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Abstract
Genetic, nutrition, and environmental factors have each been implicated as sources of risk for autism. Oxidative stress, including

low plasma levels of the antioxidant glutathione, has been reported by numerous autism studies, which can disrupt methylation-

dependent epigenetic regulation of gene expression with neurodevelopmental consequences. We investigated the status of redox

and methylation metabolites, as well as the level of protein homocysteinylation and hair mercury levels, in autistic and neurotypical

control Omani children, who were previously shown to exhibit significant nutritional deficiencies in serum folate and vitamin B12.

The serum level of glutathione in autistic subjects was significantly below control levels, while levels of homocysteine and

S-adenosylhomocysteine were elevated, indicative of oxidative stress and decreased methionine synthase activity. Autistic

males had lower glutathione and higher homocysteine levels than females, while homocysteinylation of serum proteins was

increased in autistic males but not females. Mercury levels were markedly elevated in the hair of autistic subjects vs. control

subjects, consistent with the importance of glutathione for its elimination. Thus, autism in Oman is associated with decreased

antioxidant resources and decreased methylation capacity, in conjunction with elevated hair levels of mercury.
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Introduction

The prevalence of autistic spectrum disorders (ASD) has
increased dramatically in countries around the world over
the past several decades, reaching a prevalence in the USA
of 1 in 88, based upon 2008 data.1 While this group of neu-
rodevelopmental disorders is primarily identified by neuro-
logical symptoms,2 the reported co-occurrence of immune
dysfunction3–10 and gastrointestinal symptoms8,10–14 with
ASD indicates that it is not strictly limited to brain dysfunc-
tion. The increase in ASD has stimulated intense research
into potential etiologic factors and candidate genes. Current
research indicates that autism involves an interaction
between genetic factors15–18 and environmental factors,19–21

manifested as epigenetic dysregulation.22–24

Epigenetic regulation of gene expression is increasingly
recognized as a fundamental aspect of development, and

abnormalities affecting DNA methylation and its epigenetic

influence are linked to neurodevelopmental disorders,

including Rett and Angelman syndromes, Fragile-X dis-

order and autism.25–27 Like other methylation reactions,

DNA methylation depends upon the ratio of the methyl

donor S-adenosylmethionine (SAM) to the methylation

inhibitor S-adenosylhomocysteine (SAH), and the SAM/

SAH ratio is in turn dependent upon activity of the folate

and vitamin B12-dependent enzyme methionine synthase

(MS). MS activity and methylation capacity are highly sen-

sitive to cellular redox status (i.e. the probability of reduc-

tion vs. oxidation) and are inhibited under oxidative stress
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conditions.28 More than 10 studies have reported that
plasma levels of the antioxidant glutathione (GSH) are
lower in autistic children, accompanied by a decrease in
the SAM to SAH ratio.15,29–37 Low methylation capacity
and oxidative stress are associated with individuals with
low levels of folate and vitamin B12.38–40 Thus, impaired
methylation capacity, including DNA methylation, can
result from either oxidative stress or a nutritional deficiency
in folate or vitamin B12.

A recent analysis of ASD children in Oman revealed that
malnutrition was common and serum levels of folate and
vitamin B12 were significantly lower, in association with
low dietary intake.41 Since biomarkers of oxidative stress
were elevated in this cohort,42 we analyzed serum levels
of a panel of antioxidant and methylation pathway metab-
olites, which prior studies showed to be abnormal in ASD
subjects.15,29 Since autism is more prevalent among males
vs. females, including in Oman,43 we also included a
gender-specific analysis for control and ASD cohorts.
Decreased MS activity is reflected as elevated homocysteine
(HCY) levels, which can lead to increased N-homocysteiny-
lation of proteins,44 so we therefore evaluated the N-homo-
cysteinylation status of serum albumin. Hair samples in this
ASD cohort were previously shown to have elevated levels
of several heavy metals.45 Mercury is well-recognized for its
ability to interfere with antioxidant regulation, including
both GSH and selenium-based systems,46,47 although its
proposed involvement in autism remains controver-
sial.22,48,49 Therefore, we also measured mercury levels in
hair samples of ASD vs. control subjects, comparing them to
thiol metabolite levels.

