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Abstract
In this minireview, we cover the discovery of the human erythrocyte � spectrin E2/E3 ubiquitin conjugating/ligating enzymatic

activity and the specific cysteines involved. We then discuss the consequences when this activity is partially inhibited in sickle cell

disease and the possibility that the same attenuation is occurring in multiple organ dysfunction syndrome. We finish by discussing

the reasons for believing that nonerythroid � spectrin isoforms (I and II) also have this activity and the importance of testing this

hypothesis. If correct, this would suggest that the nonerythroid spectrin isoforms play a major role in protein ubiquitination in all cell

types. This would open new fields in experimental biology focused on uncovering the impact that this enzymatic activity has upon

protein–protein interactions, protein turnover, cellular signaling, and many other functions impacted by spectrin, including DNA

repair.
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The erythrocyte spectrin membrane skeleton

The erythrocyte, or red blood cell (RBC), travels the circu-
latory system for 120 days in people who are not anemic.
During this four-month journey, this 8 mm, biconcave disc
must pass through the circulatory system, which narrows to
2mm in the smallest venules. To accomplish this feat, the
RBC must be reversibly deformable and elastic, but at
the same time have membrane properties that maintain
the cell’s structural integrity despite the shear forces that
it encounters. The spectrin membrane skeleton is a two-
dimensional meshwork of proteins that spans the cytoplas-
mic membrane surface of the RBC, and provides it with
these properties as well as maintaining its biconcave
shape (Figure 1). A sampling of important prior reviews is
provided.1–6

The membrane skeleton, visualized by negative staining
and electron microscopy, is primarily a hexagonal lattice.
The lattice contains central actin protofilaments intercon-
nected by spectrin tetramers.7 Spectrin in its simplest form
is an antiparallel �b heterodimer, which in vivo forms an
(�b)2 tetramer by head-to-head linkage of two heterodi-
mers.8,9 The � and b spectrin subunits contain a primary
repeating unit of �106 amino acids called the spectrin
repeat. Complete amino acid sequence deduced for the
spectrin subunits demonstrated multiple spectrin repeats
in both the � (�20) and b (�16), which are numbered begin-
ning at the N terminus by convention.10–12 Karinch et al.13

demonstrated that the tail ends of spectrin tetramers, which

do not contain the spectrin repeats, attach to actin protofila-
ments associating with residues 47 through 186 at the N-
terminus of the b subunit. To reinforce this spectrin–actin
interaction, protein 4.1 binds to the tails of b spectrin creat-
ing a spectrin–4.1–f-actin ternary complex.14–17 Another
peripheral membrane protein named adducin binds to
both b spectrin and the barbed fast-growing end of
F-actin.18–20 Attachment of the membrane skeleton to the
membrane occurs in at least two ways. Protein 4.1 that
binds to b spectrin, close to the N-terminal actin-binding
domain also binds glycophorin C.21,22 Ankyrin binds b
spectrin15,23 to the anion transport channel, Band 3.24,25

Discovery of spectrin’s chimeric E2/E3 ubiquitin
conjugating/ligating activity

From its earliest description in 1968,26 to its appreciation as
a major component of the membrane skeleton in the early
1980s,1 spectrin was thought to play the structural role as
indicated in Figure 1. In 2001, the understanding of spectrin
function was extended when Kakhniashvili et al.27 demon-
strated that spectrin also had an enzymatic activity that
allowed it to ubiquitinate itself. The story of this discovery
was preceded by a bit of serendipity. A rabbit autoantibody
stained control RBC membrane skeletons brightly, but
showed very weak staining when indirect immunofloures-
cence (IF) was performed on homozygous (SS) sickle cell
anemia (SCA) RBC membrane skeletons. Interestingly,
when running sodium dodecyl sulfate polyacrylamide gel
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electrophoresis (SDS-PAGE) of RBC membranes, without
reducing agent, a prominent band was observed above �
spectrin in the case of control RBCs, which was substantially
diminished in RBC membranes derived from a patient with
SCA (but not a person with sickle cell trait). This band of
interest was stained by the autoantibody and anti-�-spectrin
(but not anti-b-spectrin) antibody on Western blots. Thus, it
was named it �/ spectrin. When SDS PAGE was run in the
presence of reducing agent, the �/ spectrin was diminished
in the Coomassie blue-stained gel and the western blots.
Now we had an interesting mystery. What was this dithio-
threitol (DTT) reducing agent sensitive �0 spectrin?

