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Abstract
TYRO3 belongs to the TAM (TYRO3, AXL, andMER) receptor family, a unique subfamily of the

receptor tyrosine kinases. Members of TAM family share the same ligand, growth arrest-

specific 6, and protein S. Although the signal transduction pathways of TYRO3 have not

been evaluated in detail, overexpression and activation of TYRO3 receptor tyrosine kinase

have been reported to promote cell proliferation, survival, tumorigenesis, migration, invasion,

epithelial-mesenchymal transition, or chemoresistance in several human cancers. Targeting

TYRO3 could break the kinase signaling, stimulate antitumor immunity, reduce tumor cell

survival, and regain drug sensitivity. To date, there is no specific TYRO3-targeted drug, the

effectiveness of targeting TYRO3 in cancer is worthy of further investigations. In this review,

we present an update on molecular biology of TYRO3, summarize the development of poten-

tial inhibitors of TAM family members, and provide new insights in TYRO3-targeted treatment.
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Introduction

Cancer is among the leading causes of death worldwide.
In 2016, 8.9 million people are estimated to have died
from various forms of cancer. The current treatments,
including surgery with chemotherapy and/or radiation
therapy, are not effective enough to provide full protection
from cancer, which highlights the need for novel therapeu-
tic approaches. The TAM family (TYRO3, AXL, and MER),
a subfamily of the receptor tyrosine kinases (RTKs), has
been reported to regulate different cellular functions,
including platelet aggregation, immune responses, and
cell growth and differentiation.1 These receptors share
common ligands such as growth arrest-specific gene 6
(Gas6) and protein S (Pros1). Among these RTKs, TYRO3
was first shown to express in tissues associated with
myelination in the brain.2,3 However, emerging evidence
has demonstrated the oncogenic effect of TYRO3 in pro-
moting the survival, chemoresistance, tumorigenesis, and
metastasis of cancer cells.1 This review summaries recent
advances about the mechanisms regulated by the TYRO3 to
promote oncogenesis. In addition, we will also discuss

possible strategies of targeting TYRO3 as an anti-
cancer regimen.

Molecular biology of TYRO3 receptor

TYRO3 belongs to the TAM family of RTKs. Structurally,
TYRO3 exhibits two fibronectin type III domains and two
immunoglobulin (Ig)-like domains in the extracellular por-
tion, a transmembrane portion, and a kinase domain in the
cytoplasm (Figure 1(a)). TYRO3 receptors bind to their
ligands through the Ig-like domains. Gas6 and Pros1 are
established nature ligands for TYRO3. After ligand bind-
ing, tyrosine residues of TYRO3 are autophosphorylated
and downstream signaling is activated. In some cases,
high levels of cytoplasmic TYRO3 can be activated even
in the absence of a ligand. Under this condition, it functions
as a dimeric tyrosine kinase and transforms RatB1a fibro-
blasts.4 These data suggest that even in the absence of its
ligand, TYRO3 retains all the properties of the full-length
TYRO3 kinase.

There are many aliases for Tyro3 gene as it was cloned
frommultiple species by different research groups. In 1991,
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Tyro1 to Tyro13 were found from rat brain.2 Tyro3, Tyro7,
and Tyro12 were grouped into a subfamily based on the
unique amino acid sequences found in their kinase
domains. Afterwards, it was found that Tyro7 and Tyro12
are the same genes asAxl andMer, respectively, while Tyro3
became the third member of the TAM family. In 1993, frag-
ments of murine Tyro3 were found and named Etk2. In
1994, several TAM family genes were cloned from mouse
and human by different groups. The murine gene was
named Dtk,5 Brt,6 Rse,7 or Tyro3,8 while the human gene
was called Sky,9 Tif,10 or Rse.7 Two years later, it was learned
that Dtk and Brtwere encoded by the same gene with alter-
native splicing.11 There are three splicing variants for
TYRO3 that contain exons 2A, 2B, and 2C, respectively.11–13

These exons encode different signaling peptide sequences,
indicating that the expression of these alternative splicing
variants may affect the subcellular localization and thus the
function of TYRO3.

