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Abstract
Galectins, a 15-member family of soluble carbohydrate-binding proteins, are receiving increasing interest as therapeutic targets

for immunotherapy and immunomodulation due to their role as extracellular signals that regulate innate and adaptive immune cell

phenotype and function. However, different galectins can have redundant, synergistic, or antagonistic signaling activity in normal

immunological responses, such as resolution of inflammation and induction of antigen-specific tolerance. In addition, certain

galectins can be hijacked to promote progression of immunopathologies, such as tumor immune privilege, metastasis, and viral

infection, while others can inhibit these processes. Thus, eliciting a desired immunological outcome will likely necessitate thera-

peutics that can precisely enhance or inhibit particular galectin–glycan interactions. Multivalency is an important determinant of

the affinity and specificity of natural galectin–glycan interactions, and is emerging as a key design element for therapeutics that can

effectively manipulate galectin bioactivity. This minireview surveys current molecular and biomaterial engineering approaches to

create therapeutics that can stabilize galectin multivalency or recapitulate natural glycan multivalency (i.e. ‘‘the glycocluster

effect’’). In particular, we highlight examples of using natural and engineered multivalent galectins for immunosuppression and

immune tolerance, with a particular emphasis on treating autoimmune diseases or avoiding transplant rejection. In addition, we

present examples of multivalent inhibitors of galectin–glycan interactions to maintain or restore T-cell function, with a particular

emphasis on promoting antitumor immunity. Finally, we discuss emerging opportunities to further engineer galectin–glycan inter-

actions for immunotherapy and immunomodulation.
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Introduction: Lectins in biology and medicine

Lectins are proteins that non-covalently bind to glycans,
carbohydrates that are covalently linked via glycosidic
bonds to other carbohydrates, proteins (i.e. ‘‘glycoproteins’’),
or lipids (i.e. ‘‘glycolipids’’). Lectins are ubiquitous in nature,
with hundreds of variants identified in bacteria, plants, and
animals since the discovery of ricin from castor oil plants by
Peter Hermann Stillmark in the early 19th century.1

Mammalian lectins can act as signals, receptors, and
structural elements within various intra- and extracellular
microenvironments. For example, calnexins within the endo-
plasmic reticulum aid in glycoprotein folding,2,3 while P-type
lectins regulate trafficking of acid hydrolases to lysosomes
for antigen processing.4 Extracellular S- and C-type lectins
can mediate homo- and heterotypic cell–cell adhesion by
engaging glycoproteins or glycolipids protruding from adja-
cent cells, as well as cell adhesion to the extracellular matrix
via binding to matrix glycoproteins (e.g. laminin, fibronectin,
and collagen type IV).5 Extracellular lectins can also act as

non-covalent cross-linkers that organize membrane-anchored
glycoproteins into clusters, lattices, and arrays6,7 and are
involved in ECM glycoprotein organization and assembly.8

As a result, lectin–glycan binding can initiate, amplify,
attenuate, or inhibit transmembrane signal transduction to
modulate cell proliferation, differentiation, migration, and
apoptosis in various normal and pathological processes. Of
particular current interest is the role of S-, C-, and I-type
lectins as regulators of immune cell function and phenotype
during innate and adaptive immune responses, including
pathogen recognition, inflammation, induction of antigen-
specific immunity, and immunological tolerance.9–11 The
primary emphasis of this minireview is to highlight recent
developments in therapeutics that can modulate T-cell-
dependent immune responses by enhancing or inhibiting
the biological activity of S-type lectins.

