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Abstract
Survival outcomes of patients with end stage renal disease are worse than those of many

metastatic cancers. Kidney disease patients are often inflicted with higher rates of cardio-

vascular disease, in which nearly half of the mortalities are attributed to adverse cardiovas-

cular events. Of the multifarious reasons for this detrimental impact, dysbiosis in the intes-

tinal microbiome is surfacing as a potential participant. This is likely due to the numerous

metabolic and inflammatory shifts found in chronic kidney disease, as well as environmental

changes within the intestinal lumen. Studies are beginning to link microbiota alterations

mediated by chronic kidney disease to negative cardiovascular outcomes. Here, recent

findings connecting dysbiosis in chronic kidney disease and various cardiovascular insults

are reviewed.
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Introduction

The human gastrointestinal tract houses upwards of 10 14

micro-organisms that are involved in complex interactions
with the host and the outside environment.1,2 The organis-
mal microenvironment is amenable to changes in response
to different factors.3–8 As demonstrated by the human
microbiome project (HMP) and the European
Metagenomics of the Human Intestinal Tract (MetaHIT),
the healthy microbiome can vary from one individual to
another,9 but remains relatively stable over time.10–12 The
microbiome-host relationship carries a spectrum of benefi-
cial roles in energy utilization, storage and nutrition,2

immune system regulation and adaptation,13 intestinal
integrity,14–16 handling and processing complex carbohy-
drates,17,18 and the production and absorption of different

vitamins.3,18–22 It also contributes to amino acid homeosta-
sis such as synthesizing lysine and threonine by utilizing
nitrogenous compounds.23

Chronic kidney disease (CKD) burdens �14% of the
adult American population and is a major risk factor for
developing cardiovascular disease (CVD).24 Patients with
advanced CKD and end stage renal disease (ESRD) on dial-
ysis suffer from high annual mortality rates that reach 25%.
Of these deaths, more than half will be the result of cardio-
vascular causes.25–27 The increased CVD risk is only par-
tially explained by traditional cardiovascular risk factors,
with increasing evidence now pointing towards non-
traditional participants such as inflammation, oxidative
stress, and endothelial dysfunction.28–31 A growing body
of data has shown the gut microbiomes of CKD patients
and experimental animal models are altered.32,33 In this
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review, we will present the current knowledge of changes
in the gut microbiota in response to CKD, then elaborate on
the proposed mechanisms by which CKD-associated dys-
biosis may increase the CVD risk.

Dysbiosis in CKD

There is an expanding research base supporting an altered
microbiome in CKD.32–41 These shifts have been attributed
to several factors, including the underlying cause for renal
dysfunction (e.g. diabetic kidney disease, glomerulonephri-
tis),42,43 therapeutic interventions common in CKD patients
(e.g. antibiotics and immunotherapy), CKD-specific thera-
peutic strategies such as iron supplementation and phos-
phate binders,44 and dietary restrictions.18,45–47 It has been
long hypothesized that increased intestinal urea concentra-
tions in response to elevated blood urea nitrogen (BUN)
together with increased colonic transit time alter the
carbohydrate-to-protein balance, producing the noted dys-
biosis in CKD.32,48–50 These hypotheses were supported by
the findings of increased urease producing bacteria in
patients with CKD and experimental animal stud-
ies.32,41,51–53 Recently, we have also shown an increase in
urease producing bacteria in mice with surgically induced
CKD.41 However, we were unable to mimic the
CKD-associated changes in the microbiome through oral
urea supplementation alone, indicating that intestinal
urea concentrations may not be the only factor impacting
CKD-associated dysbiosis. This observation needs to be
approached carefully. For instance, mice receiving urea
supplementation in our experiment were not subjected
to 5/6 nephrectomy, limiting the occurrence of other
CKD-associated pathophysiological phenomena such as
alterations in intestinal pH and increased colonic transit
time. Further work is required to better understand micro-
biome dysregulation in CKD.

The effect of dysbiotic changes in CKD on
CVD risk

Figure 1 summarizes the mechanisms by which CKD-
associated dysbiosis increases the atherosclerosis and
CVD risk.