Materials and methods
Participants

Study participants included 54 Omani children (27 ASD
cases and 27 control subjects). A demographic comparison
of the two groups showed a similar age and gender distri-
bution, with a preponderance of male subjects (Table 1). The
study was approved by the Medical Research Ethics
Committee at Sultan Qaboos University (SQU) and by the
Northeastern University Institutional Review Board
(Protocol #01-02-06). All caregivers of the participants pro-
vided their written informed consent prior to inclusion in
the study.

For ASD cases, ascertainment of ASD diagnosis was
made according to the Childhood Autism Rating Scale
(CARS), which was developed using gold-standard criteria
based on the Diagnostic and Statistical Manual of Mental
Disorders, Fourth Edition, Text Revision (DSM-IV-TR).2

Accordingly, all participants fulfilled the eligibility for diag-
nosis of ASDs, exhibiting symptoms within the triad of typ-
ical autistic traits: communication impairment, social
deficits, and ritualistic interests. Confirmed ASD cases
from the SQU clinic were referred to study coordinators
for potential participation in the study. All CARS scores
and clinical evaluations were conducted and reviewed by
behavioral medicine clinicians with long-standing experi-
ence in caring for children with autism. The reviewers
developed and employed a coding guide based on the

DSM-IV-TR criteria to determine if the child’s condition
was consistent with the standard international ASD diag-
nostic criteria. Inter-rater reliability was established among
ASD clinician reviewers to standards of 90% agreement on
overall case status. For ongoing inter-rater reliability
checks, a random sample of records (10%) was scored inde-
pendently by a reviewer who is experienced in ASD and
did not participate in the diagnostic reviews. Percentage
agreement between the raters on final case definition was
found to be 96%.

Control subjects were randomly selected from eligible
outpatients at the Department of Child Health at SQU.
Eligible subjects included children aged 3–5 who were not
known to have any overt neurodevelopmental or behav-
ioral disturbances. Eligible diagnoses included trauma, rou-
tine physical examination, dental problems, and
dermatological problems. Nutritional and serum status of
vitamin B12 and folate for subjects in this study were pre-
viously reported.42

Serum thiol and methionine cycle metabolites

Blood samples were collected and serum was stored at
�80�C prior to assay. Serum thiols were measured using
high performance liquid chromatography (HPLC) and elec-
trochemical detection. Serum samples were thawed on ice
and 50 mL of a 0.4 N perchloric acid solution was added to
200mL of serum to precipitate proteins. Samples were
blown with nitrogen to displace atmospheric air, and then

Table 1 Socio-demographic characteristics of ASD and control groups

Characteristics

Cases

(N¼27)

N (%)

Controls

(N¼27)

N (%) P value

Gender 0.51

Male 22 (81.5) 20 (74.1)

Female 5 (18.5) 7 (25.9)

Mean age (year) 5.3 (1.5) 5.5 (1.4) 0.84

Mean birth weight (kg)

2.50–3.99 23 (85.2) 21 (77.8) 0.12

<2.50 3 (11.1) 5 (18.5)

>3.99 1 (3.7) 1 (3.7)

Area of residence 0.31

Urban 19 (70.4) 17 (63.0)

Rural 8 (29.6) 12 (44.4)

Monthly family income (OR) 0.39

Less than 500 11 (40.7) 9 (33.3)

500 to 1000 10 (37.0) 12 (44.4)

Greater than 1000 6 (22.2) 6 (22.2)

Educational level of mother 0.24

Illiterate 3 (11.1) 5 (18.5)

Basic education 15 (55.6) 14 (51.9)

Finished high school 9 (33.3) 8 (29.6)

Occupation of mother 0.31

Working 10 (37.0) 8 (29.6)