To design therapeutics that can precisely alter the bio-
activity of a particular lectin one can gain important insights
from an understanding of the biochemistry of lectin–glycan
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interactions. Carbohydrate-recognition domains (CRDs) of
lectins can be highly selective for their cognate glycans,
approaching binding specificities that are comparable to
those of ‘‘enzyme-substrate’’ and ‘‘antibody–antigen’’ inter-
actions.12 For example, concanavalin A preferentially recog-
nizes a-d-glucose and a-d-mannose, wheat germ agglutinin
binds to N-acetylglucosamine (GlcNAc), and ricin is spe-
cific for a- or b-d-galactose.13 Similarly, mammalian lectins
can be categorized into families according to their glycan-
binding specificity, with C-type lectins generally recogniz-
ing mannosides and requiring calcium ions for binding,
while I-, P-, and S-type lectins preferentially bind to sialic
acids, mannose-6-phosphate, and b-galactosides, respect-
ively.14 In contrast to antibody-antigen interactions, how-
ever, lectin–glycan binding is often of low affinity, with
dissociation constants (KD) in the mM to mM range.15

Lectins are typically multivalent, either due to the associ-
ation of different subunits into quaternary structures or via
multiple CRDs encoded within a single polypeptide chain,
which can stabilize lectin–glycan binding and mediate non-
covalent cross-linking of glycoproteins into higher ordered
structures.14 In addition, lectin–glycan binding affinity is
enhanced by the ‘‘glycocluster effect,’’ the natural presenta-
tion of glycans in dense clusters that establish local avidity
effects, such as chelation and statistical rebinding.16 This
minireview is largely focused on therapeutics that can
manipulate lectin–glycan interactions by mimicking natural
glycoclusters or stabilizing lectin CRD multivalency.

In accordance with the natural abundance of lectins and
glycans, and their diverse roles within natural microenvir-
onments, therapeutics that can promote, mimic, or interfere
with lectin–glycan interactions are receiving increasing
attention. A number of excellent recent reviews document
the rapidly expanding landscape of therapeutics that can
leverage lectins or glycans for immunomodulation. For
instance, we recently surveyed synthetic glycomaterials
for immunomodulation, immunotherapy, and infection
prophylaxis.17 Other excellent recent reviews highlight the
state-of-the-art of glycovaccines for cancer and infection
prophylaxis,18–20 as well as glycotherapeutics to inhibit bac-
terial adhesion, biofilm formation, and the action of bacter-
ial toxins.21–24 Within this special issue, Huang et al.112

discuss glycomaterials that can modulate C- and I-type lec-
tins, with a particular emphasis on therapeutics for viral
infection prophylaxis. Thus, this minireview focuses exclu-
sively on molecular and biomaterial engineering approaches
to harness or inhibit the biological activity of S-type lectins,
or ‘‘galectins’’, as extracellular signals in T-cell-dependent
immune responses.

Galectins as extracellular signals within the
immune system

Mammalian galectins are a 15-member family of soluble
b-galactoside-binding lectins that can be further subdivided
into non-covalent homodimers with identical CRDs
(galectin-1, -2, -5, -7, -10, -11, -13, -14, and -15); tandem
dimers with distinct CRDs (galectin-4, -6, -8, -9, and -12);
or a non-covalent homopentamer (galectin-3)25,26 (Figure 1).
Galectins can be secreted into the extracellular space, where

they influence cell behavior in various normal and patho-
logical processes, including inflammation and its reso-
lution,27 immunity and tolerance,28–30 cancer progression
and metastasis,31 angiogenesis,32,33 and wound healing.34

Within the innate and adaptive immune systems, for exam-
ple, galectin-1 can enhance migration of dendritic cells
(DCs) and neutrophils,35,36 bias activation of DCs towards
a tolerogenic phenotype,37 and mediate pre-B cell/stromal
cell synapse formation leading to pre-B cell receptor clus-
tering and signal initiation.38 Galectin-3 drives alternative
activation of macrophages,39 and also mediates neutrophil
adhesion to ECM glycoproteins.40 In addition, galectin-1, -2,
-3, -4, and -9 modulate various functions of thymic, naı̈ve,
effector, and regulatory T cells, including apoptosis, activa-
tion, and cytokine expression.41 For greater depth on galec-
tins in the context of innate and adaptive immune
responses, we direct the reader to an excellent recent
review by Thiemann and Baum.11 Owing to the diverse
roles of galectins as signals that modulate immune cell
behavior, and the centrality of these signaling events to vari-
ous normal and pathological processes, there is increasing
interest in galectins as therapeutic targets. In the following
sections, we highlight recent advances, emerging opportu-
nities, and challenges in applying molecular and materials
engineering to create therapeutics that can harness or dis-
rupt galectin–glycan interactions for immunomodulation
(Figure 2).

