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Abstract
Microscopic detection and morphological identification of parasites from clinical specimens are the gold standards for the labora-

tory diagnosis of parasitic infections. The limitations of such diagnostic assays include insufficient sensitivity and operator

dependence. Immunoassays for parasitic antigens are not available for most parasitic infections and have not significantly

improved the sensitivity of laboratory detection. Advances in molecular detection by nucleic acid amplification may improve

the detection in asymptomatic infections with low parasitic burden. Rapidly accumulating genomic data on parasites allow the

design of polymerase chain reaction (PCR) primers directed towards multi-copy gene targets, such as the ribosomal and mito-

chondrial genes, which further improve the sensitivity. Parasitic cell or its free circulating parasitic DNA can be shed from parasites

into blood and excreta which may allow its detection without the whole parasite being present within the portion of clinical sample

used for DNA extraction. Multiplex nucleic acid amplification technology allows the simultaneous detection of many parasitic

species within a single clinical specimen. In addition to improved sensitivity, nucleic acid amplification with sequencing can help to

differentiate different parasitic species at different stages with similar morphology, detect and speciate parasites from fixed

histopathological sections and identify anti-parasitic drug resistance. The use of consensus primer and PCR sequencing may

even help to identify novel parasitic species. The key limitation of molecular detection is the technological expertise and expense

which are usually lacking in the field setting at highly endemic areas. However, such tests can be useful for screening important

parasitic infections in asymptomatic patients, donors or recipients coming from endemic areas in the settings of transfusion

service or tertiary institutions with transplantation service. Such tests can also be used for monitoring these recipients or highly

immunosuppressed patients, so that early preemptive treatment can be given for reactivated parasitic infections while the para-

sitic burden is still low.
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Introduction

Diagnostic clinical parasitology is traditionally a highly
visual subject. Different genera and species of parasites
are differentiated by differences in their morphology. The
standard means of identification involves examination of
stained specimens (using temporary or permanent stains)
under light microscopy, either with routine parasitological
stains or in histopathology sections. Electron microscopy is
sometimes necessary to distinguish ultrastructural differ-
ences that are essential for species identification. This is
especially important in very small protozoa such as the
microsporidia for which light microscopy does not offer
adequate resolution.

While the microscopic examination for parasites remains
the cornerstone of everyday diagnostic parasitology

supplemented by immunoassays, the use of molecular
assays has gained increasing popularity in the past two dec-
ades. With the decline in the prevalence of autochthonous
parasitic diseases in many developed countries, expertise in
diagnostic parasitology among the new generation of
laboratory staff in smaller laboratories may be lacking.
This is aggravated by a relatively low number of requests
received, lack of diversity in the parasites encountered, and
unfamiliarity with unusual or exotic parasites seen in the
returned travellers and the immunocompromised hosts.1,2

Similarly, in the ‘‘field’’ setting of developing countries,
expert microscopists may not be available, leading to sub-
optimal diagnosis of parasitic infections.3 Molecular diag-
nostics may bridge some of these shortcomings of
conventional microscopy. Nevertheless, molecular biology
cannot be the solution to all problems in diagnostic
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parasitology, and the use and choice of such tests should
take into account their limitations and the needs of the
laboratory.

Excellent reviews have been published on the use of
molecular methods for diagnosing parasitic infections.4–6

The technical details of various methodologies will not be
repeated here. In this article, we explore the situations
where molecular assays may be considered as valuable
additions to the routine diagnostic service in a clinical
laboratory.

Methodological considerations

The most widely used molecular methods for diagnostic
parasitology are nucleic acid amplification tests (NAATs).
Polymerase chain reaction (PCR) is certainly the most
widely adopted technique, including its many variations
such as conventional PCR, real-time PCR, multiplex PCR,
PCR-ELISA, and so on. Sequencing of the amplicons is
sometimes needed for species identification. The targets
for NAAT are highly varied. The 18 S rRNA sequences
and internal transcribed spacer (ITS) regions are commonly
used.4 Other gene targets may include the cytochrome c
oxidase subunit 1 (cox1) gene, NADH dehydrogenase, or
antigens specific to the genus or species to be detected.4–7

