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Impact statement
Most signals from genome-wide associ-

ation studies (GWASs) map to the non-

coding genome, and functional interpret-

ation of these associations remained

challenging. We reviewed recent progress

in methodologies of studying the non-

coding genome and argued that no single

approach allows one to effectively identify

the causal regulatory variants from GWAS

results. By illustrating the advantages and

limitations of each method, our review

potentially provided a guideline for taking a

combinatorial approach to accurately

predict, prioritize, and eventually experi-

mentally validate the causal variants.

Abstract
Genome-wide association studies have shown that the far majority of disease-associated

variants reside in the non-coding regions of the genome, suggesting that gene regulatory

changes contribute to disease risk. To identify truly causal non-coding variants and their

affected target genes remains challenging but is a critical step to translate the genetic

associations to molecular mechanisms and ultimately clinical applications. Here we

review genomic/epigenomic resources and in silico tools that can be used to identify

causal non-coding variants and experimental strategies to validate their functionalities.
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Introduction

As of February 2017, there are about 3000 genome-wide
association studies (GWASs) reporting more than 30,000
unique SNP-disease associations.1,2 While many of these
associated variants confer a rather small increase in risk
individually, recent meta-analysis has shown that as a
group, targets based on evidence from GWAS-associated
loci are twice as likely to be therapeutically valid as those
that are not.3 Thus, it is important to delineate the mechan-
isms underlying disease-associated sequence variants at a
molecular level. Biological insights can then be utilized to
improve clinical outcomes, including developing effective
strategies for disease prevention and/or therapeutics.

Interpretation of GWAS results, however, is challenging
due to the fact that most variants found to be associated
with disease lie outside of protein-coding regions. This
observation remains true even after fine mapping around
the associated loci.4 These results suggest that disease-asso-
ciated variants impose risk by altering functional DNA
elements that regulate gene expression. Indeed, variation
in gene expression has been shown to be highly heritable

and a significant determinant of human disease susceptibil-
ity.5 However, GWAS detect only statistical associations, not
functional signals, resulting in ambiguity in determining
the causal genes for associated non-coding variants. Thus,
identifying target genes affected by non-coding variants
remains challenging. A common empirical practice is to
assign the non-coding GWAS variants to the nearest gene,
which may not necessarily reflect the real situation.6,7 In
certain cases, this issue can be solved by incorporating com-
plementary information, such as QTL and tissue-specific
expression patterns of local genes.8,9 When such informa-
tion is not available, determination of the causal gene is
more difficult. Furthermore, GWAS take advantage of link-
age disequilibrium (LD) in the genome, a property of non-
random chromosomal segregation, to cost-efficiently esti-
mate the genotype with a relatively small number of tag
SNPs. As the trade-off, all variants linked to the significantly
associated disease tag SNPs can potentially be responsible
for the detected association, while only a few of them play
functional causal roles. Therefore, identification of truly
causal GWAS variants and elucidating how they cause
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dysregulation of target gene expression remain a significant
challenge in the postgenomic era.

Non-coding variants may play regulatory roles for gene
expression through multiple mechanisms. Variants in pro-
moters can impose direct impact on transcription initiation
and elongation.10 Intronic and UTR variants can potentially
affect the property of mRNAs, leading to altered stability or
splicing patterns. In addition, variants may alter function or
expression of multiple classes of non-coding RNAs, includ-
ing long non-coding RNAs and small RNAs such as micro
RNAs and small nucleolar RNAs.11 Integrated genomic and
epigenomic annotation studies suggested that GWAS vari-
ants were rather enriched in evolutionarily conserved puta-
tive enhancer regions, suggesting the significant role of
enhancer variants in conferring disease risks.12–14

Variants in enhancers have predictable function through
modulation of transcription factor (TF) binding motifs.
However, the large size of TF pool and highly tissue- and
context-dependent TF regulation hurdles the complete
knowledge of function of enhancers and regulatory variants
in enhancers. In this review, we will focus on enhancer
GWAS variants. We will discuss current progress towards
in silico and experimental identification, and validation of
causal variants that interfere with enhancer function,
thereby conferring disease risk through dysregulation of
gene expression.