The journey from this unexplained finding, to an under-
standing of spectrin’s enzymatic function, began with an
article by Kakhniashvili et al.27 In this study, it was first

demonstrated that the modification was ubiquitin. Next
was the demonstration that erythrocyte �-spectrin is an E2
ubiquitin-conjugating enzyme that is able to target itself.27

The DTT-sensitive adduct, �/ spectrin, was ubiquitin linked
to �-spectrin via a thioester bond. E1 ubiquitin-activating
enzyme and ATP were required to form both the �-
spectrin–ubiquitin adduct and conjugate. Using computer
programs (COMPARE and PEPTIDE STRUCTURE) and a
structural prediction program (PROPSEARCH), we ana-
lyzed the �-spectrin sequence.27 Analyses indicated that a
segment within �-spectrin repeat 20 could be responsible for
E2 ubiquitin-conjugating activity. Cysteine residue 2071 was
surrounded by a sequence that shared �70% identity (11 of
16 residues) with the active site consensus sequence critical
for all known E2 enzymes. It had not yet determined

Figure 1 The RBC spectrin membrane skeleton. The RBC is a biconcave disc (upper left) which on its cytoplasmic surface (light blue) contains a network called the

spectrin membrane skeleton. The detailed protein interactions constituting this membrane skeleton are shown in the center. In the upper right-hand corner is a diagram

showing that actin assemblies, including protein 4.1 or adducin troponin and tropomodulin, form a hexameric array that is crosslinked by spectrin tetramers. The

drawing below gives a transbilayer view of the protein assembly, which attaches spectrin, via ankyrin, to the band 3 tetramer (with associated 4.2 and GLA).

o�Sp: alpha spectrin; bSp: beta spectrin; B3: band 3; Ank: ankyrin; TMOD: tropomodulin; TN: troponin; GLA: glycophorin A; 4.1: protein 4.1; GLC: glycophorin C; and

4.2: protein 4.2
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whether an additional E3 ubiquitin-ligating enzyme was
necessary for the ubiquitination involving � spectrin, or
alternatively that spectrin had both E2 and E3 activity.
However, a potential E3 site that conformed to the cleft
structure surrounding the active site residues of E3 HECT
domain enzymes was identified with this analysis. This
potential E3 site surrounded Cys2100, which was also
located in �-spectrin repeat 20. Furthermore, there was a
region of sequence that contained a lysine cluster within
repeat 21 (2199-KRKQKEIQAMK-2209) that could possibly
contain a lysine acceptor site(s) for ubiquitin attachment.27

Therefore, Kakhniashvili et al. proposed an initial hypoth-
esis where ubiquitin was transferred from an E1 enzyme to
cysteine 2071, then from this cysteine to cysteine 2100, and
then finally to the lysine-rich region of � spectrin repeat
21.27,28 This hypothesis was subsequently proven to be par-
tially correct, as we discuss below.

