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Abstract
Activating mutations in the Wnt signaling pathway account for the initiation of greater than 90% of all colorectal cancers and this

pathway has been implicated in numerous other diseases. Therefore, identifying small molecule inhibitors of this pathway is of

critical importance towards identifying clinically relevant drugs. Numerous screens have been employed to identify therapeutic

reagents, but none have made it to advanced clinical trials, suggesting that traditional screening methods are ineffective at

identifying clinically relevant targets. Here, we describe a novel in vivo screen to identify small molecule inhibitors of the Wnt

pathway. Specifically, treatment of zebrafish embryos with LiCl inhibits GSK3 kinase function, resulting in hyperactivation of the

signaling pathway and an eyeless phenotype at 1 day post fertilization. Using the small molecule XAV939, a known inhibitor of Wnt

signaling, we rescued the LiCl induced eyeless phenotype, confirming efficacy of the screen. We next tested our assay with 400

known small molecule kinase inhibitors, none of which should inhibit Wnt signaling below the level of GSK3 based on their known

targets. Accordingly, none of these small molecules rescued the eyeless phenotype, which demonstrates the stringency of the

assay. However, several of these small molecule kinase inhibitors did generate a non-Wnt phenotype in accordance with the kinase

they targeted. Therefore, combining the efficacy, sensitivity, and stringency of this preliminary screen, this model will provide an

alternative to the traditional in vitro screen, generating potentially clinical relevant drugs in a rapid and cost-effective way.
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Introduction

Colorectal cancer (CRC) is the third most common cancer
worldwide with over 1.2 million new diagnoses each year.
What makes CRC unique among cancers is its depend-
ence on a single signaling pathway. A recent comprehen-
sive study reports that greater than 90% of all colon
cancers are caused by activating mutations in genes
within the Wnt signaling pathway.1–3 In parallel research,
it is now well established that cancer stem cells (CSC) are
the source for both the initiating tumor and recurrent
malignancies that are therapy-resistant.4–7 Wnt signaling
drives CSCs making this pathway the definitive signaling
cascade that drives tumorgenesis in colon and many other
cancers.8–16 Thus, the Wnt pathway in CSC is an excellent
therapeutic target for a myriad of human cancers, particu-
larly of the colon.5,9,10,17 To this end, there have been
numerous small molecule screens for Wnt inhibitors, but
these typically utilized cell lines with an artificial reporter.
While such screens have had some success in identifying

Wnt inhibitors, none have advanced to stage III clinical
trials.

To further our understanding of CRC development, we
have developed an innovative strategy to use the in vivo
stem cells of the zebrafish blastula in a semi-high-through-
put screen for small molecules that target the Wnt pathway.
We take advantage of the highly conserved Wnt signaling
pathway,18 which is active in the stem cells of the early
zebrafish blastula stage embryo.19–22 Zebrafish are rapidly
becoming the preferred model for whole animal toxicity
screens in the pharmaceutical industry23,24 as they are a
well-established genetic tool for understanding the function
of human genes in development and disease.25–27

Wnt signaling pathway

In its resting state, in which there is no Wnt ligand
(Figure 1(a)), an intracellular, constitutively active, destruc-
tion complex consisting of axin, adenomatous polyposis coli
(APC) (both scaffolding proteins) and GSK3 (a kinase) binds
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to and phosphorylates b-catenin, resulting in ubiquitin-
mediated degradation of b-catenin. The presence of Wnt
ligand binding to its receptors initiates activation of the
pathway (Figure 1(b)), resulting in deactivation of the
destruction complex.28–30 This deactivation results in accu-
mulation of cytoplasmic b-catenin, which translocates into
the nucleus where it interacts with TCF/LEF transcription
factors to activate transcription of target genes. Wnt signal-
ing transcriptional targets are context-dependent and can
be involved in proliferation, migration, and differenti-
ation.30–34 However, in vertebrates there appears to
be two potentially universal and obligate targets of Wnt
signaling: Nkd1 and Axin2.35–40

Wnt signaling in early development

Wnt signaling is one of the first pathways to be activated
upon fertilization of the egg, patterning the dorsal-ventral
axis and subsequently the anterior-posterior neuraxis.41,42

Mutants in this pathway underscore the importance of Wnt
signaling in development: mutations in the central signal-
ing component b-catenin results in the absence of dorsal
organizer formation and defects in the neuroectoderm.43

In contrast, hyperactivation of the pathway is a conse-
quence of mutations in the Wnt antagonists masterblind
(axin) and headless (tcf7l1) and, as their names suggest,
these embryos develop without eyes.44–46 Consistent with
these phenotypes, ectopic activation of Wnt signaling also
results in an eyeless embryo.20,22,47,48