Enhancers

Enhancers are the principal regulatory components of the
genome that enable cell-type and cell-state specificities of
gene expression. Enhancers were initially defined as DNA
elements that act over a distance to positively regulate
expression of protein encoding target genes, independent
of orientation and direction with respect to the target gene
promoters.15 The human genome is estimated to encode
�1 million enhancer elements and distinct sets of approxi-
mately 30,000–40,000 enhancers are active in a particular
cell type,16,17 vastly outnumbering protein-coding genes
and promoters. Enhancer activation entails the presence
of specific recognition sequences required for the coopera-
tive recruitment of TFs that initially activate and subse-
quently permit signal-dependent regulation of gene
expression in a spatial and temporal fashion.18 By contrast,
genetic variations in enhancer sequences that alter TF bind-
ing would predispose to ‘improper’ gene expression and
ultimately susceptibility to diseases.19,20 The enhancer-
bound TFs facilitate chromatin accessibility by recruitment
of nucleosome remodeling complexes with the core 80–120
basepairs representing the sites for binding of the activat-
ing/regulatory TFs.

Genomic annotation of enhancers has been greatly facili-
tated by the development of high-throughput methods,
providing surrogate markers for enhancer activity at an
unprecedented resolution.12,21–23 Enhancers are typically
characterized by the presence of histone modifications
(detected by ChIP-seq) such as H3K27Ac and H3K4me1/
2.24 Notably, the H3K27Ac positive enhancers showed high
enhancer activity and co-occupancy with linage-specific
TFs.25 Thus, it has been proposed that H3K27Ac

distinguished active enhancers from the primed or poised
ones. Binding of TFs to enhancers results in depletion of
nucleosome, making the region detectable by DNase-seq
and ATAC-seq.26,27 In addition, active enhancers are also
indicated by expression of enhancer RNAs (eRNAs),
which can be detected by deep RNA-seq, Global Run-On
Sequencing, or Cap Analysis Gene Expression
(CAGE).22,28,29 Recent studies suggested that eRNAs
could play a role in chromatin looping for interaction
with the target gene promoter.30 Finally, enhancers are
hypomethylated at CpG dinucleotides, and hence can be
detected by bisulfite sequencing.31

By collectively using these techniques, several epigen-
ome consortia, such as ENCODE, Roadmap Epigenomics
Project, and BLUEPRINT Hematopoietic Epigenome
Project have had considerable achievements in identifying
enhancers in a wide range of tissues and cell types.12,32,33

These databases utilize standardized protocols to provide
reproducible position information for enhancers, and hence
have been applied in numerous meta-analyses studies.
Since these databases provide ‘surrogate’ information on
enhancer activity based on correlative evidence in steady
states, it is critically important to conduct validation studies
of the candidate enhancer elements and their GWAS vari-
ants within to test the functional relevance.

A key feature of enhancers is their ability to activate the
transcription of a gene from a great distance. One classical
example is a distal enhancer, when mutated is responsible
for preaxial polydactyly.34 The enhancer is located at intro-
nic region of Limb Development Membrane Protein 1, yet
has been strikingly found to be involved in regulation of
sonic hedgehog located 1 Mb away, the true causal gene for
the disease phenotype. A significant challenge, thus, is to
define the targets of enhancers. Currently, non-coding
GWAS variants are assigned to the nearest gene.
However, the recent studies developing contact maps on a
genome-wide scale indicates that many enhancer-like
regions skip over the nearest gene and make contacts
with more distant targets.35 Therefore, accurate interpret-
ation of the effects of non-coding genetic variation requires
methods that allow correct assignment of regulatory elem-
ents to their target genes. Indeed, by employing a combined
approach of expression quantitative trait loci (eQTL), circu-
lar chromatin conformation capture (4C), and genome edit-
ing, it was found that IRX3 and IRX5 were more plausible
target genes of the obesity-associated variants in the FTO
locus.6,7 These two homeobox TFs are located 0.5 and 1 mil-
lion bp away, respectively, from the GWAS signal. It has
been demonstrated that a functional enhancer variant in
the FTO GWAS locus (located in FTO intron 1) disrupts
binding of a transcriptional repressor (ARID5B) in mesen-
chymal preadipocyte-specific enhancer, resulting in upre-
gulation of both IRX3 and IRX5, which in turn shifts cell
fate of adipocyte precursor toward white adipocyte and
lipid storage.