Housewife/ retired 17 (63.0) 19 (70.4)
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spun at 13,000 RPM on a tabletop microcentrifuge for
60 min at 4�C. Then 100mL of sample was added to a conical
micro-autosampler vial, blown with nitrogen, capped, and
kept at 4�C in the autosampler (ESA model 542) cooling
tray. Later, 10 mL of sample was injected into an ESA
CoulArray HPLC system with a BDD analytical cell
(model 5040) electrochemical detector at an operating
potential of 1500 mV, equipped with an Agilent Eclipse
XDB-C8 (3� 150 mm, 3.5 mm) reverse-phase C8 column.
A dual mobile phase gradient elution was used, consist-
ing of a mobile phase containing sodium phosphate
25 mM and 1-octanesulfonic acid 2.1 mM, adjusted to pH
2.65 with phosphoric acid, with the second mobile phase
containing 50% acetonitrile. The system was run at a flow
rate of 0.6 mL/min at ambient temperature with the fol-
lowing gradients: 0–9 min 0% B, 9–38 min, gradient to 30%
B. Post-run, the system was cleaned 38–42 min with 100%
B and the cell was cleaned 39–42 min at an operating
potential of 1900 mV. The system was allowed to equili-
brate at 0% B from 42 to 60 min. Peak area analysis was
provided by CoulArray 3.06 software (ESA, Chelmsford,
Massachusetts) based on the standard curves generated
for each compound.

Protein N-homocysteinylation

Serum proteins (1.3 mg/mL) were incubated with 250mM

biotin-aldehyde in 100 mM citric acid, 2.7 mM tris(2-

carboxyethyl)phosphine (TCEP), pH 3 in the dark, at 25�C

for 12 h. Then, 35 mL of each sample was mixed with 2X

Laemmli loading buffer (35 mL) in boiling water for 5 min.

Aliquots (30 mL) were loaded onto two precast Tris-HCl gels

(4–15%, Bio-Rad) for SDS-PAGE separation. The first gel

was used for Coomassie blue staining and the second for

western-blot detection as previously described.50 Proteins

from the gel were transferred onto an Immun-Blot PVDF

Membrane (0.2 mm, Bio-Rad) for protein blotting with trans-

fer buffer (25 mM Tris, 192 mM glycine, 20% methanol at pH

8.3). After protein transfer, the membrane was blocked in

2% BSA in TBST (25 mM Tris, 137 mM NaCl, 3 mM KCl,

0.1% Tween-20 at pH 7.4) for 1 h. After blocking, the mem-

brane was washed with TBST for 3� 10 min and incubated

with 0.5 mg/mL streptavidin-HRP in 20 mL TBST for 1 h.

Then, the membrane was washed again by TBST for

5� 6 min and incubated in PBS (68 mM NaCl, 1 mM KCl,

5 mM Na2HPO4, 1 mM KH2PO4 at pH 7.4) for 10 min. After

incubation, the buffer was discarded, and the chemilumin-

escence signal was developed by the addition of 1 mL

SuperSignal West Pico chemiluminescent substrate for

1 min. Chemiluminescence was detected by FluorChem

Imager SP (Alpha Innotech Corp., San Leandro, CA,

USA), and the image was analyzed by ImageQuant TL 7.0

(GE Healthcare). The protein N-homocysteinylation level of

selected proteins was calculated from the chemilumines-

cence intensity of each band divided by the Coomassie

staining intensity of total proteins in the same lane, and

final intensity was normalized according to the intensity

of total protein marker bands.

Hair mercury analysis

Using stainless-steel scissors, the hair specimens were cut
into approximately 0.3-cm pieces and mixed to allow a rep-
resentative subsampling of the hair specimen. After cutting
and weighing the combined specimens (range 30–
80 mg� 0.1 mg), each sample was washed four times with
a 1:200 v/v dilution of Triton X-100, then rinsed with acet-
one and allowed to drain. Samples were then rinsed three
times with ultrapure deionized water and two times with
acetone. The dried samples were weighed prior to nitric
acid/microwave digestion. After digestion, the samples
were cooled and a 500 -mL aliquot of an internal standard
was added and mixed with 50 mL ultrapure, deionized
water. The samples were then analyzed for element content
using inductively coupled mass spectrometry (ICPMS).
Individual results are the means of three replicates,
expressed as micrograms of mercury per gram of hair,
and differences between replicate values were less than
8% of the mean value. Accuracy of the ICPMS methodology
was verified by the appropriate use of reagent blanks, inde-
pendent calibration verification standard check solutions,
and a certified hair reference control (Trace Elements In
Human Hair, CRM-397) obtained from the Institute for
Reference Materials and Measurements (IRMM) (Geel,
Belgium). The rationale and utility of this procedure for
identifying ASD-related differences in hair mercury levels
have been described elsewhere.51