Gastrointestinal barrier and inflammation

Tight junctions between intestinal epithelial cells play a
pivotal role in forming and regulating the gastrointestinal
(GI) barrier.54 Past work by Vaziri et al.55 has detailed the GI
tight junction protein abnormalities in patients with ESRD
and experimental animal models of CKD. They demon-
strated that CKD-induced experimental rats had dimin-
ished transcellular tight-junction proteins. This was
present alongside an accumulation of inflammatory cells
in the lamina propria and increases in serum monocyte
chemoattractant protein-1 (MCP-1) concentrations, which
suggested the occurrence of systemic inflammation.55

They also conducted a large scale histological study show-
ing evidence of chronic inflammation throughout the gut in
a population of hemodialysis patients.56

Further work assessed the impact of tight junction integ-
rity utilizing the human-derived T84 colorectal carcinoma
cell line, which develop into monolayers that exhibit tight
junctions.57,58 Exposure to hemodialysis plasma obtained
from ESRD patients resulted in decreased expression of
the tight junction proteins zonula occludens-1 (ZO-1),
occludin, and claudin-1 in addition to increases in epithelial
permeability as evidenced by decreased trans-epithelial/
endothelial electrical resistance (TEER) measurements.59

Subsequent work in the same study compared the impact
on the aforementioned tight junction proteins using plasma
from either pre- or post-hemodialysis. The results showed a
significant inhibitory effect of the post-hemodialysis
plasma compared to the pre-, indicating a possible role of
elevated urea and other metabolites on the GI epitheli-
um integrity.

To confirm this hypothesis, the group later conducted a
study evaluating the direct effect of urea alone and urea
combined with urease on TEER measurements and tight
junction protein expression.60 Urease was included because
urea hydrolysis in the intestinal lumen by urease-
expressing microbes generates ammonia, which is then
converted to ammonium hydroxide. This latter
metabolic byproduct was proposed to contribute to intesti-
nal epithelial cell toxicity and the subsequent decreases in
tight junction proteins. Their results demonstrated a
concentration-dependent decline proportional to urea con-
centration, which was potentiated with the addition of
urease. Concentration-dependent decreases were observed
in claudin-1, occludin, and ZO-1.60

These studies provide evidence that the intestinal
uremic milieu observed in CKD patients may result in the
loss of tight junction proteins, compromising the integrity
of the intestinal barrier.60 Accumulating data suggest gut
leakage of microbial components into the systemic circula-
tion may be a possible cause of systemic inflammation seen
in CKD and a contributor to CVD risk.61 The 5/6 nephrec-
tomy CKD model resulted in an increased expression of
claudin-2 and decreased expression of claudin-1.62

Claudin-2 epithelial expression is increased in different dis-
eases including inflammatory bowel disease, immune
mediated diseases, and recently CKD.62,63 This pattern of
tight junction protein expression results in increased intes-
tinal permeability and might partially explain the
CKD-related inflammatory state. Claudin-2 plays a role
by forming channels and the paracellular transport of
sodium, potassium, and fluid in both intestinal epithelial
cells and renal tubular cells. In the intestinal epithelia, it
is expressed along the crypt-villus axis.64 The leaky gut/
bacterial translocation hypothesis in dialysis patients and
experimental animal models was supported by the detec-
tion of gut bacterial components in the mesenteric lymph
nodes of uremic rats,65 the peripheral blood of hemodialy-
sis patients (bacterial DNA extraction from blood and dial-
ysate),66 and endotoxemia in CKD patients.67–69 This is
believed to directly increase CVD risk as intestinal bacterial
DNAs were observed in atherosclerotic lesions,70,71 and
their presence is associated with plaque instability.72,73

Cross-sectional analysis of patients with ESRD on hemo-
dialysis resulted in the detection of bacterial DNA in blood
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samples of 20% of cases.74 This was associated with
increased inflammatory markers (C-reactive protein and
IL-6) in ESRD patients with bacterial translocation in com-
parison to the remaining ESRD patients.74 Klebsiella spp.,
Proteus spp., Escherichia spp., Enterobacter spp., and
Pseudomonas spp. were notably detected in the blood of
ESRD patients. Of interest, earlier studies detected bacterial
signatures of Proteus vulgaris and Klebsiella pneumoniae
among others in the atherosclerotic lesions in patients
with coronary heart disease.71 Similarly, the relative abun-
dance of Escherichia coli, Klebsiella spp., and Enterobacter aero-
genes was notably increased in the gut microbiome of
patients with coronary heart disease compared to control.75

These observations (illustrated in Figure 2) of a defined
alteration in the CKD microbiome, coupled with the pres-
ence of these bacterial DNA signatures in atherosclerotic
plaques and the experimental evidence of aberrant intesti-
nal integrity, suggest a pivotal role of dysbiosis,

accompanying the leaky gut and inflammation in the devel-
opment of CVD and plaque instability (i.e. acute cardi-
ac events).