Galectin-1 delivery for immunosuppression
and immune tolerance

Galectin-1 is expressed at sites of immunosuppression
during development and homeostasis, such as the fetal–
maternal interface, retina, and testis,42–44 where it can act
as an extracellular signal to downregulate adaptive
immune responses and inflammation.45 For example, galec-
tin-1 induces apoptosis of activated effector CD4þT-helper
1 and 17 cells (Th1 and Th17), but not naı̈ve T cells, T-helper
2 lymphocytes (Th2), or regulatory T cells.46,47 In addition,
galectin-1 can also modulate T-cell expression of inflamma-
tory and anti-inflammatory cytokines.48–50 In light of these
observations, galectin-1 is gaining interest as a therapeutic
for treating T-cell-dependent immunopathologies. Toward
this end, delivery of galectin-1 prevented the onset of
hyperglycemia in non-obese diabetic (NOD) mice, a pre-
clinical model for the T-cell-mediated autoimmune disease,
Type 1 diabetes (T1D).51 In particular, galectin-1 delivery
reduced the number of Th1 cells, increased the number of
T cells secreting anti-inflammatory cytokines (interleukin
(IL)-4 and IL-10), and caused peripheral deletion of T cells
reactive towards insulin-producing pancreatic b-cells. As a
result, galectin-1 therapy prevented onset of hyperglycemia
in NOD mice at early and subclinical stages of T1D, and
also reversed b-cell autoimmunity and hyperglycemia in
NOD mice with on-going T1D. Galectin-1 delivery has
also proven effective in suppressing or reversing other
autoimmune and autoinflammatory diseases, preventing
rejection of allogeneic transplants, and inhibiting graft-
versus-host disease following allogeneic hematopoietic
stem cell transplantation52–57 (Table 1).
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Figure 1 Classification of galectins by structure and an overview of their modulation of immune cell function. (A color version of this figure is available in the online journal.)

Figure 2 Schematic overview of therapeutic approaches to harness galectin–glycan interactions to suppress T-cell function (left) or inhibit galectin–glycan inter-

actions to restore T-cell function (right). (A color version of this figure is available in the online journal.)
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Despite these preclinical successes, however, translation
of galectin-1 delivery is likely to be challenged by the rapid
inactivation of the protein under physiological conditions
due to covalent dimerization via cysteine oxidation.58

Ligands that bind galectin-1 can prevent oxidative dimer-
ization,58,59 but are nonetheless impractical for enhancing
the therapeutic efficacy of galectin-1 because they are likely
to interfere with cell-surface or ECM glycoprotein binding.
Alternatively, galectin-1 oxidative dimerization can be
inhibited via protein engineering or chemical approaches.
For example, an engineered mutant of galectin-1 having all
cysteine residues replaced with serine residues demon-
strated similar glycan-binding properties as the wild-type
protein, and inhibited Jurkat T-cell growth with equal or
greater efficacy than the wild-type protein.60 Notably, the
cysteine-less mutant retained hemagluttination activity
during storage for more than 400 days, while activity of
the wild-type protein was greatly diminished by 10 days
in the absence of reducing agents.60 Alkylation of cysteine
residues with iodoacetamide or maleimide can also inhibit oxi-
dative dimerization, thereby eliminating the need to modify
the primary structure of galectin-1.61 Similar to the cysteine-
less mutant, alkylated galectin-1 did not undergo oxidative
dimerization over prolonged periods of time and retained
the glycan-binding and biological properties of the wild-
type protein. Further studies are warranted to assess the
effectiveness of galectin-1 variants that resist oxidative dimer-
ization for suppressing or reversing T-cell-dependent
immunopathologies.