Ligands and structures

The endogenous ligands for TYRO3 receptors are the Gas6
and Pros1. The structure of Gas6 and Pros1 is related to
vitamin K. They share approximately 40% sequence iden-
tities with an N-terminal c-carboxyglutamic acid domain,
four tandem EGF-like domains, and a C-terminal
sex hormone-binding globulin domain (Figure 1(b)).14,15

Pros1 is known to regulate anticoagulation and

complement cascades. It can be purified using TYRO3-
phosphorylating activity as an indicator16 since purified
recombinant murine Pros1 binds to and activates both
MER and TYRO3 (TYRO3>MER).17 Currently, there is no
evidence that Pros1 activates AXL. Gas6 was originally
identified based on its dramatic upregulation after
growth arrest with unknown function.18,19 In 1995, it was
reported that Gas6 could bind and activate AXL.16,20

Shortly thereafter, Gas6 was found to activate all TAM
receptors (AXL>TYRO3oMER).21 Since the secretion
signal and the c-carboxyglutamic acid domain are highly
conserved in human, mouse, and bovine, Gas6 subfamily
members are 74–81% homologous to each other and mod-
erately homologous to human and bovine Pros1.16

The glutamic acid residue is required for the binding of
TYRO3 to the phosphatidylserine of the cell membrane in a
calcium-dependent manner,22 especially when it is c-car-
boxylated.23,24 The two laminin G motifs within the C-ter-
minal sex hormone-binding globulin domain are required
for the binding to TYRO3 and the activation of downstream
signaling pathways including phosphatidylinositol 3-
kinase (PI3K)/AKT, ERK, and PLC-c (Figure 1(c)).25–27

The functional importance of other domains of GAS6 and
Pros1 awaits further characterization.

Two potential TYRO3 ligands, tubby-like protein (Tulp)
1 and Tulp2, were identified recently and linked to phago-
cytosis.28 By co-immunoprecipitation, Tulp1 was found to
interact with MER, AXL, and TYRO3, while Tulp2 can be

Figure 1. Schematic representation of TYRO3 receptor and ligands protein structure. (a) TYRO3 receptors carry two immunoglobulin (Ig)-like domains in their N-

terminus, followed by two fibronectin type III repeats, a transmembrane region and a tyrosine kinase domain in the C-terminal intracellular region. (b)Growth-arrest-

specific 6 (GAS6) and protein S (Pros1), TYRO3 ligands, carry a Gla domain in their N-terminus, followed by four EGF repeats and two laminin G (LG) domains in their C-

terminus. (c) TYRO3 dimers bind to their ligands through interaction between the two N-terminal Ig-like domains of the receptors and the two C-terminal LG regions,

which together make up the sex hormone binding globulin (SHBG) domain of the ligands. c-carboxylation of glutamic acid residues in the Gla domain and calcium ions

(Ca 2þ), enable Gas6 and Pros1 to bind to phosphatidylserine (PtdSer). The two LG domains form a sex hormone binding globulin-like domain and trigger the activation

of TYRO3. (A color version of this figure is available in the online journal.)
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co-precipitated with AXL and TYRO3, but not with MER.
These results suggested that Tulp1 and Tulp2 have distinct
binding specificities to TYRO3. Unlike Gas6 and Pros1,
Tulp ligands lack the signature laminin G motifs for recep-
tor binding but contain minimal phagocytic determinant
(MPD) as a new type of TAM-binding motif. It is suggested
that the five MPDs of mouse Tuip1 may cause homo-
and/or hetero-dimerization of TAM receptors, though it
is unclear whether one or multiple receptors will be
bound.29 Interestingly, Tulp proteins lack signal peptide
and have been identified as intracellular proteins by immu-
nohistochemistry.30 How does intracellular Tulps interact
with plasma membrane receptors to facilitate phagocyto-
sis? One explanation for Tulp1 functions as phagocytosis
ligand is via active secretion through a non-classical path-
way coined unconventional secretion. Similar mechanism
has been reported for a number of proteins without a clas-
sical signal peptide.31 Indeed, Caberoy and Li32 had dem-
onstrated that Tulp1 can be secreted to extracellular space,
which cannot be blocked by brefeldin A and monensin,
inhibitors that block protein transport via the endoplasmic
reticulum-Golgi pathway. This finding supports the notion
that Tulp proteins can function as TAM receptor ligands;
nevertheless, their functions other than facilitating phago-
cytosis remain to be characterized.