Data analysis

Combined ASD vs. control group data, as well as gender-
grouped data were analyzed. Grouped data were initially
evaluated by ANOVA followed by post hoc analysis of indi-
vidual metabolites using Student’s t-test to evaluate signifi-
cance, with a cut-off P< 0.05. All statistical analyses were
performed using GraphPad Prism software version 5
(GraphPad Software Inc., La Jolla, CA, USA). Results are
presented as average values� S.E.M.

Results
Subject characteristics

Sociodemographic and nutritional characteristics of the
ASD and control groups were previously described.42,45

Nutritional intake and serum levels of folate and vitamin
B12 were found to be significantly lower in the ASD
cohort.42

Serum thiol and methionine cycle metabolites

Folate and vitamin B12 are essential cofactors for MS, whose
activity affects both methylation and transsulfuration path-
ways, providing an importance influence over epigenetic
and redox status. To evaluate changes in these pathways in
autism, we measured serum levels of thiols and methionine
cycle intermediates via HPLC with electrochemical detec-
tion. As illustrated in Figure 1(a), significant differences
were observed for several metabolites between combined
control and autistic subjects. The level of GSH was signifi-
cantly decreased in the autism group, being 71% lower than
the control group (P< 0.05). Cystine, HCY, and SAH levels
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were significantly increased in the autism group, being 41%
(P< 0.05), 68% (P< 0.01) and 36% (P< 0.01) higher than con-
trol group values, respectively. While the SAM to SAH ratio,
indicative of methylation capacity, was lower in autistic sub-
jects (4.4� 0.64) than control subjects (6.28� 1.00), the differ-
ence was not significant (P¼ 0.13).

Further analysis revealed significant gender-based dif-
ferences in thiol and methionine cycle intermediates for aut-
istic subjects. Although there was no significant difference
in metabolite levels between control males and females
(data not shown), autistic males had significantly lower
levels of cysteine (P< 0.01) and GSH (P< 0.05) vs. their aut-
istic female counterparts, as well as higher levels of GSSG
(P< 0.05), homocystine (P< 0.05), and SAH (P< 0.001)
(Figure 1b). While cysteine levels were significantly
higher for females autistic subjects vs. female controls
(P< 0.05) (Figure 1c), they were lower in male subjects vs.
male controls (P< 0.05) (Figure 1d). SAH was significantly
elevated in autistic males vs. controls (P< 0.01), but not in
females. GSH was significantly lower for autistic males
(P< 0.05), but not for females (P¼ 0.15), although the non-
significant decrease for females was large (69%). Thus, male

autistic subjects exhibit a more severely disturbed metabolic
profile than females.

Protein N-homocysteinylation

During new protein synthesis, HCY competes with methio-
nine and lysine for binding to methionyl- or lysyl-tRNA
synthetases and while it is bound to these tRNA synthe-
tases, HCY is converted to HCY thiolactone (HCY-TL).44,52

HCY-TL readily reacts with lysine residues in proteins, with
the potential for altering their function and antigenicity, as
well as introducing a new thiol moiety. Decreased methio-
nine synthase activity increases HCY-TL formation, as well
as the level of protein N-homocysteinylation. HCY-TL is
inactivated by paraoxonase 1, a target of organophosphate
pesticides, whose activity is decreased in autistic
subjects.53,54

We developed an assay for quantification of protein
N-homocysteinyation, based upon chemical modification
followed by biotinylation.50 Using this assay, we evaluated
the N-homocysteinylation status of five selected proteins in
serum samples from autistic and control subjects, as

(a) (b)

(d)(c)

Figure 1 Serum concentrations of redox and methylation metabolites in autism. Serum samples were analyzed by HPLC with electrochemical detection.