Among all the gene targets used for molecular diagnosis,
the mitochondrial genes are particularly useful because
there are often multiple mitochondria present in each cell.
Using Caenorhabditis elegans as a model nematode, each cell
contains 40–70 copies of mitochondrial DNA and 55 copies
of 18 S rDNA genes.8,9 In Plasmodium falciparum, there are
about 20 copies of mitochondrial DNA and 7 copies of 18 S
rDNA genes.10,11 The use of these multi-copy genes as tar-
gets for nucleic acid amplification will increase the sensitiv-
ity of the tests. However, not all pathogenic parasites have
multiple mitochondria as in other eukaryotes. Members of
Kinetoplastida (such as the trypanosomes) and
Apicomplexa have only one single mitochondrion per
cell. The mitochondrion-like organelle (mitosome) of
Cryptosporidium parvum, for example, even lacks a mito-
chondrial genome.12–14 Another important considerations
in the choice of target sequence(s) is the availability of the
gene sequence data for a broad range of parasites (Table 1).
In contrast to most bacteria and viruses, sequence data of
some gene targets of parasites are incomplete. Hence, more
than one target may have to be used for accurate species
identification, especially for less commonly encountered
species.

The sensitivity of NAAT is well recognized. One of the
limitations to its broader application in smaller laboratories
and developing countries is the need for expensive instru-
ments and reagents. The clinical and public health sig-
nificance of many parasitic diseases are highest in
resource-limited countries where the need for sensitive
and specific diagnostic facilities is highest. For this reason,
various isothermal amplification techniques have been
developed. In particular, loop-mediated isothermal ampli-
fication (LAMP) appears to be a promising technique for
resource-limited settings. LAMP has been successfully
applied for the detection of a variety of parasites from

clinical specimens, including blood, urine, faeces, and
muscle.15–21 The use of LAMP for the sensitive and accurate
detection of Plasmodium, for example, has been evaluated in
field settings. It appears to be a suitable technology for this
purpose and might have a role as a point-of-care test.22–26

Improved sensitivity for diagnosis

The higher sensitivity of NAAT as compared to conven-
tional microscopy in the detection of parasites is best quan-
tified in the diagnosis of malaria. The detection limit of a
thick blood smear is about 50 parasites per microlitre of
blood when examined by experienced microscopists.27 In
recent years, various immunochromatographic assays
(based on Plasmodium- and P. falciparum-specific lactate
dehydrogenase, Plasmodium aldolase, and histidine-rich
proteins) enabled more rapid diagnosis of malaria inde-
pendent of microscopy. These rapid diagnostic tests, how-
ever, cannot differentiate all Plasmodium species, and the
test remains positive despite successful treatment. More
importantly, their sensitivities drop significantly at low
levels of parasitaemia.28 NAAT can readily achieve a detec-
tion limit of less than five parasites per microlitre of blood.29

A positive PCR reaction, however, has to be interpreted
with the clinical setting because parasite DNA in the
blood may persist despite successful chemotherapy.30 This
high level of sensitivity not only allows detection of low-
level parasitaemia for clinical diagnosis, but is potentially
useful in screening of blood products by blood banks to
prevent transfusion-transmitted malaria.31 With proper val-
idation, a NAAT-based strategy may also apply to screening
of other blood-borne parasites such as Babesia spp. and
Trypanosoma cruzi.32,33

The sensitivity of NAAT assays have been successfully
used in the diagnosis and monitoring of other blood and
tissue parasitic infections in which the parasite load in the
clinical specimen could sometimes be low. Examples
include human African trypanosomiasis, Chagas disease,
visceral leishmaniasis, babesiosis, filariases, and eosino-
philic meningitis due to Angiostrongylus cantonensis.34–42

Although the high sensitivity is one of the biggest advan-
tages of NAAT assays, one should bear in mind that the low
parasitaemia level seen in some infections (such as the
chronic phase of Chagas disease, human African trypano-
somiasis, and visceral leishmaniasis) may cause false nega-
tivity in these assays. The effect of a low parasite load is
compounded by the so-called ‘‘sample volume effect’’, in
which a very small quantity of clinical sample is usually
used for nucleic acid extraction. With the use of quantitative
PCR, the parasitic load in blood can be serially monitored.
This is especially important in diseases such as visceral
leishmaniasis in HIV-infected patients who may have sub-
optimal response to chemotherapy and are prone to relapse
of the infection.43,44 The parasitological response of diffi-
cult-to-treat parasitic infections can likewise be monitored
by quantitative PCR, as in the case of treatment of chronic
Chagas disease.45,46