TYRO3 in development

The expression of TYRO3 was found in embryonic devel-
oping mouse tissue, including undifferentiated mouse
embryonic stem cells. Therefore, TYRO3 was initially
named Developmental Tyrosine Kinase.5 The TAM recep-
tors play overlapping and unique roles in regulating immu-
nity and inflammation. Inactivation of all TAM receptors
does not lead to embryonic lethality, indicating the over-
lapping and compensatory roles of TAM receptors demon-
strated in various cell types for embryogenesis.13,33

However, TYRO3 receptor and their ligands are largely
expressed during development in gastrointestinal, ner-
vous, and reproductive systems.5,13 Inactivation of TYRO3
receptors or their ligands affects postnatal developmental
processes. For example, the neural degeneration with seiz-
ures and paralysis is observed in Tyro3 knockout mice.13

With aging, Tyro3-null mice develop cerebellar ataxia, and
immune defects are observed with the progressive loss of
the TAM family.29 A previous study indicated that Gas6
supports gonadotropin-releasing hormone (GnRH) neuro-
nal survival through AXL and TYRO3, which are expressed
by migratory GnRH neurons. Axl and Tyro3 deficiencies
resulted in increased apoptosis and delayed migration
with a reduction in GnRH neurons reaching their final des-
tination.34 This strain manifested later in adulthood in
delayed sexual maturation and irregular estrus cycles
with a significantly prolonged proestrus phase.34

Moreover, triple knockouts of TAM receptors demonstrat-
ed multiple debilitating and degenerative traits, most
importantly, impaired hemostasis, immunoregulation,
spermatogenesis, and blindness.13,35

Disease relevance of TYRO3

TYRO3 appears to have a critical role in the immunity,
phagocytosis, hemostasis, and neuronal disease. The first
evidence suggests TYRO3 may be involved in platelet
aggregation came from studies of Gas6-null mice.
Knockout of Gas6 protects mice from thrombosis and
causes platelet dysfunction.36 A follow-up study demon-
strated that platelet granule secretion was limited in
Tyro3�/� mice. This strain demonstrated reduced throm-
bus formation and decreased platelet aggregation stabili-
ty.37 In neuron, TYRO3 activation due to progranulin
reduction results in activation of PKCa via PLCc, inducing
tau phosphorylation, mislocalization of tau to dendritic
spines, and spine loss.38Genetic variants of TYRO3 were
associated with an increased risk for several immune-
related disorders. Functional TYRO3 variants alter gene
expression in the pathogenesis of allergic sensitization
and allergic rhinitis. Multiple intronic variants in TYRO3
were also associated with asthma. The most significant
association was at a single-nucleotide polymorphism locat-
ed within several putative transcription factor binding
sites.39 Moreover, TYRO3 contributes to anxiety pheno-
types and can delay hypothalamic neurodegeneration in
anx/anx mice. In their study, Kim et al.40 identified a muta-
tion in the signal sequence of the Tyro3 (R7W-Tyro3) as an
enhancing anx phenotype.

Involvement of TYRO3 in cancer

The first study that indicates TYRO3 exerts oncogenic
capacity was evidenced by showing Tyro3-transfected
Rat-2 fibroblasts could grow in soft agar.8 Later on, rat fibro-
blasts overexpressing TYRO3 were shown to be able to
form tumors in nude mice and the transcripts of Tyro3
have been associated with human and mouse mammary
tumors further support this notion.4,41 Like other TAM
receptor family members, TYRO3 and ligand overexpres-
sion have been shown in a wide range of cancers, and cor-
relate with poor prognosis in a variety of tumor types
(Table 1). Through AKT/NFjB signaling, TYRO3 exerts
pro-survival effects and promotes cancer cell growth.42

TYRO3 and AXL protein levels are undetectable in
normal thyroid cells but significantly upregulated and acti-
vated in thyroid cancer cells.43 TYRO3 also triggers the
tyrosyl-phosphorylation of ACTN4, a member of actin
binding protein family involved in motility. Knockdown
of Tyro3 by siRNA prevents melanoma cell migration
and invasion.44