(a) Metabolite levels in combined autistic vs. combined control subjects (N¼ 30 in each group). (b) Metabolite levels in male vs. female autistic subjects (N¼15 in

each group). (c) Metabolite levels in autistic vs. control female subjects (N¼15 in each group). (d) Metabolite levels in autistic vs. control male subjects (N¼15 in each

group). * and ** indicate significant differences between groups of P< 0.05 and P< 0.01, respectively
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illustrated in Table 2 and Figure 2. A comparison between
groups indicated that the level of N-homocysteinylation
was significantly higher for protein #5 and for the com-
bined proteins in autistic males vs. control males
(P< 0.03), but not for autistic females vs. control females
(Table 1). There was no significant difference between com-
bined male and female autistic subjects vs. combined con-
trol subjects.

Hair levels of mercury

A previous study described elevations of several toxic
metals in hair samples from our ASD cohort.45 Consistent
with this finding, we found that hair levels of mercury were
markedly elevated in Omani autistic subjects
(6.93� 0.36 mg/g) vs. control subjects (0.611� 0.033mg/g),
by more than 10-fold (P< 0.0001) (Figure 3a). The increase
in mercury is greater than the increase observed for other
toxic metals. There was no significant difference in mercury
levels between male and female subjects within either
group (Figure 3b). A comparison of hair mercury levels
with serum thiol levels revealed a significant inverse cor-
relation with serum levels of cysteine, cystine and GSSH in
control subjects (Figure 3(c), (e) and (g)), but not in autistic
subjects (Figure 3(d), (f) and (h)). No other significant cor-
relations were found.

Discussion

Autism is a disorder of neurodevelopment, but inflamma-
tion, autoimmune,3–10 and gastrointestinal symp-
toms8,10,11–14 are reported to also be present in autistic
individuals, indicative of a systemic condition with prom-
inent neurological manifestations. Prior studies have pro-
vided evidence of oxidative stress,15,29–38 including
significant deficits in plasma concentrations of GSH, the
principal intracellular antioxidant. In confirmation of
these studies, we also found low serum GSH levels in
Omani ASD subjects, accompanied by elevated levels of
methionine cycle intermediates HCY and SAH, and
increased protein homocysteinylation in male ASD subjects.
Furthermore, the content of mercury (Figure 3) and other
heavy metals45 in hair samples was markedly higher in
ASD subjects. Together these observations serve to illustrate
the pleiotropic roles of thiol metabolites, involving redox
regulation, methylation reactions, and xenobiotic detoxifi-
cation, each of which may potentially contribute to autism.

Adequate levels of GSH are essential to offset the effects
of reactive oxygen species (ROS) released during aerobic
metabolism, contributing to the maintenance of optimal
metabolic activity.55 Reciprocally, when GSH levels are
inadequate, or the proportion of GSH to GSSG is low, aer-
obic metabolism is restricted, which decreases the risk of
oxidative damage. The occurrence of mitochondrial

Figure 2 Homocysteinylation of serum proteins. Serum proteins were separated by electrophoresis in duplicate gels. One gel was stained with Coomasie blue to

evaluate protein density (left panel) and the second gel was utilized for evaluation of N-homocysteinylation intensity as chemiluminescence (right panel). Five specific

protein bands were quantified and the level of N-homocysteinylation was compared for male and female autistic and control subjects, as provided in Table 1. In this

representative example, sample lanes 1–4 are from autistic females and lanes 5–8 are from control males. M¼molecular weight standards. (A color version of this figure

is available in the online journal.)

Table 2 Chemiluminescence intensity of serum protein N-homocysteinylation.

