magoh, Western
blotting was performed.15 Mouse monoclonal anti-RBM8A
antibody was purchased from Sigma (Y1253) and anti-
Magoh antibody was purchased from Abcam plc
(ab38768, Cambridge, UK). Apoptosis-related caspase and
poly(ADP-ribose) polymerase (PARP) activation was ana-
lysed by Western blotting. Anticaspase and anti-PARP anti-
bodies were picked up from Apoptosis sampler kit (#4445,
Cell Signaling Technology, Inc., Danvers, MA, USA).
Reference b-actin (ACTB) was detected by mouse monoclo-
nal anti-b-actin antibody from Sigma (A5441). Finally, the
signal from a horseradish peroxidase-conjugated second
antibody (polyclonal goat antirabbit or antimouse antibody,
P0447 or P0448, from Dako Denmark Inc., Glostrup,
Denmark) was detected using ImmunoStar LD (Wako
Pure Chemical Industries, Ltd, Osaka, Japan) and
LAS4000 (Fujifilm Corp., Tokyo, Japan).

Real-time PCR analysis

Total RNA was extracted from the cells by using QIAGEN
RNeasy mini kit (Qiagen GmbH, Hilden, Germany). The
quality of RNA was checked on the basis of the band inten-
sity of 18 S and 28 S ribosomes determined using 1.2% agar-
ose gel. Complement DNA (cDNA) was synthesized using
Superscript III reverse transcriptase (Invitrogen, Life
Technologies) and the cDNA was used as the template in
real-time PCR; TaqMan Gene Expression assays were per-
formed using the 7900HT Fast Real-time PCR system
(Applied Biosystems, Life Technologies). The primer sets
Hs04234932_g1 for RBM8A, Hs00830672_s1 for Magoh
and Hs01060665_g1 for b-actin were purchased from
Applied Biosystems, Life Technologies.

Measurement of the mitotic index

Cells were collected by trypsinization and fixed with
Carnoy solution. Specimens were stained with Giemsa
solution (Sigma-Aldrich). The frequency of mitotic cells
per 800 cells was counted under a microscope using a
blinded method.

Immunostaining

Our immunostaining protocol was described in a previous
report.16 Concretely, the cells were washed twice with
excess PBS and fixed for 10 min in cold methanol (Wako)
or 10% paraformaldehyde solution (TAAB Laboratories
Equipment Ltd., Berks, UK) at room temperature. Cells
were treated with 0.2% Triton X for 10 min following three
washes with PBS. Blocking was done using PBS-diluted 1%
bovine serum albumin (Wako) for 30 min at room tempera-
ture. After these procedures, cells were incubated with 200 x
diluted rabbit anti-g-Tubulin (T3559, Sigma) or 200 x diluted
antipericentrin antibody (PRB-432 C, Covance Inc.,
Princeton, NJ, USA) for 2 h at room temperature. Primary
antibody binding was detected using 800 x diluted Alexa
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Fluor 594-conjugated secondary antibody solution (A11007,
Molecular Probes, Life Technologies) for 1 h at room tem-
perature and nuclei were detected by DAPI staining.
Prolong Gold antifade reagent (Invitrogen) was used to
avoid fading. Images were obtained and processed using
an Axiovert 200 M camera (Carl Zeiss Co. Ltd., Jena,
Germany). The number of centrosomes was counted in
more than 200 cells.

Statistics analysis

For multiple testing, data were analysed by Dunnett’s post
hoc test for multiple comparisons to the control groups.
Differences were considered statistically significant if
P< 0.05.