Activated TYRO3 promotes the survival, invasion,
migration, proliferation, and transformation of cancer
cells (Figure 2).45,46 Increasingly, evidence supporting the
notion that overexpression of TYRO3 contributes to the
resistance to conventional and targeted therapies in thyroid
cancer, and blocking its signaling dramatically reduced cell
viability and resistance to apoptotic stimuli.43 TYRO3 was
also shown to promote cell proliferation and chemoresist-
ance in breast cancer.142 Increased resistance to platinum
and taxol secondary to TYRO3 overexpression has also
been reported in ovarian cancer.47 Ovarian cancer cells
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overcome treatment resistance via upregulation of TYRO3
and AXL expression, AKT phosphorylation, and Bcl-xl
expression.47 A growing body of evidence demonstrated
that epithelial-mesenchymal transition may be a major
mechanism in drug resistance.143,144 TYRO3 promotes
phagocytosis and inhibits inflammation, allowing resis-
tance to antitumor treatments to further cancer progres-
sion.145 Interestingly, recent study demonstrated that
treatment with the human TYRO3 antibody abolished
TYRO3-induced EMT process in colon cancer.48 Taken
together, these studies suggested that inhibition of TYRO3
and its signaling pathways could have therapeutic benefits
in cancer development.

TYRO3 signaling pathways

The TYRO3 receptor is the least studied TAM receptors
with largely unknown signaling pathways. However,
some sporadic studies did report the involvement of differ-
ent signaling molecules involved in transmitting signals of
TYRO3 (Figure 2). One study indicated a possible interac-
tion between TYRO3 and a phosphorylated Src family
kinase in COS cells.146 Previous studies identified multiple
proteins that may interact with TYRO3, including Ran
binding protein in microtubule organizing center, protein
phosphatase 1, and the p85 b-subunit of PI3K.147,148

Another study showed that Pros1/TYRO3 activates the

PI3K/AKT pathway, which protects neurons from excito-
toxic injury and apoptosis in mouse cortical neurons.149,150

Epidermal growth factor receptor (EGFR)/TYRO3 chimeric
receptor also showed that the cytoplasmic domain of
TYRO3 associated with PI3K and led to transformation of
NIH3T3 cells.147 The mitogen-activated protein kinase
(MAPK) signaling pathway has also been linked to
TYRO3 activation. It has been shown that Gas6 increased
the phosphorylation of AKT and ERK1/2.151 TYRO 3 acts
on mature osteoclasts through activation of ERK1/2
MAPK, possibly contributing to the bone loss by estrogen
deficiency.152 TYRO3 also regulates the proliferation of
MCF-7 breast cancer cells through control of cyclin D1
expression and phosphorylation of ERK1/2 or
STAT3.142,153 These studies reveal that TYRO3 may utilize
distinct signaling pathways to transmit its message in dif-
ferent cell types. Further study is warranted to systemically
characterize the second messengers directly downstream
of TYRO3.

Therapeutic potential of targeting TYRO3

Because the TAM family has been implicated in the patho-
genesis of several cancers, the therapeutic potential of tar-
geting the TAM family has been validated. To date, many
pan-TAM inhibitors have proven to be both efficacious and
less toxic than standard chemotherapies. These inhibitors

Figure 2. Schematic representation of TYRO3 signaling pathway. TYRO3 has been reported to mediate numerous cellular activities, including platelet aggregation,

cell growth, invasion, cell proliferation, migration, immunosupression, cell transformation, and anti-apoptosis. Molecules in orange have been shown to associate with

TYROS through either a direct or indirect interaction. (A color version of this figure is available in the online journal.)
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may prevent activation of the TAM family and other RTKs
leading to promotion of cell death, thereby preventing
cancer metastasis. It is found that the selectivity is primarily
determined by the size and configuration of kinase’s ATP-
binding site. The location and shape of active-site residues
of MER and AXL are highly consistent, suggesting that
small-molecule inhibitors generally have a low MER-
over-AXL selectivity and a high MER-over-TYRO3
selectivity.