Male Female

Autism Control P value Autism Control P value

Band 1 1.08�0.69 1.00�0.30 0.7 Band 1 0.87�0.52 1.00�0.77 0.6

Band 2 1.35�0.69 1.00�0.24 0.08 Band 2 0.78�0.30 1.00�0.66 0.3

Band 3 1.40�0.76 1.01�0.37 0.1 Band 3 0.73�0.29 0.99�0.71 0.2

Band 4 1.26�0.49 0.99�0.36 0.1 Band 4 1.05�0.79 1.00�0.34 0.9

Band 5 1.74�1.10 1.00�0.48 0.03 Band 5 0.90�0.42 1.00�1.00 0.7

Overall 1.40�0.60 1.00�0.28 0.03 Overall 0.87�0.40 1.00�0.66 0.6
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dysfunction in ASD10 is consistent with restricted aerobic

metabolism secondary to diminished antioxidant capacity.

While this restriction is a useful adaptation to minimize the

effects of oxidative stress, it can have adverse effects on

development, a period of high energy demand, especially

in the brain, whose rate of oxygen consumption is 10-fold

higher than other tissues.56 Several recent studies have

reported decreased GSH in postmortem brain of ASD sub-

jects,57,58 along with decreased expression of enzymes

required for its synthesis.59 Low GSH levels found in

Omani autistic subjects and other ASD populations

around the world suggest that low antioxidant levels and

oxidative stress may be core features of autism.
Methylation activity is highly sensitive to oxidative

stress, reflecting inactivation of the vitamin B12 cofactor

in MS, which serves as a sensor of intracellular redox

status.60 Decreased MS activity leads to an increase in
both HCYand SAH, and SAH is a potent inhibitor of methy-
lation reactions. Thus, oxidative stress can lead to a
decrease in all methylation reactions, including methylation
of DNA and histones, which combine to provide epigenetic
regulation of gene expression.61 Low levels of GSH have
been previously shown to cause decreased DNA methyla-
tion.28 It is increasingly clear that epigenetic regulation is
the fundamental driving force for neurodevelopment.62

Recent studies have revealed dynamic brain-specific pat-
terns of DNA methylation63 and hydroxymethylation64,65

during postnatal development, and oxidative stress can dis-
rupt these changes. Indeed, distinctive patterns of DNA
methylation have been documented in blood cells postmor-
tem brain of ASD subjects,66,67 and we previously reported
lower levels of MS mRNA in frontal cortex of ASD
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Figure 3 Hair mercury levels in autism. Scalp hair samples were analyzed by mass spectrometry, as previously described (48). (a) Mercury levels in autistic vs. control

subjects (N¼30 in each group). *** Indicates significant difference between groups (P<0.0001). (b) Gender-based comparison of individual mercury levels (N¼15 in

each group). (c–h) Correlation between hair mercury levels and serum cysteine (c, d), cystine (e, f), and GSSG (g, h) levels for control (c, e, f) and autistic (d, f, h) subjects.

Statistically significant correlations were only observed for control subjects.
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subjects.68 Thus, oxidative stress-induced changes in DNA
methylation may contribute to impaired neurodevelopment
in autism.

Accumulation of HCY upon MS inhibition can increase
formation of HCY-TL, leading to increased formation of
homocysteinylated proteins at exposed lysine residues.69

Although the functional significance of homocysteinylation
is poorly understood, it has been suggested that it might
contribute to cardiovascular pathologies such as athero-
sclerosis, for example, secondary to homocysteinylation of
LDL.70,71 Homocysteinylation may compete with other
N-terminal lysine modifications, such as methylation or
ubiquitination, possibly affecting the rate of protein degrad-
ation. We observed increased homocysteinylation of serum
proteins from ASD males but not females, suggesting that
the intracellular ratio of HCY to methionine may be more
elevated in autistic males vs. female autistic subjects,
although serum (extracellular) levels of HCY were similarly
elevated for both males and females cohorts (Figure 1(c)
and (d)). Homocysteinylation of intracellular proteins
might be a more sensitive indicator of HCY status.