Results
Effect of RBM8A depletion on colony-forming ability

To study the physiological function of RBM8A, we trans-
fected the A549 cells with two siRNAs that target different
regions of the RBM8A mRNA sequence. In this study,
Western blot analysis revealed that specific siRNA reprodu-
cibly reduced the RBM8A levels to less than 15% of those in
control siRNA-transfected cells two days after transfection
(Figure 1a). Simultaneously, cells were harvested from
plates and 200 cells were inoculated in 6-cm-diameter
dishes. After two weeks of incubation, the colonies
formed were stained and counted. The number of obtained
colonies is shown in Figure 1b. RBM8A-depleted cells dis-
played significantly reduced colony-forming ability. The
depletion of RBM8A causes the arrest of cell growth or
cell death and this observation appears to be consistent
with published data.1

Effect of RBM8A depletion on the mitotic index

RBM8A-depleted cells exhibited a significant increment in
the number of mitotic cells (Figure 1c). However, the
number of chromosomes was not affected by RBM8A silen-
cing and no chromosomal aberration has been observed by
microscopic examination to this point (data not shown).
Another M phase indicator, phosphorylated histone H3
positivity, was also assessed and this marker also revealed
a similar increment in the number of mitotic cells
(Supplementary Figure 1).17

RBM8-depleted cells have defects in M phase
progression

Next, we analysed whether RBM8A-depleted cells proceed

through M phase. One day after the transfection of siRNA,

HeLa cells were blocked at the G1/S border by a double

thymidine block. Eight hours after release from the double

thymidine block, almost all cells entered G2/M phase and

proceeded to the next G1 phase after 12 h. As shown in

Figure 2, both control siRNA- and RBM8A siRNA-

transfected cells arrested at the G1/S boundary phase and

entered G2/M within 8 h of release from the thymidine

block. After 12 h of incubation, more than 60% of control

cells proceeded to the next G1 phase and less than 30%

remained in G2/M phase. However, only 40% of RBM8A-

silenced cells proceeded to the next G1 phase and more than

30% of cells remained in G2/M phase (Figure 2). These

results indicated that substantial fraction of RBM8A-

depleted cells did not proceed through G2/M phase

promptly and RBM8A depletion may result in defects in

M phase progression.
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Figure 1 siRNA-mediated depletion of RBM8A results in poor colony-forming ability. The A549 cells were transfected with control stealth siRNA (L and M) or anti-

RBM8A stealth siRNA (#2 and #3). After one day, cells were harvested and inoculated into dishes. Simultaneously, total protein was extracted and RBM8A expression

was assessed by Western blotting. (a) A representative image. b-actin (ACTB) was used as a loading control. (b) The number of colonies. (c) After silencing, karyotype

analysis was performed and the number of chromosomes was counted (c). L and M show control siRNA data and #2 and #3 show RBM8A-specific siRNA data. The

bars indicate SD. The presented data are representative of three independent experiments. Asterisk shows P< 0.05
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The sub-G1 fraction increased in RBM8A-depleted cells

To reveal the effect of RBM8A silencing on cell cycle pro-
gression, flow cytometric analysis was performed. This ana-
lysis also revealed the accumulation of cells in M phase two
days after transfection (Figure 3). Our results demonstrated
the increment of the G2/M and apoptotic sub-G1 phases. In
accordance with the results shown in Figure 1, we con-
cluded that the arrest in M phase followed by apoptosis
may be the cause of the low colony-forming ability of
RBM8A-depleted cells.

RBM8A depletion results in caspase activation

As shown in Figure 3, in RBM8A-depleted cells, the fraction
of the sub-G1 phase increased by two- to three-fold. To con-
firm the induction of apoptosis, we performed Western
blotting to detect the apoptosis-related enzymes caspases
3/7.18–20 The cleaved forms of caspases 3/7 were detected

only in RBM8A-depleted cells by using three independent
siRNA for RBM8A and their activation was confirmed
(Figure 4). Furthermore, PARP, which is a downstream
target of caspases 3/7, was also cleaved and activated.
Thus, we concluded that RBM8A-depleted cells accumulate
in M phase and ultimately undergo apoptotic cell death.