The diagnosis of congenital parasitic infections, such as
toxoplasmosis and Chagas diseases is sometimes difficult
because of the problems associated with conventional
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serological diagnosis, presence of low levels of parasites,
and sometimes the need for serial monitoring of serology
and clinical manifestations before the diagnosis can be fully
excluded. The high sensitivity of NAAT assays makes them
a useful adjunct to the prenatal and neonatal diagnosis of
infections.47–51 Suitable specimens include maternal blood,
placenta, amniotic fluid (not for T. cruzi), and neonate’s
blood.52

A recent breakthrough in the molecular diagnosis of
parasitic infection is the ability to detect cell-free DNA
of Schistosoma in serum/plasma and other body fluids of
patients.53–55 As in the case of most helminthiases, the
definitive diagnosis in the prepatent period is difficult.
Although serological tests for antigens or antibodies are
available for some helminths, these are not widely available
and their utility is sometimes limited by cross-reactivity
between different parasites. However, the detection of cir-
culating cell-free DNA is probably most sensitive for intra-
vascular helminths such as Schistosoma in which cells of
parasitic origin are constantly shed into the circulation.
The usefulness of this approach to other tissue helminths,
either larval or adult stages, and those with a migratory
larval stage, remains to be confirmed. For intestinal hel-
minths, microscopic diagnosis based on the detection of
ova is sometimes limited by the irregular shedding of
eggs from the parasites, thereby necessitating the examin-
ation of multiple stool samples for definitive diagnosis.
False-negative microscopy results may also be encountered
in light infections. PCR has been shown to be comparable or
superior to microscopic examination of multiple faecal sam-
ples in terms of sensitivity in the diagnosis of intestinal
helminthiases.56–59 The higher sensitivity may be attributed
to the shedding of parasitic DNA from parasitic compo-
nents such as cuticular cells rather than actual presence of
a parasite within the portion of clinical sample used for
DNA extraction. In Hong Kong, an endemic area for clo-
norchiasis, our study also confirmed the higher sensitivity
of PCR for the detection of Clonorchis sinensis in both the
stool and bile (unpublished data). In 100 stool samples from
a regional hospital in Hong Kong, PCR detected C. sinensis
in 11 specimens, while microscopy only detected 9.
Similarly, PCR detected 14 cases of clonorchiasis in 96 bile
samples, only 6 of these were detected by microscopy.

Precise species differentiation

Exact parasitic speciation is sometimes not essential for
therapeutic purposes. For example, different species of
hookworms (Necator americanus and Ancylostoma duodenale)
or tapeworms (taeniasis due to Taenia solium and Taenia
saginata), while their ova are indistinguishable morpho-
logically, are treated with the same antiparasitic regimens.
However, parasitologically and epidemiologically speak-
ing, it is always desirable to have the exact identification
of the species, as some of the morphologically similar para-
sites may have different pathogenicity (commensals vs.
pathogens, and hence the need for antiparasitic treatment)
and may require antiparasitic treatment (mixed infection
due to different species), or they may have different inter-
mediate hosts which will impact on control programmes.

Precise speciation based on morphology is difficult or
impossible in a number of situations.

Cysts or trophozoites of protozoa having similar or
indistinguishable morphology

Although the morphology of certain protozoa species or
subspecies is identical, they can readily be distinguished
based on their unique geographical distributions.
Trypanosoma brucei is one such example, with T. brucei gam-
biense restricted to central and western Africa, while T.
brucei rhodesiense is found in eastern and southern Africa.
Species differentiation also has clinical significance in that
T. brucei rhodesiense typically has a rapid disease progres-
sion.60 However, both subspecies may occur in Uganda and
molecular methods, such as multiplex PCR, offer a rapid
way to distinguish the two subspecies and from other zoo-
notic species of trypanosomes without having to perform
animal inoculation studies or indirect fluorescent antibody
test.61

The presence of two morphologically similar species, the
pathogenic Entamoeba histolytica and the commensal E.
dispar, was postulated since 1925 and subsequently con-
firmed by clinical, epidemiological, serological, and
molecular studies.62 The differentiation of the two species
used to be tedious, requiring culture and isoenzyme elec-
trophoresis.63 In recent years, the availability of stool anti-
gen detection assays by immunochromatographic or
enzyme immunoassay formats based on E. histolytica-spe-
cific antigens (such as Gal/GalNAc-specific lectin and
serine-rich antigen) has simplified the diagnostic process.63