The hypothesis could be tested utilizing a recombinant
peptide representing residue 2005 to the C-terminus of �
spectrin. Hsu et al.29 cloned this segment into a glutathione
S-transferase (GST) vector and demonstrated that this C-
terminal � spectrin recombinant had the ubiquitin-conjugat-
ing and ligating activity and could transfer ubiquitin to
itself. This finding proved that the activity was inherent in
the � spectrin structure, rather than a copurifying RBC pro-
tein. By testing the C-terminal recombinant protein, GST-
fusion � spectrin (2005-2415), using an in vitro ubiquitina-
tion assay, these studies demonstrated that both cysteine
2071 and cysteine 2100 are capable of receiving ubiquitin
from an E1-activating enzyme and directly transferring ubi-
quitin to a target lysine within this �-spectrin C-terminal
recombinant peptide. Site-specific mutational analyses
using the GST-fusion C-terminal human �-spectrin recom-
binant was employed to examine this activity. Wild-type
recombinant protein, �-spectrin (2005–2415) has six cyst-
eines. Mut1 to Mut13 had different combinations of cyst-
eine(s) mutated into alanine(s) (Table 1). Single mutations,

such as C2071A or C2100A, were created and the spectrin
ubiquitination activity was unaffected by these mutants.
Only recombinant peptides containing the C2071A/
C2100A double mutant demonstrated loss of activity
(Table 1).29,30 Based on these results, the model shown in
Figure 229,30 was proposed. In this model, cysteines 2071
and 2100 both have chimeric E2/E3 activity in human
RBCs. In mice, and species other than human, residue
2100 is converted to a tyrosine or glutamine suggesting
that the conserved cysteine 2071 is the primary E2/E3 site
and cysteine 2100 serves a back up function in humans.29,30

In summary, Goodman and colleagues had
demonstrated that RBC spectrin has a chimeric E2/E3
ubiquitin-conjugating/ligating activity, which is capable of
ubiquitinating itself. Later it was shown that it could also
ubiquitinate other membrane skeleton-associated target
proteins.31,32 The other known target proteins were ankyrin,

Table 1 The use of mutational analysis of recombinant peptides representing the C-terminus of � spectrin to define the critical chimeric E2/E3 active site

cysteines

Clone Amino acids Activity

WT C2071, C2100, C2158, C2387, C2298, C2058 þ

Mut1 C2071A, C2100, C2158, C2387, C2298, C2058 þ

Mut2 C2071A, C2100A, C2158, C2387, C2298, C2058 �

Mut3 C2071A, C2100A, C2158A, C2387, C2298, C2058 �

Mut4 C2071A, C2100A, C2158A, C2387A, C2298, C2058 �

Mut5 C2071A, C2100A, C2158A, C2387A, C2298A, C2058 �

Mut6 C2071A, C2100A, C2158A, C2387A, C2298A, C2058A �

Mut7 C2071, C2100A, C2158, C2387, C2298, C2058 þ

Mut8 C2071, C2100, C2158, C2387, C2298, C2058A þ

Mut9 C2071, C2100, C2158A, C2387, C2298, C2058 þ

Mut10 C2071A, C2100, C2158, C2387, C2298, C2058A þ

Mut11 C2071A, C2100, C2158A, C2387, C2298, C2058 þ

Mut12 C2071, C2100A, C2158, C2387, C2298, C2058A þ

Mut13 C2071, C2100A, C2158A, C2387, C2298, C2058 þ

Source: Modified from Hsu et al.29

Figure 2 Model of human �-spectrin (2005–2415) ubiquitination enzymatic

sites and acceptor sites. Human � spectrin cysteines 2071 and 2100 can both

accept ubuiquitin from an E1-activating enzyme and transfer it directly to cyst-

eine(s) with the a21 repeat unit
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protein 4.1, protein 4.2, the anion transport channel, and a
protein of currently unknown function (gi 13278939).31,32

Previously analyzed proteins that also fell into this chi-
meric E2/E3 category were E2-230K33 and BRUCE.34 E2-
230K is required for remodeling of erythroid cells during
differentiation;33 and BRUCE is a 528-KDa endomembrane-
associated protein.34 Corsi et al.35 were the first to demon-
strate that RBC spectrin was ubiquitinated and Galluzzi
et al.36 demonstrated two ubiquitination sites within � spec-
trin. The two sites were localized to � spectrin repeat 17 and
repeats 20/21 (in agreement with our findings). The lysine
involved in ubiquitin linkage to � spectrin repeat 17 is resi-
due 1709.36 There is no currently known function for the
repeat 17 ubiquitination site.