Hypertension

Hypertension is not only one of the leading causes of CKD,
its prevalence increases drastically with worsening renal
function76; 40 to about 65% of patients with early stages
of CKD suffer from hypertension,77 and it has been
proven extensively that tight blood pressure control
improves renal, cardiac, and patient outcomes.76,78–82

Emerging lines of evidence suggest that the gut micro-
biome might exert an impact on systemic blood pressure
which is highlighted by several recent reviews.83–85 Gut
microbiome studies of pre-hypertensive and hypertensive
human populations paralleled spontaneously hypertensive
rat models,86 which displayed decreasedmicrobial richness
and diversity with an increased Firmicutes/Bacteroidetes

Figure 1. Intestinal microbiome dysbiosis in chronic kidney disease (CKD) promotes cardiovascular disease. (a) Under symbiotic conditions, the intestines represent

the location of an ancient, beneficial bond between the local microbiome and the host. (b) Several factors in CKD prompt a detrimental collapse in the host-microbiome

relationship, resulting in a dysbiotic state that may instigate the incidence and progression of CVD. First, CKD is associated with localized increases in intestinal

permeability, such as those due to the cytotoxicity arising from elevations in luminal urea and its eventual generation of ammonium hydroxide. Impaired tight junctions

have been observed in several studies, characterized by decreases in zonula occludens-1 (ZO-1), occludin, and claudin-1 expression in conjunction with decreased

transepithelial/endothelial electrical resistance (TEER) measurements. The weakened epithelial barrier permits the passage of bacterial toxins such as lipopolysac-

charides (LPS), or even bacteria themselves, which can incur both localized inflammation as well as increased LPS plasma concentrations in CKD. A second influence

is that systemic bile acid (BA) concentrations and their intestinal absorption are increased in CKD, leading to negative impacts on hepatic cholesterol handling. Of note,

the metabolism of chenodeoxycholic acid, specifically, to deoxycholic acid (DCA) is facilitated by bacterial enzymes. DCA concentrations are nearly doubled in CKD

and have been linked to artery calcification. Patients with late-stage CKD also have higher rates of hypertension, which may in part be attributed by shifts in the

microbiome. Lastly, elevations in uremic toxins originating from the microbiome may directly increase cardiovascular (CVD) risk, including trimethylamine (TMA),

indole, p-cresol (PC), and phenylacetic acid (PAA). Once absorbed, these compounds are metabolized within the liver to trimethylamine-N-oxide (TMAO), indoxyl

sulfate (IS), p-cresol sulfate (PCS), and phenylacetylglutamine (PAGN), respectively. They then go on to increase CVD risk by multiple processes like stimulating

cardiac fibrosis, endothelial injury, and platelet activation. Plt: platelet; RCT: reverse cholesterol transporter.
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ratio.87 Microbiome shifts in response to modulators such
as dietary fiber, probiotics, or a high salt diet resulted in
changes in systemic blood pressure.83 The latter connection
was further enhanced by the identification that high-salt
diet decreased Lactobacillus spp. in mouse and man, and
whose replacement in hypertensive mice significantly
reduced the blood pressure elevations.88 Likewise, fecal
transplantation from hypertensive individuals to germ-
free mice was able to elevate blood pressure.86

Despite emerging evidence for a link between hyperten-
sion and the microbiome, specific mechanisms for how
CKD-induced dysbiosis may contribute to hypertension
remain sparse. One potential player may be short chain
fatty acids (SCFAs), which have the ability to influence
blood pressure via G protein-coupled receptors (GPCRs).
For example, propionate stimulation of the olfactory recep-
tor 78 (Olfr78) expressed in the renal vasculature results in
renin secretion.89 However, this SCFA attribute remains
poorly defined because it is unclear why SCFA-mediated
activation of another GPCR, Gpr41, decreases blood pres-
sure.90 Additional work in this area is warranted to better
characterize the relationship between circulating SCFAs
and systemic blood pressure in CKD. This is portrayed by
the actualities that these GPCRs are found throughout the
body and have varying SCFA concentration-
effect profiles.91,92