Although such antigen detection kits are simple, quick, and
relatively inexpensive to perform, some kits may perform
poorly in clinical settings.64 A combination of microscopy
and a carefully chosen antigen detection assay should sat-
isfy the needs of most routine diagnostic laboratories.
NAAT generally possesses higher sensitivity as compared
to microscopy and antigen detection, but the difficulties in
extracting sufficient nucleic acids from stool samples have
to be considered.63 A variety of techniques such as single-
target PCR, multiplex and nested PCR, PCR with restriction
enzyme analysis, real-time PCR, and sequencing have been
developed for the detection of different species of Entamoeba
in clinical specimens, including liver abscesses.63,65

Entamoeba moshkovskii is a relatively new member of the
Entamoeba histolytica/dispar complex, which shares the same
morphological appearances. Initially thought to be a non-
pathogenic species, E. moshkovskii has now been associated
with diarrhoeal disease in different parts of the world,
although its true pathogenicity requires further confirm-
ation.66 The ability of E. histolytica-specific antigen assays
to detect E. moshkovskii is uncertain; some studies showed
that certain ELISA assays are unable to detect E. moshkovs-
kii.67 Currently, molecular methods remain the most defini-
tive methods in the diagnosis of E. moshkovskii
infections.68,69

Clinically suspected leishmaniasis is traditionally con-
firmed by histopathology, culture of the parasite, or
serology. These methods, nevertheless, are either insensi-
tive or cumbersome. The availability of
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immunochromatographic antibody tests using K39 or
recombinant K39 antigens (commercially available) and
antigen detection assays may improve the diagnosis of vis-
ceral leishmaniasis.70 While the species of Leishmania in a
patient can be suspected by the clinical manifestations and
geographical location, multiple species may coexist in the
same locality. Isoenzyme analysis was previously used for
identification of individual species. Currently, NAATassays
(chiefly by PCR) are much more sensitive than conventional
diagnostic tests, and enable accurate speciation of the para-
sites. Precise species identification aids the development of
the most appropriate local control strategies (for example,
distinguishing between anthroponotic versus zoonotic
forms of Leishmania spp.), understanding the epidemiology,
and choosing the most suitable antiparasitic regimens.
Species identification can be achieved by real-time PCR,
PCR-restriction fragment length polymorphism (RFLP),
sequencing, or hybridization probes. These techniques
have been successfully used for both New World and Old
World species, as well as in different clinical forms of leish-
maniasis.71–78 Visceral leishmaniasis and HIV/AIDS are
particularly formidable clinical problem. While HIV infec-
tion promotes the intracellular uptake and survival of
Leishmania in macrophages, Leishmania infection also
enhances the replication of HIV in the host cells.79

Concurrent HIV infection is uniformly associated with a
substantially higher mortality due to visceral leishmaniasis,
higher treatment failure and relapse rates, as well as poorer
responses to antiparasitic treatment.79 PCR has become one
of the tests of choice for the diagnosis of visceral leishman-
iasis in AIDS patients.79,80 The ability to quantify the
parasitic load is especially useful in the management of
HIV-associated visceral leishmaniasis, especially in the
detection of relapses. Relapses of visceral leishmaniasis in
AIDS patients occur in 15–57% of the cases, most commonly
in patients with CD4þ counts of less than 200/mm3 (in par-
ticular, less than 100/mm3), and secondary prophylaxis are
essential in AIDS patients with visceral leishmaniasis.79,81

Monitoring of these patients with PCR proves to be a sen-
sitive and specific method to detect relapses.82

As in the case of Leishmania, species differentiation of
other protozoa by light microscopy is difficult. Clinically
important examples include microsporidia and cryptospor-
idia. The species identification of microsporidia, for
instance, is essential because certain species are amenable
to antiparasitic treatment, as in the use of albendazole for
Encephalitozoon spp. Both microsporidiasis and cryptospor-
idiosis were previously associated with immunocomprom-
ised patients, especially in the setting of HIV/AIDS.
However, it is now recognized that immunocompetent indi-
viduals are not immune to infections by these protozoa.83

Microsporidial keratitis is increasingly recognized in recent
years, sometimes causing outbreaks in otherwise healthy
individuals after sports-associated exposure to soil.84,85