Role of the spectrin chimeric E2/E3 activity in sickle cell
disease

SCA is the major form of hemoglobinopathies, which result
in RBC sickling. This family of diseases is collectively called
sickle cell disease (SCD), and SCA was the first described,
affects the most people, and is the most severe. The hall-
marks of SCA are anemia, vasoocclusion (leading to sickle
cell crises), oxidative stress, inflammation, organ damage,
and, in many cases, a shortened life span. Within the circu-
lation of a SCA patient, most of the RBCs can convert back
and forth from the sickle to the biconcave shape depending
on whether hemoglobin-S (HbS) is deoxygenated, with for-
mation of 14 stranded polymers, or oxygenated where the
polymers are converted back to HbS monomers. These are
referred to as reversibly sickled cells (RSCs). There are other
RBCs that are irreversibly sickled cells (ISCs), and highly
elongated and dehydrated. The ISCs remain sickled even
when HbS is well oxygenated and depolymerized, and
account for 2–40% of the RBCs in the circulation of a SCA
patient. Previous reviews on the topic will expand upon this
discussion.3,37,38 For much of the 20th century, the molecular
basis of ISC formation eluded the research community.

Lux et al.39 demonstrated that most RBC membranes and
triton skeletons isolated from ISCs remained sickled. This
was not the case for RSC and control membranes and triton
skeletons. We defined the molecular defects, within the
membrane skeleton, which cause the ISC to be ‘‘locked’’
into an irreversibly sickled shape.40–46 Shartava et al.
demonstrated that core skeletons isolated from ISCs dissoci-
ate more slowly than skeletons derived from RSC or control
RBCs.40,41 We then demonstrated that spectrin–4.1–actin
ternary complexes, created in vitro from proteins isolated
from SCA ISCs verus control RBCs, also dissociate more
slowly at 37�C.40 Shartava et al.40 demonstrated that b
actin and spectrin were responsible for the slow dissoci-
ation. The defect in ISC b-actin, due to increased oxidative
stress, is a disulfide bridge between Cys 284 and Cys 373,
which is found at very low levels in RSC and control b-
actin.40,41,44 This post-translational modification in ISC b-
actin caused slower and incomplete depolymerization
than observed with RSC and control b-actin.43 It did not
impact ISC b-actin binding to spectrin.43

SCA RBC � spectrin demonstrates diminished ubiquiti-
nation (50–90% reduced) when compared to control RBC

spectrin.28,45,47 This is caused by diminished spectrin E2/
E3 activity, which we believe to be caused by the conversion
of active site cysteine thiolates (C2071 and C2100) into cyst-
eine oxiforms, which cause loss of function.47 As nonubiqui-
tinated � spectrin participates in a more tightly associated
spectrin–4.1–actin and spectrin–adducin–actin ternary com-
plex than ubiquitinated spectrin,45,46 the rate of SCA ternary
complex dissociation is far slower than the control ternary
complex dissociation rate.40 Therefore, the molecular basis
of the formation of the ISC is a membrane skeleton that
disassembles and reassembles slowly leading to a cell
‘‘locked’’ into the sickled shape. These experiments there-
fore defined the molecular basis of the ISC being a disulfide
bridge in b-actin and diminished ubiquitination of a spec-
trin, both contributing to a ‘‘locked’’ membrane skeleton
and cell (Figure 3).37,38