Whether enhancers can be functionally classified
remains an open hot topic. Answering this critical question
belongs to the field of machine learning. Several pioneering
studies reported that TF binding motifs were predictors
of enhancer activity and tissue specificity. For example,
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Yanez-Cuna et al.36 reported that GATA and E-box motifs
were functionally important for Drosophila S2 cell-specific
enhancer function, whereas Ahmad et al.37 found that Myb
was crucial in activity of contractile cardial cells. On the
other hand, Young’s lab proposed the concept of super-
enhancers, which were characterized by densely clustered
enhancers and occupied with high levels of mediator com-
plex.38,39 These enhancers are believed to play central roles
in cell fate determination, binding of lineage master regu-
lators, and cell type-specific gene expression. Multiple dis-
eases have GWAS associations in super-enhancer regions,
such as Alzheimer’s disease and multiple sclerosis.40 More
recently, direct evidence suggested that super-enhancers
are involved in specific disease processes such as oncogen-
esis.41–43 For example, in 8q24 locus, the non-coding regions
near the MYC gene gained distinct super-enhancers in sev-
eral cancer cell lines (Figure 1), indicating a possible model
where distinct tissue-specific super-enhancers were respon-
sible for misregulation of the oncogene in different cancers.

In summary, to identify regulatory variants in enhancers
and to test their functionality and disease relevance require
multifaceted and integrated approaches that capture the
highly dynamic nature of enhancer function. These include
in silico analysis to annotate and predict potentially causal
enhancer variants and specific experimental systems to

validate the role of selected enhancer variants in conferring
disease risk.

In silico analysis: Prediction of functional
enhancer variants

Multiple meta-analyses studies suggested enrichment of
GWAS variants in close vicinity of enhancers.44,45 Notably,
the enrichment seemed to preferentially occur in disease-
related cell types. For example, risk variants of type 1 dia-
betes and other autoimmune diseases show a significant
enrichment in lymphocyte-specific enhancers,46,47 whereas
variants—associated with electrocardiographic-related
traits and insulin levels were found to be enriched in
super-enhancers specific to heart and adipose tissue,
respectively.40 Moreover, Alzheimer’s disease-associated
variants are found to be enriched in immune-cell-specific
enhancers rather than neuron-specific ones, suggesting that
immune processes may play a role in the pathogenesis of
the disease.48 Taken together, these studies not only pro-
vided evidence that at least a substantial portion of
GWAS variants contributes to disease risks by interfering
with enhancers, but also offered biological insights into the
pathophysiology of complex diseases involving multiple
cell types.

Figure 1 The activity of enhancers and super-enhancers is cell- and tissue-specific. (a) Landscapes of GWAS associations in the neighboring genomic regions of

MYC locus in Chr. 8q24. PrCa: prostate cancer, CRC: colorectal cancer, BlCa: bladder cancer, LymCa: and lymphoma. (b) A hypothetical model that may explain the

genetic association patterns: different types of cancer cells may gain tissue-specific oncogenic enhancers/super-enhancers, resulting in misregulation of the MYC

oncogene in a tissue-specific manner. (c) However, in actual case, the gained super-enhancers in tumors were found outside the corresponding LD regions in colorectal

cancer (HCT116) and leukemia K562) cell lines. This may suggest a complex mechanism underlying the GWAS association, such as the presence of functional variants

that alter the enhancer–target gene interaction network rather than directly affecting enhancer’s capability to facilitate promoter activity.