A second potential connection between dysbiosis in
CKD and increased CVD risk is the concept that inflamma-
tion plays a combinatorial role in hypertension and CKD
progression. Past work has demonstrated relations
between low-grade inflammation and CKD progression93,94

together with immune-dependence for angiotensin
II-directed hypertension.95–97 Studies employing angioten-
sin II-infused germ-free mice showed that the gut micro-
biota may play a role in the potentiation of angiotensin
II-associated hypertensive effects and vascular dysfunc-
tion.95 This effect was attributed to the mitigation of
immune cell infiltration and cytokine production in germ-
free mice, suggesting microbiome-driven immune
conditioning may play a role in angiotensin II promoted
hypertension. Consistent findings were noted in a system-
atic review and meta-analysis, where systolic and diastolic
blood pressure both decreased after probiotics usage in sev-
eral clinical trials.98 Elevated blood pressure may also neg-
atively impact intestinal epithelia, whereby intestinal
integrity, local inflammation, and microbiome dysbiosis
were all noted in spontaneous hypertensive rats. These
effects were corrected with antihypertensive captopril ther-
apy, signifying hypertension may contribute to microbiome
alterations.99 Future work connecting dysbiotic shifts in
CKD and angiotensin II-mediated hypertension represent
an intriguing avenue, as does the notion that the

Figure 2. CKD -associated dysbiosis effects on enterocyte integrity and permeability. Panel (a) depicts the pathophysiological changes in response to chronic kidney

disease (CKD) in comparison to healthy subjects (b). CKD results in a decreased a-diversity (the variety of the bacterial species) along with changes in b-diversity
(expansion/decrease of certain bacteria). The tight junction proteins claudin-1, ZO-1, and occludin (blue dots in the tight junction within the enterocyte paracellular

space) are decreased, along with an increase in claudin-2 (red dots in the tight junction at the enterocyte paracellular space) in response to CKD-dysbiosis. This profile

leads to the formation of paracellular channels, increased ion and fluid movement from the intestinal lumen (leaky gut), and decreased transepithelial/transendothelial

electrical resistance (TEER). Bacterial translocation, or the presence of bacteria in the blood stream and mesenteric lymph nodes, ensues. The result is immune cell

activation, invasion of the lamina propria, and a chronic subtle inflammatory state. Chronic inflammation is a pro-atherosclerotic state. This, coupled with the atheroma

plaque instability and the existence of bacterial debris in the atherosclerosis lesions, increase the risk of plaque rupture and acute cardiac ischemic events. For

simplicity, the schematic does not include changes noted in crypts and villi in response to CKD-dysbiosis.
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relationship between microbial dysbiosis and hypertension
may go both ways.

Bile acid metabolism

Synthesized from cholesterol by hepatocytes, the two pri-
mary bile acids (BAs) chenodeoxycholic acid and cholic
acid undergo conjugation in the liver that leads to their
nearly complete ionization at physiological pH. The resul-
tant bile salts then get stored in the gallbladder where they
are subsequently secreted into the duodenum to aid in the
absorption of dietary lipids. Active and passive transport
processes predominantly in the ileum facilitate the efficient
intestinal reabsorption (�95%) of BAs back into the blood
that eventually sees their return to bile via the liver, com-
pleting the cycle of enterohepatic recirculation.100–104 Over
the course of their route, BAs encounter the intestinal
microbiome which conducts several metabolic transforma-
tions that include deconjugation and dehydroxylation. The
extent of bacterial metabolism is not trivial, which is exem-
plified in comparisons of fecal and biliary BA
compositions.101

Total circulating BAs are elevated in both CKD animal
models and patients.104–106 Increased attention is being
directed towards one specifically: deoxycholic acid
(DCA). This secondary bile acid, or bacterially-modified
BA, is generated via bacterial dehydroxylation of cholic
acid via the 7a-dehydroxylase enzyme.107 Elevated concen-
trations of circulating DCA were recently associated with
coronary artery calcification in individuals with moderate
CKD.108 Therefore, CKD-induced dysbiosis may result in
an elevated DCA exposure, which could directly lead to
higher CVD risk. However, a notable ambiguity between
these associations is that bariatric surgery can also increase
both total BA and DCA serum concentrations.109,110 Seeing
as the efficacy of this procedure has been partly attributed
to increased circulating BA concentrations,109 and bariatric
surgery is directly linked to better health outcomes in dia-
betes,109 CVD risk,111 and even CKD risk.112 A better under-
standing of the molecular mechanisms underpinning
heightened BAs/DCA in CKD and their potential to
increase CVD risk are required.