The therapeutic efficacy of galectin-1 delivery may also
be dependent on CRD valency. Galectin-1 exists as a non-
covalent homodimer,62 which dissociates into monomers at
low concentrations (KD �1–7mM, depending on spe-
cies).58,63 Monomeric and dimeric galectin-1 have similar
glycan binding specificities; however, dimeric galectin-1
has higher glycan binding affinity.64 T-cell apoptosis is

induced by galectin-1 at concentrations greater than 7mM,
suggesting a dependence on the homodimeric quaternary
structure.47 Consistent with this, a galectin-1 mutant
with impaired dimerization lacked the ability to induce
phosphatidylserine exposure by T cells, an early marker of
apoptosis, despite retaining the ability to bind carbohy-
drates and induce intracellular calcium flux.59 Similarly, a
truncated monomeric form of galectin-1 failed to induce
apoptosis of Jurkat T cells, despite having profound effects
on axonal regeneration.65 Thus, suppressing T-cell-depen-
dent immune responses via systemic delivery of galectin-1
will likely require administration of relatively high doses
that maintain homodimerization.

Alternatively, protein engineering approaches can be used
to create galectin-1 homodimers with greater stability and, in
turn, enhanced biological activity. For example, Visser and
coworkers66 created a recombinant fusion of galectin-1 and
a cysteine-terminated variant of the FBJ osteosarcoma
viral oncogene homolog (FOS) leucine zipper, which forms
disulfide-linked dimers. This fusion protein induced T-cell
apoptosis with a minimum effective concentration that was
20-fold lower than that of wild-type galectin-1. In addition,
the fusion protein enhanced peripheral blood mononuclear
cell expression of the anti-inflammatory cytokine IL-10 with
a 100-fold lower minimum effective dose than wild-type
galectin-1, while also downregulating expression of the
inflammatory cytokine IFN-c. Together, these observations
suggest that a stable dimeric fusion of galectin-1 may inhibit
effector T-cell function more effectively than wild-type galec-
tin-1. Similarly, Dimitroff and coworkers67 created a recom-
binant fusion of galectin-1 and the Fc region of
immunoglobulin G1 (IgG1), referred to as Gal-1hFc, which
forms stable homodimers via covalent Fc dimerization
(Figure 3). Gal-1hFc induced apoptosis of Th1 and Th17
cells, similar to wild-type galectin-1, upregulated expression
of IL-10 and other Th2 cytokines in activated T cells,

Table 1 Summary of preclinical assessments of galectin-1 delivery to treat T-cell-dependent immunopathologies

Immunopathology model Host Outcome References

Graft-versus-host disease Mouse Increased numbers of splenic B cells and CD4þT

cells, decreased IL-2 and IFN-y release,

decreased host alloreactivity

Baum et al.52

Collagen-induced osteoarthritis Mouse Decreased proinflammatory cytokine release,

decreased anticollagen IgG titers, Th2-skewed

antigen immune response

Rabinovich et al.53

Experimental colitis Mouse Decreased numbers of hapten-activated T cells,

decreased proinflammatory cytokine release,

increased numbers of apoptotic mononuclear

cells within colon

Santucci et al.54

Experimental autoimmune encephalomyelitis Mouse Increased microglia deactivation, decreased

axonal damage, decreased demyelination,

decreased neuronal degeneration

Starossom et al.55

Experimental autoimmune uveitis Mouse Increased T cell apoptosis, decreased antigen-

specific IgG titers, decreased leukocyte infil-

trate, Th2 orTreg-skewed immune response

Toscano et al.56

Renal allogeneic transplant Rat Increased recipient animal survival, decreased

serum IFN-y and soluble CD30, decreased

CD8þT cell-mediated cytotoxicity

Xu et al.57
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and suppressed T-cell-dependent inflammation in a model
of contact hypersensitivity by increasing the number of
IL-4þ/IL-10þ/transforming growth factor-bþ/CD25high/
FoxP3þ regulatory T cells and decreasing the number of
interferon-cþ/IL-17þT cells. It remains to be seen if manip-
ulating galectin-1 monomer-dimer equilibrium can enhance
the efficacy of galectin-1 for treating T-cell-dependent
immunopathologies.