Outbreaks of enteric cryptosporidiosis occurred regularly
in different countries of the world, in communities and
in institutions, and both the immunocompetent and
immunocompromised individuals are affected alike.
Cryptosporidium has become the commonest protozoa caus-
ing waterborne outbreaks.86 Cryptosporidium can usually be

detected in faecal specimens easily by acid-fast stains. Light
microscopic detection of microsporidia is more problematic
because of their small size. Although a number of stains,
such as modified trichrome and fluorochrome (using
Uvitex 2B or calcofluor white) stains, can be used, their
sensitivity and specificity are limited.87 Given the difficul-
ties in cultivating these organisms in vitro, and that
immunofluorescent stains do not cover all the common spe-
cies, molecular techniques remain the method of choice for
accurate speciation. Sequencing analysis is often required
for species identification of these protozoa especially when
pan-microsporidia consensus primers targeting 18 S rDNA
are used.87–91 More thorough characterization of various
morphologically similar or identical protozoa by PCR
with consensus primers followed by gene sequencing has
enabled the discovery of various novel human and zoonotic
species such as Babesia spp.92,93

Ova or adult helminths with similar morphology

Problems of morphological identification are not unique to
protozoa. Ova of helminths from different genera or species
may have identical morphologies. Sometimes this may be
inconsequential when the treatment is identical.
Nonetheless, precise speciation is necessary when there
are significant differences in clinical consequences, inter-
mediate hosts and control measures, or choices of therapy.
An example is the so-called small trematode eggs, which
generally refers to trematode eggs of 20–30 mm in length
that are commonly found in the Far East.94 They include
ova from C. sinensis, Opisthorchis viverrini, Opisthorchis feli-
neus, Metagonimus yokogawai, Heterophyes heterophyes,
Haplorchis taichui, Haplorchis pumilio, Haplorchis yokogawai,
Metorchis bilis, Phaneropsolus bonnei, Prosthodendrium molen-
kampi, Metorchis conjunctus, and Centrocestus formosanus.
Certain species, such as C. sinensis and O. viverrini, are car-
cinogens and accurate identification is essential. Although
subtle differences in the egg appearance have been
described in the literature, they are often very minor and
difficult to discern, especially for microscopists outside
endemic areas.94–99 Given the relatively limited sensitivity
of microscopy, one may argue that screening of bile (for
which repeated samples may not be readily available in
the absence of external drainage) or gallstones with
NAAT could be beneficial in endemic areas to detect and
treat asymptomatic Clonorchis and Opisthorchis-infected
patients as a preventive measure against
cholangiocarcinoma.100,101

Another group of trematodes, members of the Family
Fasciolidae, also contains human pathogens of similar
morphologies. Examples include Fasciola hepatica, Fasciola
gigantica, Fasciolopsis buski, and the intermediate forms of
Fasciola. PCR or PCR-RFLP provide definitive diagnosis of
these related genera and species.102–104 With better genetic
characterization, the intermediate forms of Fasciola is now
considered to be a separate species named Fasciola hepatogi-
gantica.105 Similarly, the eggs of T. solium and T. saginata are
indistinguishable. In the absence of the scolices and gravid
proglottids, species identification can only be achieved by
molecular testing.106
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Misdiagnosis due to morphological similarities to
common parasites

A corollary of the difficulties in accurate speciation by
morphology is that parasites may be misidentified as
another genus or species. Owing to the similarities between
the trophozoites, Babesia infection may sometimes be mis-
taken for Plasmodium species.107 In the past decade, one of
the most prominent examples of such misidentification is
the recognition of human infections due to Plasmodium
knowlesi, a simian Plasmodium species which normally
infects various primates in Southeast Asia. Although P.
knowlesi has been discovered by Sinton and Mulligan in
1932, human infections have only been rarely described.
Natural infection of humans by P. knowlesi was first
reported in 1965, and sporadic cases occurred in 1971,
1978, and 1998.108–111 Since 2004, it has increasingly been
recognized that P. knowlesi is a prevalent form of zoonotic
malaria among humans in Southeast Asia, especially in
regions of the Malaysian Borneo.112 Knowlesi malaria
accounts for up to 77% of the human cases of malaria in
some localities of the Malaysian Borneo.113 The problem in
the accurate diagnosis of knowlesi malaria lies in the fact
that the trophozoites resemble other species of human mal-
aria parasites, especially characteristic is the presence of
intra-erythrocytic band forms that are typically seen in
Plasmodium malariae.114 As a result, about 86–95% of P.
knowlesi in the blood films were initially identified as P.
malariae.112,113 Molecular techniques (primarily using PCR
against the small subunit rRNA or other targets) remain the
most useful methods for definitive identification of P. know-
lesi.115–117 Although most cases of human knowlesi malaria
will respond to standard antimalarial treatment, severe dis-
ease and fatalities do occur (in contrast to P. malariae infec-
tion which is typically more benign).113,118 In addition, the
mosquito vectors and natural reservoir hosts of P. knowlesi
are distinct from other species of Plasmodium,119 the accur-
ate identification of P. knowlesi is therefore important both
clinically and epidemiologically in assessing the potential
for local transmission of the parasite.