In SCA patients, there are circulating RSCs and dense
ISCs, and both play roles in vasoocclusion.37,38 We have
demonstrated that n-acetyl cysteine (NAC) blocks the for-
mation of ISCs in vitro.48–50 NACs inhibition of ISC forma-
tion correlated with reduction of the ISC b-actin disulfide
bridge.48 Pace et al. performed a phase II human trial to
determine the efficacy of NAC in reducing dense cell and
ISC levels, increasing intracellular GSH, and reducing acute
vasoocclusive crises (VOC) episodes in SCD patients.
At 2400 mg per day, NAC reduced dense cells significantly
by 37%, doubled intracellular GSH, and lowered the relative
risk of VOC episodes by 61%.51 Percentage ISCs showed a
downward trend at all doses tested (600, 1200, and
2400 mg). The findings of our phase II clinical trial have
been confirmed by Nur et al.,52 and phase III trials are
anticipated.

Erythrocyte spectrin ubiquitination and multiple organ
dysfunction syndrome (MODS)

Caprio et al.53 recognized the potential relationship between
the role of diminished �/ or ubiquitinated � spectrin in ISC
formation and the rigidity observed in RBCs in MODS.
MODS is a major potential clinical problem faced postsur-
gery. They tested this relationship and demonstrated that
the decreased RBC deformability observed in a rat model
of trauma and hemorrhagic shock was correlated with
diminished �//� spectrin ratio.53 They concluded that
‘‘the fact that �-spectrin, in addition to being a structural
membrane protein, has important enzymatic activity that
helps regulate the association of the various RBC membrane
proteins to the actin cytoskeleton makes it an attractive
target for further study and possible therapy’’ related to
MODS.53 We would suggest that this may be true for
many disorders in which RBCs are less deformable and
misshapen.

Spectrin isoforms in nonerythroid cells

In 1981, Goodman et al.54 demonstrated that spectrin and
spectrin-related proteins could be found in nonerythroid
cells and tissues. This article led to a flurry of articles in
the 1980s demonstrating the ubiquity of spectrin and close
relatives in mammalian and avian cells.1,55–62 It became
appreciated that spectrin was widely found in eukaryotic
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cells. Much attention was focused on brain spectrin, because
of its very high content in neural tissue (2–3% of the total
protein content) and the intrinsic interest in uncovering its
neural functions. A large number of comprehensive review

articles are available on brain spectrin structure, function,
and location,63–67 which will be briefly covered here.
Riederer et al. made the important discovery of multiple
isoforms of spectrin in neurons.68,69 We described an

Figure 3 The molecular basis of the ISC. Taken from Goodman37 with permission of the publisher
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erythroid isoform composed of � subunits, identical to RBC
� spectrin, associated with b subunits, which were an alter-
nately spliced forms of RBC b-spectrin, with an extended C-
terminus.68–70 This form, originally called brain spectrin
240/235E and now called �SpI/bSpI�2, was found in the
soma, dendrites, and postsynaptic densities of all neu-
rons.68–70 There was a second major form of spectrin in neu-
rons, which had � and b subunits, which were distinct gene
products from RBC spectrin but shared �60% sequence
identity with the RBC spectrin subunits, increasing in
sequence identity within the functional domains.68–70 This
isoform, originally called brain spectrin (240/235) and now
called �SpII�I/bSpII�1, was found to be primarily located
in the axons and presynaptic terminals of all neurons.68–70

Brain spectrin isoforms are (�b)2 tetramers.71,72 �SpI/
bSpI�2 had binding sites for erythroid ankyrin, protein
4.1, and actin, which are colocalized in the neuronal soma,

dendrites, and postsynaptic densities.64–66,73 In the case of
�SpII�I/bSpII�1, the tetramer had binding sites for none-
rythroid isoforms of protein 4.1 and ankyrin, but also had
association sites for calmodulin and synapsin.64–66,74,75