RBM8A depletion results in aberrant centrosome
maturation

To analyse why RBM8A-silenced cells cannot proceed to G1
phase after mitosis, we examined the number of centro-
somes after siRNA transfection. After siRNA transfection,
centrosomes were immunostained with anti-g-tubulin anti-
body. As shown in Figure 5a, chromosome formation pro-
ceeded with two centrosomes in control siRNA-transfected
cells. However, the RBM8A-depleted cells exhibited aber-
rant numbers of centrosomes. As shown in Figure 5c and e,
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Figure 2 RBM8A cells have a defect in M phase progression. Transfected HeLa cells were blocked at the G1/S boundary phase by the double thymidine method and

8 or 12 h after release, cells were fixed and stained. A representative flow cytometry result is shown. The majority of control siRNA-transfected cells proceeded to the
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mono- and multipolar centrosomes were detected. We ran-
domly selected the mitotic cells and counted the number of
centrosomes. Results were presented in graphical form in
Figure 6. After anti-g-tubulin staining in the RBM8A-
depleted cells, the percentage of cells with multiple (more
than two) and single centrosomes increased. A similar
result was obtained using pericentrin staining.

Depletion of RBM8A resulted in the downregulation of
its binding partner Magoh

The RBM8A-deficient patients with TAR syndrome display
no brain abnormalities even though Magoh-deficient mice
display microcephaly.10 This finding in mice is caused by
deficient cell division in the brain but it is not clear whether
RBM8A contributes to this defect. To elucidate the effect of
RBM8A depletion on Magoh expression, we silenced
RBM8A or Magoh and analysed the expression of each pro-
tein by Western blotting. As shown in Figure 7, silencing
RBM8A or Magoh resulted in the downregulation of both
the target gene and the binding partner. Three siRNAs
against Magoh had different level of knockdown and a pro-
portional effect on RBM8A protein expression was
observed. We performed real-time PCR to determine
whether the mRNA expression levels influenced this

downregulation. The results of our analysis are shown in
Figure 8. The levels of RBM8A mRNA reduced in RBM8A-
knockdown cells but not in Magoh-knockdown cells. The
levels of Magoh mRNA reduced in Magoh-knockdown
cells but not in RBM8A-knockdown cells. Therefore, we
conclude that the reduction in the levels of each protein is
interdependent and that both the proteins are required to be
present for the stable expression of each other in the cells.

Discussion

Our results revealed that the deficiency of RBM8A in
human cells resulted in the failure of cell cycle progression,
particularly progression through mitosis. This defect was
caused by abnormal centrosome maturation and RBM8A-
deficient cells ultimately underwent apoptosis via caspases
activation. Our results showed that RBM8A is required for
cell cycle progression and its depletion can cause the cell
death from cell cycle deficiency.

As shown in Figure 1, RBM8A-depleted cells accumulate
in G2/M phase in A549 cells. In addition, almost all
RBM8A-depleted cells could not proceed from G2/M to
next G1 phase and only limited part of siRNA-transfected
cells could proceed to next G1, as shown in Figure 2.
Therefore, RBM8A depletion can cause the G2/M arrest
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in human tumour cells and this indicated the requirement
of RBM8A in cell cycle progression. Overall defect in cell
replication might be the cause of deficiency of G2/M phase
progression but our study could not reveal it. The role of
RBM8A in mitotic phase progression is still unknown. Le
Hir et al.1 revealed the growth deficiency in RBM8A-
depleted cells and his results imply that cell cycle arrest
was not caused by the general inhibition of splicing. Dual
coordinative functions of NMD-related factors in RNA and
DNA processing have been proposed. However, it remains
unclear whether the abnormal protein expression of
RBM8A-depleted cells caused the M phase arrest and apop-
tosis observed in this study. Recent studies revealed the
requirement of RBM8A for STAT3 activation.7,8 STAT3 is a
transcription factor that regulates a very wide range of cel-
lular activities including cell cycle progression and STAT3
activation has also been reported in centrosome
duplication.21 On the other hand, Magoh is involved in
the regulation of mouse Cdks.11 Totally, it is possible that
RBM8A-depleted human cells in our study also have
similar deficiency and G2/M arrest via their alternation.