Bile salts not only emulsify fat. They have been demon-
strated to act as efficacious signaling molecules that can
stimulate self-inhibitory feedback loops to decrease BA
synthesis as well as serve as pivotal effectors in systemic
metabolism.100,101,109,113 BAs are endogenous ligands of the
nuclear Farnesoid X receptor (FXR), a BA-activated tran-
scription factor mostly found in the liver, kidneys, and
intestines.114 Hepatic and renal FXR expression have been
shown to progressively decrease with worsening diabetes
mellitus and diabetic kidney disease.115–117 FXR agonism,
either alone or together with a second BA effector (Takeda
G protein coupled receptor, TGR5),118 has been targeted for
a plethora of treatments that include CKD and
atherosclerosis.109,115,117–123

Several reports exist detailing a microbiome-specific
impact on FXR activation via secondary BAs (reviewed in
Wahlstrom et al.).100,124–126 For example, Sun et al.124 recent-
ly reported that metformin treatment increased

concentrations of the novel FXR antagonist glycoursodeox-
ycholic acid by decreasing the abundance of Bacteroides fra-
gilis, which is responsible for its hydrolysis. What is
currently unknown is if a similar scenario occurs in CKD
whereby dysbiosis influences BA metabolism and the
expression of FXR. Relating to CVD risk, Fxr knockout
mice fed regular chow exhibited an increase in serum BA
and increased cholesterol 7a-hydroxylase (Cyp7a) amounts,
a key enzyme in bile acid synthesis whose expression is
inhibited by FXR.127,128 This may be important in the devel-
opment of CVD as both FXR and CYP7A1 are also associ-
ated with cholesterol efflux, where their dysregulation
(decreased FXR, increased CYP7A1) could be contributing
to CVD risk via elevated concentrations of systemic choles-
terol and triglycerides.121,127,129

FXR also appears to play an important protective role in
the negative regulation of vascular calcification, as evident
by studies in apolipoprotein E (ApoE) knockout mice sub-
jected to 5/6 nephrectomy. FXR agonists inhibited the
phosphate-induced mineralization and triglyceride accu-
mulation in both ApoE knockout CKD mice aortas, and
bovine calcifying vascular cells.130 What remains to be clar-
ified is if FXR expression is decreased in all CKDs, as a
study in rats with experimentally induced chronic renal
failure demonstrated no change in hepatic, intestinal, or
renal fxr mRNA expression.104 Additionally, tissue-
specific effects of FXR activation in CKD would need to
be addressed because intestinal FXR increases metabolic
syndrome susceptibility, highlighting the poor understand-
ing of FXR signaling across multiple organs in
pathophysiology.109,131

Advanced glycation end products

The amounts of advanced glycation end products (AGEs)
are markedly elevated and directly associated with worse
outcomes in patients with CKD,132,133 diabetes mellitus,132

and CVDs.134 There is a strong body of evidence linking
increased AGE concentrations with cardiovascular events
through multiple mechanisms including cross-linking
properties and increased vascular stiffness, stimulation of
pro-inflammatory pathways such as Nuclear factor j-light
chain-enhancer of activated B cells (NF-jB), the glycation of
the atheroma collagen which accelerates atherosclerotic
lesion progression, and increased oxidization susceptibili-
ty.134,135 Seventy percent of dietary AGEs are not absorbed
and arrive at the colon, where they may react with the bac-
terial microbiota136,137 and result in alteration in the com-
position of the gut microbiota.39,138,139

In recent years, studies have emerged linking AGE-rich
diets with changes in gut microbiota and establishing a
possible role by which AGEs may contribute to worse
CVD outcomes.140–142 Mice fed a high AGE diet for eight
months exhibited a unique gut microbiome defined by a
decrease in a-diversity,142,143 and changes in b-diversity
on all levels (phyla, family and genera levels).143 The high
dietary AGE group revealed an increase in Cyanobacteria
phylum. On the family level, Porphyromonadaceae,
Prevotellaceae, Helicobacteraceae, and Alcaligenaceae were
increased, while Bacteroidaceae, Lachnospiraceae,
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Desulfovibrionaceae, Rikenellaceae, Anaeroplasmataceae were
decreased in relative abundances. Eighteen genera were
significantly different in response to intervention.143