An immunoelectron microscopy study from Zagon
et al.76 led to the interesting conclusion that the spectrin
isoforms were located on the cytoplasmic surface of not
only the plasma membrane but also all organelle mem-
branes, and within the nucleus. They were also cross-
linking cytoskeletal structures to each other and membrane
surfaces. The location of spectrin isoforms in brain is sum-
marized in Figure 4. Of great interest in this immunoelec-
tron microscopy study was the finding of �SpII�I/bSpII�1
associating with the cytoplasmic surface of small spherical
synaptic vesicles. Lambert and colleagues have demon-
strated that �SpII can be found within the nucleus where
it plays an important role in DNA repair.77–81

Figure 4 Location of spectrin isoforms. Red indicates the position of spectrin �I/bI�2 and blue �II/bII in neurons. Taken from Zagon et al.76 with permission of the

publisher

1044 Experimental Biology and Medicine Volume 240 August 2015
. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .



It has been demonstrated that the connection between
spectrin and the small spherical synaptic vesicles was
end-on via synapsin.74,82,83 The Goodman lab also demon-
strated that the brain spectrin–synaptic vesicle interaction is
not regulated by phosphorylation of synapsin by Cam
Kinase II or A-Kinase,84 but is directly regulated by free
Ca2þ.66 Ma et al.85 cloned and sequenced bSpII�1 spectrin
from mouse, which demonstrated that bSpII�1 had 2363
residues that had 59% identity with bSpI�1. This sequence
identity rose to 89% in the actin-binding domain, and to 87%
in residues 207–445, which was predicted to be the synap-
sin-binding domain. The suggestion by Ma et al.85 proved to
be correct based on microinjection of peptide-specific anti-
bodies against this region of bSpII�1 into paired hippocam-
pal neurons.86 Importantly, Sikorski et al.86 demonstrated
that when these antibodies were injected into the presynap-
tic neuron, this inhibited excitatory postsynaptic currents
(EPSCs) in the postsynaptic neuron. Peptide-specific anti-
bodies against flanking sequences had no effect upon
EPSCs. The attachment site for synapsin on bSpII was
mapped to L211–Q235 by Zimmer et al.87 Based on these,
and other studies, we concluded that �SpII/bSpII serves an
essential role as a docking protein for Ca2þ-regulated exo-
cytosis of neurotransmitter at the active zone of the nerve
terminal.66

Potential regulatory role for spectrin in nonerythroid
cells

While �SpII�I/bSpII�1 spectrin is found in all cell types
except RBCs, �SpI/bSpI�1 or 2 are found only in RBCs,
neurons, skeletal muscle, and cardiac muscle (Table
2).54,66,68,70,88–91 In human, there are two � spectrin genes:
SPTA1, SPTAN1-encoding �SpI and �SpII�I, respectively,
and five genes encoding b spectrins: SPTB, SPTBN1,
SPTBN2, SPTBN4, and SPTBN5. We have been discussing

the gene products of SPTB, SPTBN1 (bSpI�2 and bSpII�1,
respectively), which are the major isoforms found in brain.
Clark et al.70 demonstrated that hybrid tetramers of spectrin
subunits also exist in the brain. These hybrid species are less
abundant than tetramers consisting solely of erythroid sub-
units (�SpI/bSpI�2)2 or nonerythroid subunits (�SpII�1/
bSpII�1)2. The hybrid tetramers provide an explanation of
how two � spectrin isoforms (�SpI and �SpII) can couple
with five different b spectrin isoforms (bSpI-V).