Wnt signaling in cancer

In the majority of CRCs, mutations in APC, Axin2 or
b-catenin itself, prevent the destruction complex from
degrading b-catenin.1 This leads to activation of Wnt
target genes in the absence of a Wnt ligand (Figure 1(c)).
The current hypothesis is that aberrant Wnt signaling in the
colonic crypt stem cells leads to the formation of adenomas.
Mutations in other signaling pathways, such as EGF or
K-RAS, transition these adenomas into adenocarcinomas
and these tumors consist of a heterogeneous population of
cells including differentiated cells and CSC. It is believed
that CSC within the adenoma and tumor are refractory to
chemotherapy and are the source for recurrent tumor for-
mation. Thus, if therapies could be targeted specifically to
the Wnt pathway in these CSC, it would halt the formation
of the adenomas and/or their progression into more malig-
nant tumors.49,50

Previous Wnt antagonist screens

There have been several screens over the past eight years
that have identified inhibitors acting at different levels in
the Wnt signaling cascade (Figure 1(c)).51 Three screens
identified small molecules that inhibit the b-catenin-TCF
activation of Wnt target genes.52–54 In two independent
screens, two different molecules were identified (IWR-1
and XAV939) that inhibit tankyrase function, leading to
increased stability of Axin and thus increased degradation
of b-catenin.55,56 What is common to these in vitro screens is

Figure 1 Wnt signaling cascade. In its resting, unstimulated state, in which there is no Wnt ligand (a), an intracellular, constitutively active, destruction complex

consisting of Axin, APC, GSK3, and CK1 binds to and phosphorylates b-catenin, resulting in ubiquitin-mediated degradation of b-catenin. (b) The presence of Wnt

ligand binding to its receptors, Frizzled and LRP6 (1), initiates activation of the pathway, resulting in activation of the scaffolding protein Dvl (2). Activated Dvl inhibits the

destruction complex (3). This results in accumulation of cytoplasmic b-catenin (4), which translocates into the nucleus (5) to activate transcription of target genes (6). (c)

In the vast majority of colon cancers mutations are found in the APC gene, disabling the destruction complex. This results in accumulation of cytoplasmic b-catenin and

translocation into the nucleus where it maintains cells in a cancer stem cell state. Other mutations, such as in Axin, or in the phosphorylation sites of b-catenin, also

result in accumulation of b-catenin and signaling.* Mutations in GSK3 or inhibition of GSK3 have not been observed in colorectal cancers but are included here because

inhibiting GSK3 with LiCl mimics the molecular events that occur in colon cancer. The numbers refer to in vitro screens that have identified small molecules that inhibit

Wnt signaling at various positions within the pathway. Numbers 1–4 refer to the following references: 1: [55,59]; 2: [53]; 3: [60]; 4: [52,54,58,64]. (A color version of this

figure is available in the online journal.)
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the use of an artificial GFP or luciferase reporter assay in
cell lines such as HEK293T, which have ‘normal’ Wnt sig-
naling not reflective of the oncogenic signaling that occurs
in cancer.52–55,57–59 In one particularly novel screen that
diverges from the typical cell culture and reporter
scheme, Xenopus cellular extract was used to measure the
ratio of b-catenin to Axin in the presence of different small
molecules. This screen revealed that the FDA-approved
drug pyrvinium (used to treat pinworm infection) was
effective at reducing the activation of Wnt target genes.60

Importantly, other groups screened this same library and
identified other Wnt antagonist compounds, but not pyrvi-
nium.59 Thus, different models clearly have different
responses to the same small molecules.

It should be noted that several of these screens have
included Xenopus and/or zebrafish models to validate puta-
tive molecules, which has greatly informed the efficacy, spe-
cificity, and toxicity of these drugs.53–57,60 Xenopus and
zebrafish embryos are amenable to these tests because of
the high conservation of the Wnt pathway and the known

effects of Wnt signaling in development.55,56 Recently, Hao
et al.61 have used zebrafish dorsoventral patterning as a
platform to screen for novel small molecules that target
the Wnt pathway. However, that screen was not designed
specifically to identify Wnt inhibitors. Here, we describe a
novel strategy for specifically identifying small molecules
that counteract aberrant Wnt signal activation in zebrafish
embryos.