Mixed infection not readily discernible by conventional
microscopy

Mixed infections due to morphologically similar parasites
could be difficult to discern. Under-diagnosis of mixed
infection, as in the case of malaria, is therefore a common
problem in both residents in endemic countries and return-
ing travellers.120 This is often attributable to the similar
morphology of very young trophozoites and the low-level
parasitaemia of one of the co-infecting species. Failure to
recognize mixed infection by different Plasmodium species
may lead to treatment failure.121–123 The incidence of mixed
Plasmodium species infection is around 2% based on micros-
copy.120 Using molecular diagnostics, a much higher inci-
dence of mixed infection was detected, with over 20% of the
malaria cases being co-infections in some endemic
areas.124–129 Therefore, the use of PCR should be con-
sidered, at least in the regional reference malaria laboratory
setting, to supplement microscopy to confirm the results of
speciation and to exclude co-infections. Similarly, mixed

infections due to different species of protozoa can only be
detected by the use of molecular assays, as in the case of
leishmaniasis.130 The use of multiplex real-time PCR assay
is sensitive and specific in detecting different genera or spe-
cies in one reaction. This technique offers a relatively simple
and cost-effective means for the simultaneous diagnosis of
multiple parasites that are endemic in a certain area and
distinguishes morphologically similar species that can be
found in the same clinical specimen (such as blood or
faeces).131–140

Identification of parasites from histopathological
sections

Histopathological identification of parasites requires highly
specialized skill and knowledge. This is especially difficult
for helminths as many pathologists in the developed coun-
tries do not come across such specimens frequently.
Identification of helminths to a particular class
(Nematoda, Cestoda, or Trematoda) is usually not difficult
because each class of parasites has a characteristic basic
layout of structures. Identifying them to genus and even
species levels is much more challenging.141 The problem
is compounded by the fact that the morphological descrip-
tions of some parasites could be inadequate, and that some
fine structures are only discernible by scanning electron
microscopy, a facility that is not available in most routine
diagnostic laboratories.

Molecular identification of parasites from histological
specimens poses special difficulties. To most clinicians
and surgeons in the developed countries, parasitic infection
is seldom a differential diagnosis in patients with unex-
plained lesions requiring tissue diagnosis (such as skin
and soft tissue masses or space-occupying lesions in the
viscera). Unless some foresights are exercised at the time
of surgical specimens’ collection, most of these specimens
will be fixed in formalin or other cross-linking fixatives.
Retrospective extraction of nucleic acids from formalin-
fixed paraffin-embedded tissues is a major challenge, both
in the quantity and quality of nucleic acids, because of
cross-linking and fragmentation of nucleic acids in forma-
lin-fixed specimens. Various protocols, including the use of
micro-dissection techniques, have been developed to opti-
mize extraction of nucleic acids from these specimens.
Commercial kits, some of which are fully automated, are
available for extraction from formalin-fixed tissues.
Laboratories engaged in molecular studies of histological
samples or archival tissues must carefully choose the opti-
mal methods for nucleic acid extraction.142–148 In recent
years, PCR-sequencing has been successfully applied in
the definitive identification of helminths in tissue sections,
often with the detection of novel or rare zoonotic pathogens
which would otherwise be difficult or impossible to speci-
ate from morphology alone, as in the case of human
dirofilariasis.149–152

Detection of antiparasitic resistance

Unlike bacterial pathogens, the determination of resistance
to antiparasitic agents is neither easy nor routinely per-
formed. This is in part attributed to the relative infrequent
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occurrence of resistance among most parasites (with the
exception of Plasmodium), and the difficulties or inability
to cultivate most parasites in vitro. The ability to detect anti-
malarial resistance is of great importance, both in the choice
of therapeutic agents and in global surveillance of resist-
ance. Traditionally, antimalarial resistance is determined
by in vivo or in vitro studies.153 In vivo studies involved
the measurement of parasitological response (level of para-
sitaemia) to antimalarial treatments, which classifies para-
site susceptibility to antimalarials into sensitive and three
resistance levels, RI, RII, and RIII. These criteria were ini-
tially devised to describe the spectrum of response to stand-
ard doses of chloroquine.154 The interpretation of results
could, however, be problematic for drugs with long half-
lives.155 In vivo studies also required prolonged monitoring
of patients for their responses (14 or 28 days), and could be
confounded by the possibility of reinfection in high ende-
mic settings. In vitro studies, on the other hand, determined
the susceptibility of the Plasmodium isolates towards a gra-
dient of concentrations of antimalarial agents, and such
techniques require in vitro cultivation of Plasmodium,
which is generally available only in reference
laboratories.153,156