GWAS: genome-wide association studies. (A color version of this figure is available in the online journal.)
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A central question in enhancer annotation is how to pre-
cisely identify the TF binding regions. While most enhan-
cers have predicted lengths of kilobase (kb), the actual
region bound by TFs might be much smaller in size. In
fact, the CAGE study has demonstrated that enhancers pro-
duce bidirectional eRNAs, and the region in between these
transcripts, typically �200 bp in length, possesses the high-
est enhancer activities.22 The underlying message could be
that even if a variant falls into an enhancer region, there is a
good chance that it is not functional. To reduce the false
positive predictions, a common strategy is to consider
whether the variant falls into specific TF binding motifs.
However, motif prediction by probability matrix is also
prone to high false positive rates, as the motifs are short
(typically <10 bp), and many TFs allow sequence variations
in certain positions of the motifs. The motif prediction can
be largely improved by overlaying with ChIP-seq data.49

However, the assay can only probe for one out of thousands
of TFs at a time and is subjected to technical limitations such
as very large number of required cells and availability of
antibodies. Altogether, the key barriers to the high accuracy
mapping of causal variants are in biology rather than
bioinformatics.

Despite the noted challenges, considerable efforts have
been made for functional annotations of non-coding vari-
ants (Table 1). Databases such as RegulomeDB and
HaploReg have recently been developed by incorporating
epigenomic annotation from multiple sources and
attempted to provide comprehensive information of under-
lying enhancers for the query non-coding variants.54,55

FORGE is a convenient tool that evaluates tissue-specific
enhancer enrichment of a query GWAS SNP list.56 Other
tools with similar principles but alternative scoring algo-
rithms, such as GWAVA and CADD, allow prioritization
from a large list of variants.57,58 More recent studies includ-
ing Finucane et al.13 and Farh et al.46 considered LD in scor-
ing the likelihood of causality of variants. Although
intuitively variants in high LD are more likely to be
causal, the inference can easily be confounded by other fac-
tors: r2 is biased to variants with similar allele frequencies
and multiple linked variants may have combinatorial
effects. Moreover, multiple candidate variants will still be
inevitably sharing probabilities of being the causal variant

in high LD regions. To reduce the LD background, one
interesting approach is to identify conserved GWAS associ-
ations from distinct ethnicity background, a method known
as trans-ethnic analysis.59 While the method has been
proven to improve the overall prediction of causality, such
approach may lose certain ethnicity-specific GWAS signals
originating from ethnic-specific heterozygosity of the
region.

In addition to canonical mapping methods based on gen-
etic and epigenetic information, an alternative approach to
examine the variant functionality is through quantitative
trait loci (QTLs) analysis. This includes QTL with eQTL,
splicing (sQTL), methylation (meQTL), protein/proteome,
and all epigenomic signals from DNase and ChIP-seq
assays.60–62 Due to lower requirement for input material,
currently more information is available for eQTL and
meQTL. An example of rapidly expanding databases of
eQTL and sQTL is Genotype-Tissue Expression portal.
The database currently includes 53 tissue types from 554
donors (449 genotyped), and the project ultimately aims
to profile transcriptome data from>900 genotyped individ-
uals.51 The National Heart, Lung, and Blood Institute also
presented Genome-Wide Repository of Associations, a col-
lection database for all published genotype–phenotype
association results including GWAS, eQTL, and meQTL
data.52 The database was updated in 2015 to V2.0, collecting
about 8.87 million SNP associations from 2082 studies.1