Importantly, Bacteroides Spp. was decreased, which is a
genus that has been shown to exert cardiovascular protec-
tive properties.144,145 It ferments carbohydrates resulting in
the production of an array of volatile fatty acids that are
used by host intestinal cells and other gut bacteria as a
source of energy, which results in favorable energy and
metabolism profiles.18,146 Interestingly, high AGE fed mice
exhibited an increase in the uremic toxin p-cresol (rele-
vance discussed below).143 It is important to note that
high dietary AGE mice were not subjected to any renal
injury. These findings strongly support the notion that die-
tary AGE-associated gut microbiota dysbiosis results in
increased production of uremic toxins.

Changes in microbiota secondary to increased AGEs in
patients with renal disease may increase CVD risk through
several possible mechanisms. High AGE-related dysbiosis
affects the SCFA profile. While studies agreed that dietary
AGEs decrease acetate and increase isovalerate and isobu-
tyrate productions, conflicting results were noted in
regards to butyrate.142,143 Colon structure and integrity
were distorted in response to AGEs. This was evident by
the loss of intestinal crypts, goblet cell depletion, and
increased dysplasia and thickening of colonic wall epithe-
lia.142 At the same time, increased colonic permeability
resulted from AGE exposure, which was indicated by the
loose cellular arrangement histologically along with a
decreased expression of occludin and ZO-1. However, to
our knowledge, no study has yet to mechanistically link
AGE-associated dysbiosis with increased inflammatory
markers. It is highly probable that AGE-related increases
in inflammation can partially be attributed to its effects on
microbiota and gut permeability, leading to increased
CVD risk.147

SCFAs

SCFAs are mainly produced by the intestinal flora from
carbohydrate fermentation, with acetate (�50% of all
SCFAs), propionate, and butyrate collectively accounting
for more than 90% of all SCFAs.148 Patients with advanced
CKD and those with ESRD are advocated to follow a strict
dietary restriction that generally decreases potassium con-
sumption. Limiting the consumption of potassium-rich
food, such as fruits, vegetables, and high fiber containing
food can decrease the colonic carbohydrate/protein avail-
ability, resulting in dysbiosis that disfavors SCFA-
producing bacteria.32,45,48–50 As expected, patients with
CKD were demonstrated to have alterations in the
amount of SCFA-producing microbiota.45

The SCFAs acetate, butyrate, and propionate have been
reported to have anti-inflammatory and histone deacety-
lase properties.149 Therapy with SCFAs improved renal
dysfunction in an ischemic acute kidney injury model,
and lowered the levels of local and systemic inflammation,
oxidative stress, and cell apoptosis.150 Butyrate and other
SCFAs serve as a primary energy source for epithelial cells
of the intestinal tract in a preferential manner.151,152

They also dampen the pro-inflammatory response in intes-
tinal epithelial cells.153

This indicates that alterations in SCFAs secondary to
CKD associated dysbiosis might negatively impact the
integrity of intestinal epithelial cells, further worsening
the pro-inflammatory state. Restoration of SCFAs using a
high-fiber diet in an experimental autoimmune hepatitis
animal model resulted in improved intestinal histological
structures measured by crypt number and depth, amelio-
rated intestinal track permeability, and reduced bacterial
translocation.154 Similarly, direct administration of butyrate
resulted in decreased intestinal permeability, improved
intestinal histology (villus depth), and decreased inflam-
mation after administration of 5-fluorouracil.155 The bene-
ficiary effects of SCFAs in CKD are not only limited to their
favorable effects on the intestinal cells, they also provide a
large spectrum of metabolic, anti-diabetic, anti-inflamma-
tory, and anti-hypertensive effects resulting in overall
favorable renal and cardiac outcomes.149–153