EJC serves as a platform for NMD factors and their vari-
ous roles in cell cycle progression have been reported. For
example, the stable depletion of Upf2 had little effect on the
growth and survival of HeLa cells even though its expres-
sion is essential for mouse and zebrafish embryonic devel-
opment.22–24 Another NMD factor, Upf3b, associates with
RBM8A and forms EJC on mRNA and this gene is mutated
in individuals with syndromic and non-syndromic mental
retardation.25 However, Upf3b mutations are not lethal and
this implies that Upf3b is not essential for fetal cell viability.
Silencing of Upf1, another mediator of NMD, results in a

deficiency in S phase progression and poor colony-forming
ability in human cells.26 The PI-3 kinase SMG1, which phos-
phorylates Upf1 on recognition of the premature termin-
ation codon on mRNA, also functions as a DNA damage
sensor.27–29 Collectively, NMD activity do not seem to be
related to cell cycle progression because no common symp-
tom is not observed among various NMD factor deficient
cells. Therefore, loss of RBM8A may result in deficiency of
NMD activity but defects in cell cycle progression or the
DNA damage response in silenced cells are not due to the
loss of NMD activity. Thus, it appears that specific NMD or
EJC factors play a role in DNA metabolism in dependent on
RNA processing and it is possible that RBM8A also pro-
cesses the function in cell cycle progression in addition to
RNA metabolism.

As shown in Figures 5 and 6, aberrant centrosomes were
observed in the RBM8A-depleted cells. These cells might
proceed with severe defect of genome construction and
this can cause the cell death seen in Figures 3 and 4. On
the other hand, there is another possibility that RBM8A
depletion causes apoptosis directly and this cell death can
cease the cell cycle progression. At least, the substantial part
of the G1/S boundary-synchronized cells could proceed to
G2/M phase, as shown in Figure 2, but our results using
flow cytometer and Western blot analysis cannot differen-
tiated the cell cycle stage that apoptosis induced. To reveal
this point, further study is required.

Depletion of either RBM8A or Magoh resulted in the
downregulation of both these proteins (Figure 7). Because
RBM8A and Magoh expression is related to mRNA metab-
olism, we examined the mRNA levels for these proteins in
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the knockdown cells and we observed siRNA-target spe-
cific mRNA depletion; no interdependent relation was
observed (Figure 8). Therefore, we concluded that defi-
ciency in the levels of either RBM8A or Magoh alters the
expression of both RBM8A and Magoh. Depleted levels of
either RBM8A or Magoh showed similar phenotypes in the
cultured cells.1 Therefore, we speculate that the complex
formation of RBM8A and Magoh is important for stable
protein expression in the cells. On the other hand, the
results of this study show that deficiency of RBM8A or
Magoh can lead to similar phenotype in the cultured cells.
However, the characteristics of patients with TAR syn-
drome with deficient RBM8A have no resemblance with
those observed in Magoh-deficient mice. In humans, defects
in RBM8A expression probably alter the radius develop-
ment and maturation in platelet thrombocytes and do not
influence brain development.

In the present study, we found an M phase-related defect
in RBM8A-depleted cells and we speculate that the
unknown abnormal expression pattern induced by
RBM8A silencing causes defects in M phase progression
or RBM8A itself can regulate M cell cycle progression
through Magoh and other pathways. The aberrant centro-
some maturation was observed in RBM8A-depleted human
cells. Similar abnormal mitotic apparatus maturation have
been observed in cells treated with microtubule-stabilizer
or microtubule-depolymerizer and the treatments resulted

in apoptotic cell death of tumour cells. Then, some of them
have been developed as anticancer drugs.30,31 Because we
observed apoptosis induction in various types of human
tumour cell lines, RBM8A may be a candidate target for
anticancer agents.
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