Since enhancer function is often tissue dependent, such
comprehensive databases are invaluable in identifying vari-
ants correlated with differences in transcription levels.
Comprehensive eQTL data also allows proper pairing
between variants and their target genes. In the FTO locus,
for example, variants associated with obesity do not show
association with the expression of FTO but with IRX3 and
IRX5 in multiple cell types including the primary human
preadipocytes.7 Indeed, meta-analyses showed that eQTLs
were gene centric and enriched in both putative regulatory
elements and GWAS SNPs, suggesting a possible general
model where GWAS variants modulate enhancer function
and affect nearby transcribed genes.63,64 One general con-
cern for QTL studies is the extraordinarily high dimension-
ality of the data. For example, the total number of
parameters is equal to the product of the number of

Table 1 Methods for studying the functionality of non-coding GWAS variants. In silico approaches for functional enhancer variants. After imputation, list of

candidate GWAS variants can be prioritized based on predicted function from the publicly available data resources. Candidate target genes, cell/tissue

types, and mechanisms of TF binding interruption can be inferred to assist design of specific validation assays. See text for detailed explanation for each

method.

Methods Target gene Functional cell type Mechanism Causal variant Database

Enhancer annotation 3 3 ENCODE, Roadmap,

BLUEPRINT12,32,33

TF ChIP 3 3 3 ENCODE

Motif prediction 3 3 JASPAR, ENCODE50

eRNA (CAGE) 3 3 3 FANTOM522

eQTL, sQTL, meQTL 3 3 GTEx GRASP51,52

Hi-C 3 3 Hi-C browser53

GWAS: genome-wide association studies; TF: transcription factor.
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transcripts and variants. This essentially prohibits the
genome-wide multiple corrections and forces correction
strategies based on local chromatin sections, which in turn
results in discrepancies in definition of significant associ-
ations among different studies.63

Experimental strategies: Validation of causal
enhancer variants

One of the most critical, but often lagging, steps in identify-
ing and testing the functional relevance of the non-coding
variants detected in GWAS is the functional validation of
the candidate enhancer variants. With the advent of gene-
editing tools and high-throughput sequencing, it is now
more feasible to accomplish this goal on a genomic scale.
Here we highlight several novel technologies that can be
used in functionalization of enhancer variants (summarized
in Table 2), thereby establishing the causality of GWAS vari-
ants in conferring disease risks.

The massive parallel reporter assay (MPRA) allows
examination of a large number of enhancers and enhancer
variants within a single experiment.65–67 Typically, thou-
sands of candidate enhancer regions are synthesized and
cloned into a mammalian expression vector, where the
co-synthesized barcodes or the enhancers themselves are
transcribed as identifiers for each construct. The mixed
reporter library is then transfected to a cell line, and the
vector DNA and the reporter RNA transcripts are individu-
ally collected and sequenced. The enhancer activity of the
constructs can then be represented by the read count ratio
between RNA and DNA. Several groups have reported suc-
cess in using MPRA to identify causal GWAS variants.68,69

To reduce a considerable level of background variation and
improve the consistency of the results, it is recommended to
increase the number of barcodes per construct and replica-
tion experiments.70

Since enhancer function depends on the local chromatin
context, genome-editing tools are indispensable for studies
of enhancer mechanisms in the endogenous genome.
CRISPR/Cas9 is a recently developed technology that
allows efficient and scalable targeted genome editing.
CRISPR/Cas9 recognizes target sequence by binding to a
roughly 20 basepair-long complementary guide RNA,
allowing highly cost-efficient and simplified assay designs
compared to its predecessors, zinc finger nuclease and tran-
scription activator-like effector nuclease, which require full
length synthesis of DNA-binding domain for each target.