The risk of autism is generally acknowledged to reflect
both genetic and environmental factors.19,22–24 Exposure to
mercury and other heavy metals from multiple sources (e.g.
fish consumption, air pollution, lead paint or the vaccine
preservative thimerosal) can promote oxidative stress by
interfering with GSH and selenoprotein-based antioxidant
systems.72,73 Selenoproteins have an almost irreversible
affinity for mercury74 and they play a more prominent anti-
oxidant role in brain, as compared to other tissues,75

making mercury is an extremely potent neurodevelopmen-
tal toxin.76 Low nanomolar concentrations of methylmer-
cury caused global DNA hypomethylation in neural stem
cells, and this effect was carried forward into daughter cells
which had not been directly exposed.77 A study of mercury-
exposed dental professionals did not find a correlation
between hair mercury levels and global DNA methylation
in buccal mucosa cells, but did find a significant negative
correlation with methylation of the selenoprotein P1 locus
in male subjects.78 Uptake of selenoprotein P is a primary
source of selenium for the brain.79

There have been conflicting reports about hair mercury
levels in autistic children,80,81 but several previous studies
in the Middle East have found increased levels. A study of
Kuwaiti children found 15-fold higher levels of mercury in
autistic children,51 while several studies of Saudi Arabian
children found significant increases.82,83 A recent compre-
hensive study of 1967 autistic subjects in Japan84 found that
a deficiency of essential minerals (zinc, magnesium, and
calcium) accompanied by an excess of toxic metals (lead,
aluminum, and cadmium) is common in autism, similar to
our findings in Omani autistic subjects.45 In the study of
Yasuda et al.,84 elevated hair mercury, defined as >2 stan-
dard deviations above a control reference value, was
detected in only 2.8% of subjects. However, the reference
value for their population was 3.87 mg/g, which is approxi-
mately 4-fold higher than our control subjects (0.61 mg/g).
Our finding of a 10-fold higher mercury level in Omani
autistic children may reflect a compromised ability to
detoxify and excrete food-derived mercury. Since the per

capita consumption of fish in Oman is 27.7 kg, compared
to a global average of 16.7 kg, fish consumption may repre-
sent an importance of mercury. More detailed studies
should be undertaken to establish the origin of mercury
exposure.

GSH binds mercury and contributes to its detoxification,
albeit with lower affinity, and lower GSH in autistic chil-
dren may increase their vulnerability to mercury exposure,
consistent with our finding that hair mercury levels corre-
lated with cysteine, cystine, and GSSG in normal subjects,
but not in autistic subjects. Thus, thiols represent a quanti-
tatively important first line of defense against mercury,
which limits the vulnerability of higher affinity selenopro-
teins, while thiol depletion may increase the opportunity
for mercury to exert its neurotoxic effects.

Our findings are subject to several limitations.
Importantly, we did not have access to data related to dif-
ferences in mercury exposure between control and autistic
subjects, so we cannot identify the cause of elevated hair
mercury levels (i.e. increased exposure vs. decreased excre-
tion). Since levels of other metals were also elevated in our
ASD cohort,45 increased exposure may be suspected, but
the individual contribution of any single metal to autism
cannot be readily evaluated. Lower levels of vitamin B12
and folic acid in this ASD cohort further confound analysis
of the discrete role of mercury, and it is likely that both
nutritional and environmental factors combine to increase
the risk of autism.

In summary, GSH levels are significantly lower in the
serum of autistic children in Oman, especially in males,
and this decrease is accompanied by higher levels of mer-
cury and other heavy metals in hair samples. In conjunction
with previous results, these findings indicate that elevated
heavy metal levels are a prominent feature of ASD in Oman.
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35. Paşca SP, Dronca E, Kaucsár T, Craciun EC, Endreffy E, Ferencz BK,

Iftene F, Benga I, Cornean R, Banerjee R, Dronca M. One carbon

metabolism disturbances and the C677T MTHFR gene polymorphism

in children with autism spectrum disorders. J Cell Mol Med
2009;13:4229–38

36. Adams JB, Audhya T, McDonough-Means S, Rubin RA, Quig D, Geis E,

Gehn E, Loresto M, Mitchell J, Atwood S, Barnhouse S, Lee W.