Microbiota-derived uremic toxins and
CVD risk

p-Cresol sulfate and indoxyl sulfate

CKD-related dysbiosis is associated with amplified indoxyl
sulfate (IS) and p-Cresol sulfate (PCS) production.156 IS is
generated from dietary tryptophan metabolism by bacterial
tryptophanases into indole, which is absorbed and con-
verted to IS by the host liver. PCS is produced as a byprod-
uct of tyrosine and phenylalanine colonic fermentation into
p-cresol, which later is converted to PCS by the host hepatic
and intestinal epithelial cells’ aryl transferase.157 IS and
PCS are highly protein bound and their elimination greatly
depends on various renal tubular transporters.158–160 Both
circulate systemically via the non-covalent binding to albu-
min at the Sudlow binding site II.158,161 In those with intact
renal function, the organic anion transporters (OAT) 1, 3,
and 4 play a pivotal role in the clearance of these uremic
toxins. Due to the combination of increased uremic toxin
production via CKD-related dysbiosis and the gradual
worsening of renal function, IS and PCS will accumulate
secondary to the loss of renal mass and the inability of the
failing kidneys to actively eliminate these toxic metabo-
lites.161,162 This effect is compounded in patients with
ESRD, where uremic toxin removal by hemodialysis is mar-
ginal because of the high fraction that is bound to albumin.

IS and PCS have both been linked to adverse renal, car-
diovascular, and mortality outcomes in CKD patients163–165

and have been directly associated with vascular endothelial
injury166 and atherosclerosis severity.167 Researchers have
looked into the mechanisms by which these uremic toxins
exert unfavorable clinical outcomes. Though an in-depth
description of these pathways is beyond the scope of the
current review, it is important to note that PCS and IS have
been implicated in the worsened CVD risk in CKD through
different mechanisms that include: oxidative stress and
endothelial dysfunction in CKD patients,168 stimulation of
the transforming growth factor-b (TGF-b) pathway, tubu-
lointerstitial fibrosis,169 and insulin resistance and
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dyslipidemia.170 In vitro experiments confirmed pro-
inflammatory changes in cultured proximal tubular cells
in response to PCS and IS co-culture. Interestingly, cytokine
networks and the alteration of intracellular inflammatory
signaling pathways were similar in regards to IS and PCS,
indicating a possible synergistic effect when both are
elevated.171

The rich in vitro and experimental animal model evi-
dence in support of poorer outcomes in response to IS
and PCS exposure have not yet been efficiently translated
to strong and conclusive findings in clinical studies.
Although observational and retrospective clinical studies
indicated increased CKD progression, mortality, and CVD
risk in those with elevated IS and PCS levels,163–165 recent
analysis taking into account all confounding factors failed
to definitively reach a similar conclusion.172,173 For exam-
ple, Lin et al.174 conducted a systematic review and meta-
analysis in order to evaluate the association between these
uremic toxins and outcomes. They noted an increased mor-
tality risk in CKD patients with elevated PCS and IS levels.
However, only PCS was associated with CVD risk in this
population. Based on the experimental evidence and this
report, it is logical to assume that interventions aimed at
decreasing the amount of circulating PCS and IS would
confer favorable outcomes in CKD patients. Early and
small studies utilizing the carbon adsorbent AST-120 con-
firmed the therapeutic potential of decreasing uremic toxin
amounts, along with a possible effect on delaying the initi-
ation of renal replacement therapy if given to pre-dialysis
CKD patients.175

However, a better designed and larger trial that was ran-
domized and placebo controlled could not confirm the ben-
efit of AST-120 on disease progression.176 It remains to be
seen if these negative findings were attributed to the slow
disease progression over the study duration, slow advance-
ment of the renal disease (mean serum creatinine concen-
trations were �3 mg/dL), or the fact that AST-120 is a
general resin and might have resulted in an unintentional
chelation of vitamins and other essential elements, or even
possibly that elevation levels of uremic toxins are simply
indicative of disease severity. This notion is supported by
the fact that although AST-120 might affect CKD progres-
sion, it does not affect mortality or CVD risk in pre-dialysis
CKD patients.175

Trimethylamine-N-oxide

Trimethylamine-N-oxide (TMAO) is an end product of the
bacterial metabolism of choline/phosphatidylcholine and
L-carnitine with links to atherosclerosis and higher mortal-
ity in CKD and non-CKD populations, plus experimental
animal models of atherosclerosis.177–179 Abundant data
suggest that dysbiosis is directly responsible for higher
TMAO levels observed in CKD.38 TMAO appears to be
involved in continuous renal fibrosis that is observed in
CKD.180 It increases CVD risk in CKD patients through dif-
ferent mechanisms. TMAO upregulates cholesterol scaven-
ger receptors on macrophages,177 encourages platelet
activation by boosting intracellular Ca2þ release,181 and
leads to maladaptive ventricular remodeling and cardiac

fibrosis.182 On the cellular level, TMAO increases fibrosis
through TGF-b/p-Smad3 pathway activation, and stimula-
tion of the renin-angiotensin aldosterone pathway.169