Due to the centrality of TYRO3 in immune disease and
cancer development, there is interest in targeting TYRO3. A
recent study showed that TYRO3 was overexpressed in
nearly all melanoma cell lines. Knockdown of TYRO3 by
short hairpin RNA led to significantly inhibited cell prolif-
eration.49,50 Administration of anti-TYRO3 antibody
increased cell death signal and drug sensitivity in vitro
and in vivo.48,49 Furthermore, miR-7 was identified as a
potent tumor suppressor of human hepatocellular carcino-
ma. It targets TYRO3 and regulates proliferation, migra-
tion, and invasion through the PI3K/protein kinase B
pathway.45 These findings indicated that TYRO3 is a drug-
gable target in cancer. However, because no specific
TYRO3-targeted drugs are available, the role of specific
inhibitors against TYRO3 as a therapeutic target has not
previously been evaluated in detail. Below is a summary
of some representative TAM inhibitors that also work on
TYRO3 (Table 2).

Metformin

Since the primary effect of metformin is glucose metabo-
lism modification, it has been widely used to treat type 2
diabetes.173 Accumulating evidence suggests it also pos-
sesses anticancer effects on cell proliferation in various can-
cers and tumor growth in xenograft model.174–177 The
efficacy of metformin for the treatment of endometrial, cer-
vical, breast, and ovarian cancer has been suggested in pre-
clinical studies and clinical trials.154 The anticancer
mechanisms of metformin have been assessed by its ability
to inhibit pro-survival and anti-apoptotic signals mediated
by mammalian target of rapamycin complex 1, EGFR, and
MAPK.178–181 Metformin may target TYRO3 to prevent cell
proliferation and reduce chemoresistance.155 Collectively,
these studies indicated a potent therapeutic strategy to
facilitate the anticancer activity of metformin and overcome
chemoresistance in cancer cells.

Compounds 21 and 24

High-throughput screening identified a novel series of
spiroindoline-based inhibitors as the first TYRO3-selective
tyrosine kinase inhibitors.156,182 Among these, compounds
21 and 24, 2,4-diaminopyrimidine-5-carboxamide inhibi-
tors, are potent inhibitors of TYRO3 kinase (Sky IC50

¼0.0007 mM and 0.015 mM, respectively).156 The compound
21, which replaces the entire amide sidechain with a
3-methylisoxazole from an 2, 4-diaminopyrimidine-5-
carboxamide inhibitor, exhibited excellent selectivity in
46/48 kinases with some activity in MAP4K4 and Mer.
Compound 24 which replaces amide sidechain by a

simple bromine atom has moderate functional P-selectin
inhibition, good human liver microsomes, and rat liver
microsomes metabolism stability. However, the low aque-
ous solubility and PAMPA permeability were not predic-
tive of good oral bioavailability.

LDC1267

LDC1267 is an inhibitor of the TAM kinase family in cells at
low nanomolar levels with IC50 of<5 nM, 8 nM, and 29 nM
for MER, TYRO3, and AXL, respectively.157 Treatment of
wild-type natural killer cells with LDC1267 conferred ther-
apeutic potential, efficiently enhancing anti-metastatic NK
cell activity in vivo. Administration of LDC1267 markedly
reducedmurine mammary cancer development and metas-
tasis of melanoma.157

BMS-777607

BMS-777607 is a small molecule inhibitor for c-Met, AXL,
Ron, and TYRO3 with IC50 of 3.9 nM, 1.1 nM, 1.8 nM, and
4.3 nM, 40-fold more selective for Met-related targets
versus Lck, VEGFR-2, and TrkA/B, and more than 500-
fold greater selectivity versus all other receptor and non-
receptor kinases.158 Previous studies demonstrated the
effect of BMS-777607 in antitumor treatment may be medi-
ated by blocking hepatocyte growth factor-stimulated
phosphorylation of Met and downstream path-
ways.159,183,184 BMS-777607 inhibits hepatocyte growth
factor-stimulated cell scatter, motility, and invasion
in vitro.159,185 Surprisingly, BMS777607 was also reported
to have inhibitory effects on TYRO3 in cell-free condi-
tions.169 However, the efficacy of BMS-777607 against
TYRO3 as a therapeutic target has not been evaluated.
Due to its potency and promising pharmacokinetic and
preclinical safety profiles, BMS-777607 has been advanced
into phase 1/2 clinical trials.