While the function of Cas9 can be best characterized as a
sequence-specific endonuclease, the CRISPR/Cas9 technol-
ogy is highly versatile in applications for enhancer studies.
Depending on the design, wild-type Cas9 can facilitate tar-
geted sequence modification through non-homologous end
joining, such as complete deletion of chromatin segments
(knock-out), or site-specific DNA integration (knock-in) to
remove enhancers or modify their function, respect-
ively.30,71,72 The nuclease-disabled Cas9 (dCas9) has been
applied to manipulate target enhancers by coupling with
specific TFs. In a pioneer study from Gilbert et al.,73 dCas9
was fused with a transcriptional activator VP64 or a repres-
sive KRAB domain to activate or repress the activity of par-
ticular enhancers, respectively, to determine their roles in
tumor cell proliferation and myeloid differentiation.
Additionally, His-tagged dCas9 can also be used as a
sequence indicator to pull down specific enhancers and
study its protein composition by mass spectrometry, a valu-
able approach for identifying the responsible TFs when a
candidate causal variant is given.74,75

While the CRISPR/Cas9-mediated gene editing has
revolutionized the functional validation of enhancers, the
throughput of the method is typically low, requiring priori-
tization of candidate variants by other approaches. One
exception, though, is that if the phenotypic outcome is
either related to cellular survival or detectable by cell sort-
ing, it will be possible to design CRISPR-based screening
assays by creating complex viral libraries and infecting cells
with low density. The principles of such screening assays
have been well demonstrated by several studies performing
Genome-Scale CRISPR Knock-Out.76,77 Recently, Horlbeck
et al.78 described an enhancer-version of the assay by utiliz-
ing dCas9 activator and inhibitor. In addition to the
throughput, another concern, when performing genome
editing, is the choice of a suitable model. Since most
GWAS variants are associated with complex traits, in vivo
studies should be intuitively preferred. However, perform-
ing studies using animal models is usually limited due to
poor conservation of non-coding sequences between spe-
cies. Studies of enhancers across species suggested their
conservation at a functional level rather than nucleotide
sequence.79,80 Therefore, although modeling the effect of a
particular variant could be difficult, the underlying func-
tional enhancer would be more likely conserved and avail-
able for in vivo studies. Epigenetic annotations of regulatory
elements in model organisms, such as modENCODE and
mouse ENCODE, were available to search for enhancer

Table 2 Methods for studying the functionality of non-coding GWAS variants. Experimental methods for validating the functionality of non-

coding variants predicted from in silico analysis. See text for detailed explanation for each method

Methods

Target

gene

Functional

cell type Mechanism

Causal

variant

High

throughput

Reporter assay (MPRA) 3 3 3 3

EMSA/ChIP 3 3 3 3

CRISPR/Cas9 3 3 3 3

3C/4C/capture Hi-C 3 3 3 3

GWAS: genome-wide association studies.
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candidates.81,82 An alternative strategy is to perform func-
tional studies in relevant human cell lines, although in such
case the cell line and phenotypic output must be carefully
selected to be relevant to the pathophysiology of disease
with which non-coding variants are associated.

An accurate interpretation of the effects of non-coding
genetic variation requires methods that allow correct
assignment of regulatory elements with their target genes.
A crucial method to correctly assign non-coding variants to
target genes is chromatin conformation capture (3C) that
delineate long- and short-range chromatin interactions.
The original 3C was designed for detecting ‘one-to-one’
interaction (chromatin looping) between two sites on the
chromosome. With advanced high-throughput sequencing,
its derivatives, 4C, 5C, and Hi-C, were developed to,
respectively, characterize ‘one-to-all,’ ‘many-to-many,’ and
‘all-to-all’ interactions that present more comprehensive
information of high order chromatin structure.83 In 2014,
Rao et al.84 greatly improved the resolution of Hi-C to the
kilobase level with a protocol utilizing in situ restriction
enzyme digestion. The study showed that the chromatin
was organized in unit of blocks, i.e. topology-associated
domains (TADs), maintained by boundary proteins such
as CTCF. Recent studies further indicated that these bound-
aries were responsible for restraining enhancer–promoter
interactions within the TADs, and disruption of boundaries
would cause abnormally gained interactions, which could
be responsible for certain disease phenotypes such as limb
malfunctions.85–87 Taken together, the chromatin structure
has emerged as a critical component in transcription regu-
lation, and disease variants altering the chromatin inter-
action networks are equally likely to yield functional
impacts as those interfering with enhancer machinery.