Materials and methods

Approximately 600 healthy wild-type embryos at mid-blas-
tula stage were placed in a mesh basket to facilitate transfer
between solutions. At 4.5 h post fertilization (dome – 30%
epiboly stage), embryos were immersed in a solution of
300 mM LiCl (Sigma) for exactly 10 min at room tempera-
ture with agitation approximately every minute. Embryos
were washed three consecutive times, 20 s each, in room
temperature water and then incubated at 28.5�C for
15 min. Necrotic embryos were removed and five to six

Figure 2 Response of Wnt: GFP transgenic zebrafish to agonists and antagonists to Wnt signaling. Wnt reporter transgenic zebrafish display GFP in known Wnt

responsive regions of the developing nervous system at 1 dpf (a) and 2 dpf (c). (b) Treatment with 1mM of XAV939 dramatically reduces the expression of the Wnt: GFP

reporter. (d) Treatment with 300 mM LiCl results in expanded Wnt signaling domains in the developing nervous system at 2 dpf (bottom; compare white bars). Note the

dramatically reduced eye in LiCl-treated embryos. This phenotype is critically dependent on the LiCl treatment procedure. Incomplete mixing of embryos in LiCl will

result in variable expressivity and penetrance of the eyeless phenotype as seen here, resulting in a smaller, but not absent, eye. (A color version of this figure is available

in the online journal.)
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embryos were placed in each well of a 96-well plate and
excess water removed.62 Using a multi-channel pipettor,
160 uL of water was added to each well of the 96-well
plate followed by 40 uL of 50 mM compound containing
5% DMSO. Note that column 1 of the compound plate con-
tains 5 mM XAV939 (Reagents Direct) in 5% DMSO and
column 12 contains just 5% DMSO in water. Therefore,
each 96-well plate contains 80 testable compounds.
Compounds were a gift from the Ontario Institute for
Cancer Research (OICR) and contain small molecule inhibi-
tors of known kinases.63 The final concentration of all small
molecules (with the exception of XAV939) was 10 mM in 1%
DMSO, consistent with in vitro screens. Plates were incu-
bated at 28.5�C for a further 20 h and scored visually for the
presence or absence of an eye and general toxicity. All eye
phenotypes were compared to controls consisting of
untreated (negative control), LiCl treated (n& 45 positive
control) and LiCl plus 1.0mM XAV939 (n& 45 rescue
control).

Results and discussion

This screen takes advantage of the known effects of ectopic
Wnt activation on zebrafish development. Ectopic activa-
tion of Wnt signaling in zebrafish blastula stem cells with
transient LiCl treatment results in a robust eyeless pheno-
type at 1 day post fertilization (dpf) (Figure 3(b)).65 LiCl
inhibits GSK3 function, which in turn deactivates the
destruction complex, resulting in accumulation of b-catenin
and activation of its transcriptional targets (Figure 2).
This time-limited over-activation of Wnt signaling effect-
ively reprograms the late blastula stage stem cells to
become posterior neural tissue at the expense of anterior

neural tissue during early gastrulation.20,22 The net result
is an eyeless zebrafish at 1 dpf. Importantly, the effect of
LiCl on GSK3 function mimics mutations found in CRC
(Figure 1(c)). Thus, an eyeless phenotype in zebrafish is
similar at the molecular level to the initiation of CRC in
humans. Therefore, if we can identify inhibitors of the eye-
less phenotype, that is, rescue the LiCl induced eyeless
phenotype, then these compounds represent excellent
therapeutic targets.

First, we determined whether a known small molecule
Wnt inhibitor XAV939 (see above)55 was sufficient to rescue
the LiCl-induced eyeless phenotype. Treatment with LiCl
alone results in 100% of the zebrafish embryos being com-
pletely eyeless at 1 dpf (Figure 3(b)). Treatment with
1�10 mM XAV939 alone has no obvious phenotype
(Figure 3(c) and not shown). Embryos first treated with
LiCl and then with 10.0 mM of XAV939 resulted in �95%
of the embryos with obvious eyes, consistent with pub-
lished reports on XAV939.55 However, these embryos also
had other developmental defects, such as heart edema and
a distorted axis (Figure 3(d)). Reducing the dose of XAV939
to 1mM also resulted in �95% of the embryos with obvious
eyes but without the other defects (Figure 3(e)). Therefore,
we used 1 mM of XAV939 as a control for the study. These
results show that the addition of a small molecule can
rescue the eyes in zebrafish treated with LiCl, validating
the viability of this screen.