Inhibiting galectin-T-cell interactions
to maintain or restore T-cell function

Various galectins can also act as extracellular signals and
structural elements during the onset or progression of
pathologies, such as cancer and viral infection.52,68,69

Focusing specifically on T-cell function in cancer, binding
of galectin-3 to antigen-specific activated CD8þT cells
inhibited their effector function within the tumor micro-
environment.70 Galectin-9 within the tumor microenviron-
ment induced apoptosis of Tim-3þCD8þT cells infiltrating
colon tumors.71 Galectin-1 expression is up-regulated in
human pancreatic cancer cells (hPCC), and isolated hPCC
induced higher levels of T cell apoptosis, increased secre-
tion of IL-6 and IL-10, and decreased secretion of IFN-c in
ex vivo T-cell-hPCC co-cultures.72 In the context of
viral infection, galectin-1 can enhance HIV infectivity by

non-covalently cross-linking the viral coat glycoprotein
GP120 and CD4 expressed by T cells.73 Similarly, galectin-
1 increased the efficiency of human T-cell leukemia virus
type 1 (HTLV-1) infection by stabilizing virus attachment to
human T cells.74 Galectin-1 and -8 also promoted binding of
influenza A virus (IAV) to target cells in a dose-dependent
manner, while having no effect on internalization, and
restored the ability of IAV to infect de-sialylated cells at
levels comparable to native cells.75 In addition to viral
entry, galectin-9 systemically overexpressed during acute
and chronic stages of HIV infection likely contributes to
persistent inflammation and systemic T-cell dysfunction.76

Owing to the importance of galectins as extracellular sig-
nals in pathological T-cell dysfunction, there is increasing
interest in therapeutics that can inhibit galectin–T-cell
interactions. One approach is to eliminate galectin-1 or its
cognate glycans. For example, silencing galectin-1 gene
expression enhanced antitumor immunity in various
murine cancer models.77–79 Alternatively, inhibiting biosyn-
thesis of N-acetyllactosamine (LacNAc) glycans via sys-
temic delivery of a non-natural carbohydrate increased
the number of infiltrating tumor-specific CD8þT cells
and intratumoral IFN-c expression.80 However, efficient,
targeted delivery of small-interfering RNA to tumors
remains an unmet need,81 while systemic inhibition of
glycan biosynthesis may broadly disrupt immune system

Figure 3 A stable dimeric variant of galectin-1 based on an Fc fusion protein. (a) The dimeric and monomeric states of the Gal-1hFc fusion protein. (b) Binding of

Gal1-hFc to HL-60 cells. (c) Gal-1hFc induced apoptosis of Th1 and Th17, but not Th2 effector T cell subsets in a carbohydrate-dependent manner, similar to wild-type

galectin-1. (d-e) In a murine skin hypersensitivity model, Gal-1hFc delivery (d) significantly decreased mononuclear and granulocytic infiltrates and (e) suppressed

changes in ear thickness resulting from inflammation. Adapted from Cedeno-Laurent et al.67 (A color version of this figure is available in the online journal.)
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function, giving way to onset or exacerbation of secondary
disease and opportunistic infections.

To address these practical challenges, there is growing
interest in therapeutics that can inhibit galectin bioactivity
by disrupting galectin–glycan binding. Toward this end,
a wide variety of natural and modified carbohydrates
have been explored as galectin inhibitors,82 with increasing
attention given to their efficacy in disrupting galectin–T-cell
interactions that are integral to cancer and viral infection. For
example, intratumoral injection of thiodigalactoside (TDG), a
galectin-binding variant of lactose having enhanced glyco-
lytic stability, increased the number of tumor-infiltrating
CD8þT cells and reduced tumor growth in murine melan-
oma and breast cancer models.83 Administering TDG follow-
ing prophylactic vaccination with a tumor-specific antigen
improved survival following tumor challenge in a murine
breast cancer model.84 In addition, delivery of TDG
increased the number of CD4þ and CD8þT cells in periph-
eral blood, as well as the number of CD3þT cells within
metastases, ultimately leading to a reduction in pulmonary
metastasis in murine breast and colon cancer models.85

Alternatively, lactoside derivatives can reduce HIV binding
to target cells in vitro by inhibiting galectin-1 binding to
CD4þT cells,86 suggesting their potential for disrupting
host–virus interactions that are a rate-limiting step in HIV
infection.