Although all chromatin looping assays are similar in
principle, they can be classified into two classes, one of
them being more qualitative and the other more quantita-
tive. For 3C, original 4C, and 5C, the interaction libraries are
amplified with pairs of specific primers, rendering read
count quantification susceptible to PCR bias. Library amp-
lification involving at least one random sonication end,
including Hi-C, capture Hi-C, and recently available NG
Capture-C and UMI-4C, enables sequencing deduplication
during alignment and thus are more quantitative.84,88–90

Clearly, the quantitative methods should be preferred for
testing variant effects on chromatin interaction, since
GWAS variants with moderate effects are less likely to
cause all or none changes. Among these assays, Hi-C
probes for the interactions at the genome-wide level and
represents the most comprehensive information. However,
since the total number of possible genome-wide inter-
actions is gigantic (proportional to the square of available
restriction enzyme sites), the available read count from each
interaction is often too small for robust quantifications.
Alternative methods such as promoter capture Hi-C were
designed to overcome the issue and yielded high resolution
chromatin interactomes.88,91 Comparatively, UMI-4C
probes for the interaction status of limited number of gen-
omic regions of interest (viewpoints), but consequentially
produces data with high sequencing depth and read counts
(reported 10,000 for each viewpoint).89 Thus, for

examination of a particular variant or locus, better out-
comes should be obtained with targeted approaches.

Summary and perspectives

In recent years, a remarkable progress has been made in
methodologies of studying the non-coding genome. The
expeditious advancements in techniques have been accom-
panied with rapid expansion of data resources and devel-
opment of sophisticated prediction tools for functional
characterization of non-coding variants. Still, no single
approach allows one to effectively identify the causal
enhancer variants from GWAS results. While increasingly
comprehensive knowledge of the non-coding genome may
eventually allow much simplified workflows for more
effective interpretation of non-coding variants; currently,
though, the best strategy seems to integrate the results
from multiple methods to accurately predict, prioritize,
and eventually experimentally validate the causal variants.

While our review focused on the current optimal strat-
egy to identify a most likely causal non-coding variant,
among many associated candidate variants, underlying
GWAS signal it has been demonstrated that multiple vari-
ants in combination contribute to a GWAS signal.92 In
GWAS loci with multiple disease associations falling into
distinct LD patterns, such as 8q24, presence of multiple
causal variants is expected. An integrated in silico analysis
followed by systematic experimental validation studies by
step-wise, co-modulation of multiple variants will shed
light on the role of multiple variants.

The study of the non-coding genome is also benefited
from increasingly more complete clinical networks.
A novel branch of association studies, phenotype-wide
association studies (PheWAS), is rapidly developing along
with the electronic medical records and genomics net-
work.93 In contrast to GWAS, PheWAS reports spectra of
phenotypes associated to probed variants, providing
insights into the phenotypic outcomes of genetic variations.
Combining comprehensive medical records with genome-
wide genetic, genomic, and epigenomic data available in
human tissues banks will provide an invaluable platform
for identifying disease-related epigenomic changes in the
non-coding genome, especially for regulatory elements
and sequences that are not conserved across species.94

With increasingly cost-effective high throughput sequen-
cing, more association studies using whole genome sequen-
cing (WGS) data will be available in the near future. The
major motivation for large-scale WGS is to identify disease-
associated rare variants, as demonstrated by several stu-
dies.95–97 Rare variants that were causal for GWAS associ-
ations are expected to have much larger effect compared to
common variants. However, the large number of rare vari-
ants and their requirement of large sample size to reach
statistical power raised additional challenge for their func-
tional characterization.98 Still, it is predictable that a consid-
erable fraction of these novel associations will fall in to the
non-coding genome, demanding functional prediction tools
with higher precision and functional assays with higher
throughputs.
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