UNC2250

UNC2250 is a potent and selective MER inhibitor with IC50
of 1.7 nM, about 160- and 60-fold selectivity over the closely
related kinases AXL/TYRO3.165 MER inhibition by
UNC2250 decreased activation of downstream AKT and
p38, inhibited proliferation and invasion inmantle cell lym-
phoma (MCL), and sensitized MCL cells to treatment with
vincristine in vitro and doxorubicin in vitro and in vivo.166

UNC2881

UNC2881 is a specific MER tyrosine kinase inhibitor with
IC50 of 4.3 nM, about 83- and 58-fold selectivity over AXL
and TYRO3, respectively. UNC2881 inhibits steady-state
MER kinase phosphorylation with an IC50 value of
22 nM in vitro. Treatment with UNC2881 is also sufficient
to block EGF-mediated stimulation of EGFR/MER chime-
ric receptor. In addition, UNC2881 may have utility for pre-
vention and/or treatment of pathologic thrombosis by
inhibiting platelet aggregation.167
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RXDX-106

RXDX-106 is an oral immunomodulatory agent that
can restore and enhance overall immune function. It
inhibits the activity of TAM- and c-Met-induced pro-
tumorigenesis by a decrease in downstream MAPK and
PI3K signaling and cell viability. RXDX-106 could reverse
immuosuppression of innate immune cells, inhibit tumors
harboring activating TAM gene fusions, and affect the
TAM-expressing tumor microenvironment resulting in
a global anti-cancer environment.168 Phase 1 study is
expected to commence in early 2018.

6g

The affinity of 6g for AXL, MER, Met, and TYRO3 is 39, 42,
65, and 200 nM, respectively.169 The absence of cytotoxicity
against several tumor cell lines in culture makes this inhib-
itor a good candidate for the growth inhibition of tumor
cells that would overexpress a gene belonging to the
TAM subfamily.

Sitravatinib (MGCD516)

MGCD516 is a novel small molecule inhibitor targeting
TAM family (IC50< 1 nM) and multiple RTKs involved in
driving sarcoma cell growth. MGCD516 treatment induced
potent anti-proliferative effects in vitro and suppressed
tumor growth in vivo.170 As an immuno-oncology agent,
MGCD516 may target the tumor microenvironment, result-
ing in innate and adaptive immune cell changes that aug-
ment immune checkpoint blockade.171MGCD516 is being
evaluated in combination with checkpoint blockade
(nivolumab) for refractory non-small cell lung cancer in
phase 2 clinical study.171

UNC compound 5

More recently, UNC2541-derived compound 5, a TYRO3-
selective pyrrolopyrimidine-based inhibitor was men-
tioned. They reported this inhibitor with more selective
against TYRO3 over MER (3-fold) and AXL (31-fold).172

However, the pharmacokinetic properties of Compound 5
are unclear. Thus, more work is needed in the development
of more potent TYRO3 inhibitors.

Current and future development

Despite numerous efforts, many traditional therapies are
ineffective due to the pathological and etiological complex-
ity of cancer. As with most drugs, chemotherapy drugs do
have side effects. Therefore, it is important to develop effec-
tive and safe strategies for cancer prevention and treatment.

The important role of TYRO3 in cancer development has
been elucidated. Targeting TYRO3 represents a novel ther-
apeutic approach by suppressing tumor cell survival, pro-
liferation, invasion, chemoresistance, and de-repression of
the immune activities. Therefore, therapeutic TYRO3 inhi-
bition may sensitize tumor cells to killing by chemotherapy,
radiation, or other targeted agents. Specific TYRO3-
targeted drug may enhance immunotherapeutic efficacy
in combination with immune checkpoint inhibitors.

If these combination therapies are effective against meta-
static disease, then TYRO3-targeted drug could be used in
early stages as an adjuvant to provide cancer patients with
new options for durable responses. However, development
of autoimmunity is a consideration for TYRO3 inhibi-
tion treatment.

Although many potent drugs have been developed as
mention in this review, including different compounds,
multi-target TYRO3 inhibitors, and antibody, the ability of
these drugs to defeat cancers by TYRO3 and reduce drug
resistance is unclear. A better understanding of TYRO3
could lead to more effective anticancer strategies.
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