Despite these successes, however, one persistent chal-
lenge in the design of effective small molecule galectin
inhibitors is the low binding affinity of CRDs for monova-
lent carbohydrates. Within natural microenvironments,
galectin–glycan binding affinity is enhanced via the ‘‘gly-
cocluster effect,’’ in which high-density, multivalent display
of carbohydrates provides avidity effects that stabilize
galectin–glycan interactions.16 Inspired by these observa-
tions, naturally derived and synthetic polyvalent carbohy-
drates are receiving increasing attention as galectin
inhibitors. For example, synthetic glycopolymers, such as
glycodendrimers and pseudo-polyrotaxanes, can disrupt
galectin binding to cell surface glycoproteins.87–89

However, their efficacy for treating cancer has largely
focused on inhibiting galectin-mediated cell adhesion,90,91

with little emphasis on enhancing antitumor immunity
to date. Alternatively, naturally derived glycopolymers
are showing significant promise for restoring the function
of tumor-infiltrating lymphocytes (TIL). For example, a
modified citrus pectin (GCS-100) released galectin-3 from
the surface of human tumor-derived TIL, upregulated
expression of inflammatory cytokines (IFN-c, IL-2, and
TNF-a), and restored CD8þTIL cytotoxicity in vitro,
while also enhancing rejection of tumors in mice vaccinated
with a tumor-specific antigen.92 Similarly, GM-CT-01
(DavanatTM), a galactomannan from guar gum, enhanced
IFN-c secretion by CD8þ and CD4þT cells from patients
with various cancers by disorganizing the formation
of galectin-glycoprotein lattices.93 In addition, Galectin
Therapeutics is currently investigating a galactorhamnoga-
lacturonate glycan derived from citrus pectin, GR-MD-02,94

in clinical trials as an adjuvant to enhance the efficacy of
cancer immunotherapy.

Another significant challenge is creating therapeutics to
selectively inhibit the bioactivity of specific galectins, given
increasing evidence that different galectins can have con-
trasting activities within pathological microenvironments.
For example, galectin-4 inhibits pancreatic cancer cell
metastasis by interfering with cell migration,95 while galec-
tin-3 mediates aberrant cytosolic redistribution of a mem-
brane-bound epithelial mucin that is overexpressed in
many cancer cells, MUC1.96 Similarly, galectin-1 promotes
HIV infectivity of macrophages by stabilizing virus-cell
binding, while galectin-3 does not mediate virus adsorption
onto host cells.97 Thus, therapeutics that broadly recognize
galectin CRDs may have limited efficacy because of com-
petitive binding that decreases effective inhibitor dose or
off-site activity inhibiting signaling events that suppress
disease progression.

Different galectins demonstrate binding selectivity for
subtle changes in carbohydrate chemistry, such as terminal
versus internal repeated disaccharides, sialylation, and
fucosylation.98–100 Coupled with increasing understanding
of CRD architecture via galectin structure determination,
these insights have informed on-going efforts to rationally
design carbohydrate analogs as selective galectin inhibi-
tors.82 In addition to glycochemistry, however, it is also
becoming apparent that physical attributes of glycoclusters
can dictate galectin-binding specificity. For example,
clustering of complex-type glycans on the HIV coat
protein GP120 in its native conformation imparts structural
constraints that prevent galectin-3 binding, yet permit
galectin-1 binding.73,101 Thus, synthetic glycoclusters with
fine control of glycan chemistry and physical display may
provide new opportunities for creating more robust galectin
inhibitors. Toward this end, we have recently developed a
synthetic glycopeptide, GlcNAc-QQKFQFQFEQQ
(GlcNAc-Q11), which self-assembles into b-sheet nanofi-
bers under aqueous conditions to provide highly multiva-
lent glycoclusters101 (Figure 4). Carbohydrate concentration
can be easily and precisely varied by simply mixing GlcNAc-
Q11 and non-glycosylated Q11 together at different molar
ratios in the preassembled state, while carbohydrate chemis-
try can be tailored by glycosyltransferase enzymes, together
allowing for fine-tuning of nanofiber lectin binding specifi-
city and affinity. For example, nanofibers bearing the galec-
tin-binding disaccharide LacNAc have significantly higher
binding affinity for galectin-1 than galectin-3. As a result,
LacNAc-Q11 nanofibers robustly inhibited apoptosis of
Jurkat T cells by galectin-1, while having no inhibitory
effect on galectin-3. Notably, LacNAc-Q11 nanofibers had a
significantly lower effective dose for inhibiting galectin-1
than TDG, a stable LacNAc analog with demonstrated effi-
cacy for enhancing anti-tumor immunity as discussed above,
further highlighting the potential of self-assembled glyco-
peptide nanofibers as robust and selective inhibitors of
galectin-1.