We anticipate that the �SpI subunit found in neurons,
skeletal, and cardiac muscle54,66,68,70,88–91 would have the
same chimeric E2/E3 activity as this subunit found in
RBCs, but with a broader range of targets. While logical
this has not yet been tested. In RBCs, spectrin’s targets
include ankyrin, protein 4.1, protein 4.2, adducin, the
anion transport channel, and protein gi13278939.
Therefore, it would be pertinent to examine whether spec-
trin possesses ubiquitination activity with these proteins or
their analogs in cardiac and skeletal muscle cells as well.
�SpI and �SpII expressed in cardiac muscle cells are
found on the plasma membrane and within contractile
fibers near the Z-disc and intercalated disc.89,92 In mice, it
has also been shown that protein 4.1 products (4.1R,G,N,B)
occur with spectrins at many subcellular locations in the
heart, along with ankyrins (AnkB, AnkR, AnkG) and
actins.93 The significance of the spectrin membrane cyto-
skeleton and the ubiquitin-proteasome system in mainten-
ance of myocyte integrity is illustrated by linkage of cardiac
pathologies with mutations in these cellular compo-
nents.94,95 Thus, examining spectrin chimeric ubiquitin
ligase activity in heart cells will promote a better under-
standing of its contribution to cardiac protein turnover, pro-
tein–protein interactions, and cellular signaling in cardiac
pathophysiology.

In the case of �SpII�I, we know that it shares sequence
homology with �SpI in the region surrounding a cysteine

Table 2 Spectrin isoform nomenclature and properties.

Spectrin isoform Previous names Molecular weight mRNA size Genomic locus
Chromosome

Mouse Human

�SpI�1 � Erythrocyte spectrin 280 kDa 8 kb Spna1 1 1

�SpII�1 Nonerythroid 280 kDa 7.8 kb Spna2 2 9

�2 � Spectrin

�3 � Fodrin

�4

bSpI�1 b Erythrocyte 246 kDa 6/8 kb Spnb1 12 14

bSpI�2 b Erythrocyte spectrin 268 kDa 11 kb Spnb1 12 14

bSpII�1 Nonerythroid 275 kDa 9 kb Spnb2 11 2

�2 b Spectrin

b fodrin

bSpIII�1 – 271 kDa 8–9 kb Spnb3 19 11

bSpIV�1 – 288 kDa 9 kb Spnb4 7 19

�2

�3

�4

bSpV�1 – 417 kDa 11–12 kb Spnb5 – 15
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equivalent to Cys 2071 (Figure 5). We also know that both
�SpI and �SpII�I are ubiquitinated in the hippocampal neu-
rons.96–98 �SpII�I shares sequence homology with �SpI in
the region surrounding a cysteine equivalent to Cys 2071
(Figure 5). Moreover, there is an absolute conservation of
the Cys 2071 sequence domain in eukaryotes throughout
evolution, highly suggestive of conservation of a functional
domain within the �SpII molecule. There have been no
reported studies on whether �SpII�I can serve as an E2/
E3 chimeric enzyme in nonerythroid cell types. This is an
extremely important question as spectrin makes up �2–3%
of the total protein in nonerythroid cells. We would predict
that it will have such chimeric E2/E3 enzymatic activity,
with far greater number of target proteins, for several rea-
sons: (1) It is found on the cytoplasmic surface of both
organelle and plasma membranes,76,99 and within the
nucleus.77–81 (2) �SpII is directly associated with many cyto-
skeletal and membrane skeletal components,2,5,6,63–67,100–102

and cell adhesion proteins (e.g. NCAM180).2,5,6,63–67,103 (3) It
has indirect interaction, via protein 4.1 and ankyrin, to a
myriad of ion channels and transporters.2,5,6,44,63–67,104,105

(4) �SpII is expressed throughout all mammalian develop-
mental stages.106–108 (5) The RBC proteomic and interac-
tomic analyses to date have indicated 2289 unique
proteins, with �SpI/bSpI having moderate connectiv-
ity.109–112 The RBC has no internal organelles except 20 S
proteasomes.113 The proteome of nucleated nonerythroid
cells, with a complete complement of organelles, will have
at least 10 times the number of unique proteins, as

compared with RBCs, with far greater connectivity of
�SpII/bSpII spectrin. Further study of the E2/E3 activity
of � spectrin isoforms in nonerythroid cells is of great
importance to our understanding the ubiquitination of
many proteins and the cellular functional impact of this
posttranslational modification.
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