The identification of target genes of antimalarials and
their mutations conferring resistance enabled one to
detect resistance by genotypic methods. In addition to
being less time-consuming and relatively inexpensive,
detection of genotypic markers of resistance also allows
large-scale surveillance studies for the study of resistance.
Examples of such resistance gene markers include dihydro-
folate reductase (dhfr) and dihydropteroate synthase (dhps)
for sulphadoxine-pyrimethamine, P. falciparum chloroquine
resistance transporter (pfcrt) for chloroquine; and P. falcip-
arum multi-drug resistance transporter 1 (pfmdr1) and
multi-drug resistance-associated protein (pfmrp) which
mediates resistance to multiple antimalarials.157–159

Recently, single nucleotide polymorphisms in P. falciparum
chromosomes were identified which may contribute to arte-
misinin resistance.160 While such genotypic assays are
likely to be out of reach for most routine diagnostic labora-
tories, they should be considered essential in regional
laboratories in endemic countries as part of the surveillance
programmes, and in reference centres of non-endemic
countries where imported cases of malaria are managed.

Compared to antimalarials, anti-parasitic resistance in
other protozoa, and especially the helminths and ectopara-
sites, generally received much less attention. The signifi-
cance of detecting anti-parasitic resistance cannot be
overstated. For many parasitic infections, especially the hel-
minthiases, the number of effective agents or classes of
agents for each group of parasites is relatively limited.
Development of resistance to the first-line agents means
not only treatment failure for individual patients, but also
compromises various mass treatment programmes in ende-
mic areas. Although certain genetic and metabolic mechan-
isms have been implicated in drug resistance in protozoa
and helminths (such as nitroimidazole resistance in Giardia
and Trichomonas, benzimidazole resistance among soil-
transmitted helminths, and potential praziquantel resist-
ance in Schistosoma), many of these have not be utilized as

part of the routine diagnostics.161–164 A problem clinically
much more relevant and disturbing lies among the ecto-
parasites, where resistance to some first line insecticides
has been prevalent. One of the best studied example is the
resistance of Pediculus humanus capitis (head louse) to DDT,
lindane, pyrethroids, and malathion, which is now preva-
lent in many countries. Additionally, multiple or cross
resistance to different agents is not rare, making clinical
management of these infestations more problematic.165–169

As in the case of head louse, pyrethroid resistance has also
been described in Sarcoptes scabiei, the scabies mite.170 In
addition to pyrethroids, resistance to lindane and even iver-
mectin has been described in S. scabiei.171–173 Molecular
assays have been developed to detect mutations in the kdr
(knockdown resistance) and Vssc (voltage-sensitive sodium
channel) genes which account for pyrethroid resistance in
lice and scabies mites, which could be useful for surveil-
lance purposes.174–176

Screening of at-risk individuals

As in the case of transfusion-transmitted infections, the use
of molecular assays may potentially be beneficial in the pre-
vention and management of transplant-related parasitic
infections (Table 2). Such assays may serve three roles in
such infections. Firstly, although NAAT screening of
donor tissues is theoretically possible, this approach has
not been vigorously tested. Potential drawbacks of this
approach include sampling errors resulting in false nega-
tive results, and the significantly longer turnaround time as
compared to serological testing, the latter being especially
important in cadaveric organ transplantations. As such, ser-
ology remains the mainstay of screening for most infections
(such as toxoplasmosis and Chagas disease).177,178

Secondly, NAATcan be used for monitoring and diagnosing
reactivations of parasitic infections using either blood or
tissue biopsy samples.177–181 This may circumvent some of
the problems associated with serological tests, such as inad-
equate serological responses while on immunosuppression,
and differentiating active from past infections in endemic
areas. Thirdly, asymptomatic parasitic infections are
common for a number of protozoal and helminthic
infections, such as visceral leishmaniasis and strongyloid-
iasis.182–184 In addition to the possibility of donor-
transmitted parasitic infections, reactivation of subclinical
infection is also possible. Although pre-transplant screen-
ing of recipients with serological tests is the usual prac-
tice,185 further studies should explore the role of NAAT in
predicting the need for prophylaxis of subclinically infected
transplant recipients.