Phenylacetylglutamine

Phenylacetylglutamine (PAGN) is produced as a result of
phenylalanine fermentation to phenylacetic acid (PAA) by
gut microbes and the subsequent conjugation with gluta-
mine by both hepatocytes and the kidneys. PAGN is then
excreted in the urine.183 This process removes glutamine
from the urea cycle and participates in nitrogen scavenging
activities. Elevated concentrations of circulating PAGN
were associated with advanced CKD 184 and studies sug-
gest an association with elevated CVD risk in non-dialysis
CKD patients.185,186 Furthermore, PAGN levels have been
recently linked to increased overall mortality and CVD in
patients with different stages of impaired renal function.184

The direct and linear correlation between PAGN concentra-
tions and increased pulse wave velocity increased
Framingham cardiovascular risk scores, and arterial
ageing and stiffness are proposed as possible mechanisms
by which PAGN increases CVD.187,188 Although the kid-
neys efficiently clear PAGN and accumulation may be
due to declining renal function, urinary excretion studies
in non-dialysis CKD patients have shown that the gut
microbiome may contribute to increased production or
absorption.184,189

However, the exact mechanism by which PAGN
increases CVD risk is still not fully understood as the cur-
rently available evidence is limited to epidemiological
trials. It is quite plausible that changes in serum PAGN
concentrations seen in these trials reflect advanced CKD-
associated dysbiosis and its overall deleterious impact on
inflammation and intestinal epithelial integrity.
Additionally, there could be increased production of
unmeasured bacterial-derived metabolites other than
PAGN. Or, these observations may simply follow the wors-
ening renal disease and the decline in residual reserved
renal function. This is evident by the lack of association
between cardiovascular outcomes and PAGN levels in
patients on hemodialysis.172

Conclusion

CVD prevalence and disease burden have been increasing
worldwide.190 It is the number one cause of death globally,
necessitating the launch of the Global Hearts Initiative in
2016 as a joint effort between the World Health
Organization and the United States Centers for Disease
Control and Prevention. CKD is a prevalent risk factor for
CVD development.24–27 Here, we have outlined the evolv-
ing evidence on how CKD-associated changes in the gut
microbiome may increase CVD risk in CKD patients.
Generation of the uremic toxins IS and PCS in addition to
alterations in intestinal permeability represents topics in
the field that have been studied more thoroughly. More
recent concepts garnering new focus include microbiome-
dependent regulation of systemic hypertension, modifica-
tions of BA metabolism, and AGE-related dysbiosis.
Because of the diversity in abnormalities occurring in
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CKD, it is likely that several microbiome-associated factors
combine together to elevate CVD risk in the CKD patient
population. It is this attribute that exemplifies the impor-
tance of future research into these alternative pathways.

It should be noted that this assortment in pathology also
leads to experimental complications because it is often dif-
ficult to evaluate multiple pathophysiologic processes in
one study. Future work should be directed towards identi-
fying the contributions of multiple microbiome-associated
processes on CKD progression and CVD risk, such as the
impact of a leakier gut on the absorption of bacterially
derived uremic toxins or BAs. Additionally, several key
unknowns remain for the majority of topics discussed.
The time and effect dependence is still relatively uncharac-
terized between microbiome dysbiosis and CKD progres-
sion, let alone CVD onset. It will be imperative to measure
microbiome changes and any ensuing pathologic processes
at various stages of CKD. For example, when exactly does
intestinal permeability increase in CKD, and how does this
relate to dysbiosis and microbiome-specific processes on
CKD advancement/CVD risk at each stage of the disease?
Furthermore, it remains to be seen clinically if therapeutic
strategies specifically manipulating the microbiome can
infer efficacy towards halting CKD progression. It will
also be vital to ensure that any delivered bacteria intended
for therapy is/are capable of surviving and establishing
themselves in the modified intestine of a CKD individual.

In conclusion, dysbiotic fluctuations in the human
microbiome continue to materialize as a predominant
factor in human health. Future work will thus provide
important insight into the impact of microbial modifica-
tions in the development and progression of CKD, and its
concomitant CVD risk.
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