We next tested for specificity of the screen using a small
molecule library of 400 known kinase inhibitors from
OICR.63 Of these 400, none rescued the eyeless phenotype.
It is important to note that the targets of these kinase inhibi-
tors are known, such as Gleevac, which targets Brc-Abl,

Figure 3 XAV939 rescue of LiCl treatment. (a) Untreated embryos at 2 dpf. (b) LiCl treatment eliminates the eye in 100% of embryos, but otherwise development

proceeds relatively normally. Treatment of embryos with 5�M of XAV939 has no gross effect on zebrafish development (c). Treatment of zebrafish first with LiCl

followed by 10 mM of XAV939 results in rescue of the eye but also other defects such as heart edema and truncated/twisted axis development (d). Reducing the

concentration of XAV939 to 1mM XAV939 to LiCl-treated embryos suppresses the eyeless phenotype in 95% of LiCl-treated embryos (e). Zebrafish are 2 dpf for clarity

of the eye phenotype
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PDGFR and c-KIT kinases, and that none of the compounds
are expected to rescue the LiCl-induced eyeless phenotype
based on their known targets. In this library there are eight
GSK3 inhibitors. Treatment of zebrafish embryos with these

inhibitors (without LiCl) resulted in only one of these (BIO)
generating an eyeless phenotype at 1 dpf at 10 mM, which
was rescued by the addition of 1mM XAV939 (Figure 4(a)).
This suggests that not all small molecules will be effective,

Figure 4 Small molecule kinase inhibitors result in predictable and novel phenotypes. The GSK3 inhibitor BIO also induces an eyeless phenotype in zebrafish, which

can be rescued by 1mM XAV939 (a). Inhibition of TFGb signaling with SD 208 (b) results in a classical maternal-zygotic one-eyed-pinhead (MZoep) phenotype (d,

reprinted by permission from Bamford et al.69). For clarity these embryos were not treated with LiCl. Embryos first treated with LiCl and then SD208 have a similar

phenotype, but lack eyes altogether (not shown). (c) The MEK1/2 inhibitor AS-703026 results in truncated tail development, while inhibition of PLK1/3 by GW-843682X

results in dysmorphology of the developing central nervous system (e). Other phenotypes observed in the screen included neural necrosis (f) arrested development (h),

and other general defects (g). Arrow in (f) identifies the neural necrosis. (A color version of this figure is available in the online journal)
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possibly due to their permeability or lack of sufficient hom-
ology between zebrafish and human target sites.
Nonetheless, the fact that XAV939 is effective against two
GSK3 inhibitors supports the validity of the screen. Taken
together, this suggests that the false positive rate is very low,
but the false negative rate may be high.

Of the 400 kinase inhibitors we observed toxicity in
45 of these at 10 mM, which resulted in death or arrested
development in all of the embryos within the well.
Several of these were cell cycle kinase inhibitors (Cdc,
Ckd, cyclin). We re-tested these at 1 mM, and while no
longer toxic, none rescued the eye or had other observable
defects.

While the screen was designed to look for zebrafish with
eyes, there were some other notable results independent of
the eye phenotype. First, 27 inhibitors of EGFR and its para-
logs (HER2, ErbB2) had no observable effect. This suggests
that EGF signaling is not functioning within the first 24 h of
development, which is supported by other work from our
lab (TVR, unpublished). In contrast, inhibition of TGFbR
by SD 208 results in a classical TGFb null phenotype, the
one-eyed-pinhead phenotype (Figure 4(b) and (d)).66,67

Inhibitors of other MAPK signaling kinases also
had mixed results. For example, of the 13 inhibitors of
MEK1/2, five displayed arrested development or other
defects (Figure 4(c), (g), (h)), strongly suggesting a role for
MEK1/2 activity in early zebrafish development. This is
consistent with a recent report on MEK1/2 signaling inter-
acting with TGFb signaling.68 However, there were no not-
able defects from any of the other 34 inhibitors of MAPK
signaling (p38, ERK, MKK, etc). Observing no gross
abnormalities at one-day of development needs to be inter-
preted with caution. For example, a more detailed analysis,
or prolonged or delayed exposure, might reveal specific
effects of these inhibitors on other systems or organs such
as neural necrosis or brain dysmorphology (Figure 4(e) and
(f)). Taken together, these data suggest that our screen can
generate predictive responses to small molecules, and also
implicate other signaling cascades in certain developmental
processes.

In summary, the majority of CRCs are initiated by muta-
tions in the Wnt pathway, making this pathway an excellent
target for gene-based therapy. Unfortunately, in vitro
screens to identify small molecules that target the Wnt path-
way have fallen short of becoming clinically viable. Here,
we chose to look at CRC as a stem cell disease and as such is
molecularly similar to Wnt signaling in development. By
manipulating the Wnt pathway in early stem cells we
create a clear phenotype that can be rescued by a known
inhibitor of Wnt signaling. Furthermore, in addition to this
proof of principle, we have also found that the screening
model is specific and can respond predictably to inhibitors
of other signaling pathways as well. Identification of small
molecule inhibitors of Wnt signaling from this screen will
be validated in a secondary screen using human CSCs and
xenographs models. This screening technique will ultim-
ately identify putative therapies and have a significant
impact in reducing the morbidity and mortality rate due
to cancer.

Author contributions: All authors conducted the experi-
ments; TVR designed and interpreted the results and
wrote the manuscript.
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