The potential role of NAAT in early diagnosis and
donor/recipient screening is not limited to organ or haemo-
poeitic stem cell transplantations. Patients requiring inten-
sive immunosuppressive therapy, especially the use of
corticosteroids, are at risk of reactivation of strongyloi-
diais.186 A more comprehensive programme for screening
asymptomatic infections by these parasites should be con-
sidered in centres caring for immunocompromised
patients, according to the local prevalence of these parasitic
infections.
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Conclusion: Molecular diagnosis or
alternatives?

Although molecular diagnosis has always been touted as a
means for rapid diagnosis in many fields of diagnostic
microbiology, this may not necessarily apply to parasit-
ology. The turnaround time for microbial culture is often
long in mycobacteriology, mycology, and virology, hence
molecular assays are excellent solutions for rapid diagnosis.
In contrast, diagnostic parasitology, with few exceptions,
does not rely on in vitro cultures. With the need for trans-
portation to centres with NAAT facilities, specimen prepar-
ation, nucleic acid extraction and amplification,
conventional staining and light microscopy generally
offers a similar, if not faster, turnaround time. This is espe-
cially important in off-hour settings where personnel for
molecular diagnosis may not be readily available. Another
consideration is that routine microscopy is a catch-all tech-
nique whereby the presence of any parasite in the clinical
specimen can be detected. On the contrary, NAAT methods
are targeted only towards the species covered by the pri-
mers, though the use of multiplex PCR does increase the
spectrum of detection. For these reasons, molecular meth-
ods cannot as yet replace microscopy as routine diagnostic
tests, but could be extremely useful when a specific parasite
or groups of parasites are to be studied.

The specific identification of parasites by NAAT relies on
the availability of accurate gene sequence information, and
this in turn depends on the precise morphological identifi-
cation of parasites. In contrast to most bacterial and viral
agents, the genetic information on many parasites remains
limited. The utility of molecular method for identification of
parasites is sometimes limited by the lack of such informa-
tion. Similarly, when gene sequences are used to identify
new species of parasites, their morphology should always
be considered simultaneously, lest wrong designation to
new genera or species may occur.187

Despite the many benefits of molecular assays, their
adoption by smaller local laboratories, even in developed
countries, requires careful considerations. If the number of
specimens received for testing is low, it would be more cost-
effective for these specimens to be tested in regional or ref-
erence centres. The choice of the tests to be performed
depends largely on the spectrum of parasitic diseases
encountered in a particular centre. Although serological
tests have been described for many parasitic diseases,
many of these assays were developed in-house and there-
fore they are not readily available to most laboratories. The
availability of molecular assays allows non-research centres
to possess the ability to diagnose less frequently encoun-
tered parasites, provided that the tests are well validated.
The validation of newer NAAT assays poses problems
which are not unique to parasitology. The determination
of the performance characteristics (sensitivity, specificity,
positive and negative predictive values, and so on) requires
comparison of the new assays with a diagnostic gold stand-
ard. As noted at the beginning, microscopy has been the
gold standard in most areas of diagnostic parasitology.
NAAT assays are generally considered to be more sensitive
than conventional microscopy. The use of microscopy as a

gold standard may therefore underestimate the perform-
ance of NAAT. This issue is also encountered in other
areas of diagnostic clinical microbiology when NAAT was
first introduced, an example being the use of NAAT for the
diagnosis of Chlamydia trachomatis and herpes simplex virus
infections when compared to bacterial and viral culture. An
‘‘expanded gold standard’’ approach has been adopted
which employed more than one diagnostic test and the clin-
ical presentations as the reference standard.188–191 While
this approach has worked reasonably well for many bacter-
ial and viral infections, its application for parasitic diseases
is faced with more difficulties. Firstly, multiple diagnostic
approaches have to be adopted which is not always
included in all studies. These include clinical manifest-
ations, conventional microscopy, serology (antigen and/or
antibody detection), and even tissue biopsies. For micros-
copy, multiple specimens may have to be collected serially
to overcome the inherent limitations of the test. Exclusion of
alternative diagnoses by appropriate laboratory testing
should also be performed. Secondly, as in the case of most
new NAAT assays, many of the adjunctive serological
assays are also developed in-house, and their suitability
as part of the expanded gold standard is uncertain.
Understandably, not all new NAAT assays published have
undergone the necessary stringent validation processes.
Ongoing evaluation of the new assays in different geo-
graphical areas and different patient populations is essen-
tial, as well as to establish the clinical significance of
positive results.
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