Future opportunities

Many aspects of galectin–glycan interactions remain under-
explored as therapeutic targets. For example, galectins often
regulate outside-in signaling by cross-linking membrane
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glycoproteins into ‘‘lattices’’ via their multivalent CRDs,
which play important roles in amplifying or inhibiting
signal transmission at the DC-T-cell synapse.102–106

Recently, Belardi et al.107 developed lactosylated glycopoly-
mers that can perturb galectin-glycoprotein lattice forma-
tion by inserting into cell membranes. Engineering the cell
membrane glycosylation profile in this way has already
offered unique insights into galectin-mediated cross-linking
and the dynamics of lattice formation at the surface of cells.
Moving forward, we anticipate that these glycomaterials
may lead to new therapeutics that can modulate DC-T-cell
crosstalk to enhance or suppress induction of antigen-
specific immunity for infection prophylaxis, immunother-
apy, and treatment of autoimmune diseases. Another area
of potential interest is mimicking the ability of ECM glyco-
proteins to locally maintain galectin-1 bioactivity by inhibit-
ing oxidative dimerization, which has implications in
directing dendritic cell migration and inducing T-cell apop-
tosis,35,108,109 and may therefore provide unique opportu-
nities for immunomodulation. Toward this end, Groll and
coworkers110 developed poly(LacNAc) polymers that can
mediate selective adsorption of ECM glycoproteins onto
the surface of materials via galectin-1 binding, which may
be useful for recapitulating galectin-1 signaling to DCs and
T cells within natural microenvironments. In addition,

we have recently created micron-sized hydrated gels (i.e.
‘‘microgels’’) from self-assembled glycopeptide nanofibers
that can release lectin payloads with tunable kinetics,111

which may provide the basis for vehicles for localized deliv-
ery of bioactive galectin-1. As appreciation of the role of
galectins as extracellular signals in various normal and
pathological immunological processes continues to
increase, and the ‘sugar code’ relating galectin–glycan bind-
ing becomes more clearly defined, so too will efforts to
engineer galectin–glycan interactions for immunotherapy
and immunomodulation.
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Figure 4 Self-assembled glycopeptide nanofibers as inhibitors of galectin-1. (a) Galectin-1 binding nanofibers fabricated via self-assembly of the glycopeptide,

GlcNAc-Q11, and its non-glycosylated analog, followed by conversion of nanofibrillar GlcNAc to LacNAc via a glycosyltransferase enzyme. (b,c) Data demonstrating

that LacNAc-Q11 nanofibers have higher affinity for galectin-1 than galectin-3, and that LacNAc-Q11 nanofibers have higher affinity for galectins than GlcNAc-Q11

nanofibers. (d) LacNAc-Q11 nanofibers inhibited Jurkat T cell agglutination via galectin-1, an early marker of apoptosis. (e) LacNAc-Q11 nanofibers inhibited apoptosis

of Jurkat T cells via galectin-1, but failed to inhibit galectin-3, likely due to observed differences in nanofiber-galectin binding affinity (b,c). Adapted from Restuccia

et al.101 (A color version of this figure is available in the online journal.)
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