Nutritional and metabolic status of children with autism vs. neuroty-

pical children, and the association with autism severity. Nutr Metab
(Lond) 2011;8:34

37. Melnyk S, Fuchs GJ, Schulz E, Lopez M, Kahler SG, Fussell JJ,

Bellando J, Pavliv O, Rose S, Seidel L, Gaylor DW, James SJ. Metabolic

imbalance associated with methylation dysregulation and oxidative

damage in children with autism. J Autism Dev Disord 2012;42:367–77

38. Park LK, Friso S, Choi SW. Nutritional influences on epigenetics and

age-related disease. Proc Nutr Soc 2012;71:75–83

704 Experimental Biology and Medicine Volume 239 June 2014
. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .



39. Anderson OS, Sant KE, Dolinoy DC. Nutrition and epigenetics: an

interplay of dietary methyl donors, one-carbon metabolism and DNA

methylation. J Nutr Biochem 2012;23:853–9

40. Roy S, Kale A, Dangat K, Sable P, Kulkarni A, Joshi S. Maternal micro-

nutrients (folic acid and vitamin B(12)) and omega 3 fatty acids:

implications for neurodevelopmental risk in the rat offspring. Brain Dev

2012;34:64–71

41. Al-Farsi YM, Waly MI, Deth RC, Al-Sharbati MM, Al-Shafaee M,

Al-Farsi O, Al-Khaduri MM, Gupta I, Ali A, Al-Khalili M, Al-Adawi S,

Hodgson NW, Ouhtit A. Low folate and vitamin B12 nourishment is

common in Omani children with newly diagnosed autism. Nutrition

2013;29:537–41

42. Essa MM, Guillemin GJ, Waly MI, Al-Sharbati MM, Al-Farsi YM,

Hakkim FL, Ali A, Al-Shafaee MS. Increased markers of oxidative stress

in autistic children of the Sultanate of Oman. Biol Trace Elem Res

2012;147:25–7

43. Al-Farsi YM, Al-Sharbati MM, Al-Farsi OA, Al-Shafaee MS, Brooks DR,

Waly MI. Brief report: Prevalence of autistic spectrum disorders in the

Sultanate of Oman. J Autism Dev Disord 2011;41:821–5

44. Jakubowski H, Glowacki R. Chemical biology of homocysteine thio-

lactone and related metabolites. Adv Clin Chem 2011;55:81–103

45. Al-Farsi YM, Waly MI, Al-Sharbati MM, Al-Shafaee MA, Al-Farsi OA,

Al-Khaduri MM, Gupta I, Ouhtit A, Al-Adawi S, Al-Said MF, Deth RC.

Levels of heavy metals and essential minerals in hair samples of chil-

dren with autism in Oman: a case-control study. Biol Trace Elem Res

2013b;151:181–6

46. Farina M, Avila DS, da Rocha JB, Aschner M. Metals, oxidative stress

and neurodegeneration: a focus on iron, manganese and mercury.

Neurochem Int 2013;62:575–94

47. Carvalho CM, Chew EH, Hashemy SI, Lu J, Holmgren A. Inhibition of

the human thioredoxin system. A molecular mechanism of mercury

toxicity. J Biol Chem 2008;283:11913–23

48. Bernard S, Enayati A, Roger H, Binstock T, Redwood L. The role of

mercury in the pathogenesis of autism. Mol Psychiatry 2002;7:S42–3

49. Garrecht M, Austin DW. The plausibility of a role for mercury in the

etiology of autism: a cellular perspective. Toxicol Environ Chem

2011;93:1251–1273

50. Zang T, Dai S, Chen D, Lee BW, Liu S, Karger BL, Zhou ZS. Chemical

methods for the detection of protein N-homocysteinylation via selective

reactions with aldehydes. Anal Chem 2009;81:9065–71

51. Fido A, Al-Saad S. Toxic trace elements in the hair of children with

autism. Autism 2005;9:290–8

52. Jakubowski H. Aminoacyl thioester chemistry of class II aminoacyl-

tRNA synthetases. Biochemistry 1997;36:11077–85
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