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Abstract
Myocardin-related transcription factor A (MRTF-A) and serum response factor (SRF) form

an essential transcriptional complex that regulates the expression of many cytoskeletal

genes in response to dynamic changes in the actin cytoskeleton. The nucleoskeleton, a

“dynamic network of networks,” consists of numerous proteins that contribute to nuclear

shape and to its various functions, including gene expression. In this review, we will discuss

recent work that has identified many nucleoskeletal proteins, such as nuclear lamina and

lamina-associated proteins, nuclear actin, and the linker of the cytoskeleton and nucleos-

keleton complex as important regulators of MRTF-A/SRF transcriptional activity, especially

in the context of mechanical control of transcription.
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Introduction

The main function of the eukaryotic cell nucleus is to pro-
vide the environment and appropriate control for storing
the genomic material and for gene transcription. One
important feature of this regulation is non-random spatial
and temporal distribution of chromatin and its regulatory
elements in the interphase nuclei. Existence of particular
chromosome territories, clustering of modified chromatin,
and the long-range contacts that form between promoters
and control regions are all relevant features of nuclear orga-
nization.1 Therefore, identifying the mechanisms and
molecular players that regulate non-random nuclear orga-
nization is of utmost importance. An interesting, but very
controversial concept is the nucleoskeleton, which has been
proposed to support and regulate nuclear processes as does
the cytoskeleton in the cytoplasm.2 The nucleoskeleton con-
sists of heterogeneous nuclear components, such as lamins
and lamina-binding proteins, nuclear pore-linked fila-
ments, nuclear mitotic apparatus, spectrins, titin, nuclear
actin, nuclear myosins, and kinesins, which altogether con-
tribute to the specific shape, mechanical properties and

functionality of the nucleus and genome.3,4 Since a rigid
structural framework is not supported by current experi-
mental data and the dynamic properties of the cell nucleus,
the nucleoskeleton is nowadays mainly considered as a
“dynamic network of networks,”4 and we will be using
this definition in our review as well. To date, there is a lot
of evidence showing that almost every important aspect of
nuclear function is influenced by nucleoskeletal compo-
nents. Chromatin packaging status, its epigenetic modifica-
tions, intranuclear translocation and transcription
activation—these and many other essential processes are,
directly or indirectly, regulated by nucleoskeletal compo-
nents. In addition to regulation at the biochemical level,
nucleoskeletal proteins, particularly proteins of the nuclear
lamina, are also key players in mechanoadaptation and
mechanoresponsive functions of the nucleus, which trans-
duce mechanical stimuli emerging from both inside and
outside the nucleus.5 In this review, we will discuss how
nucleoskeletal components, in particular nuclear actin,
nuclear lamina and lamina-binding proteins, regulate
gene expression by utilizing the MRTF-A/SRF transcrip-
tion complex as an example.

Impact statement
Regulation of gene expression is a funda-

mental cellular process that ensures the

appropriate response of a cell to its sur-

roundings. Alongside biochemical signals,

mechanical cues, such as substrate rigidi-

ty, have been recognized as key regulators

of gene expression. Nucleoskeletal com-

ponents play an important role in mecha-

noresponsive transcription, particularly in

controlling the activity of MRTF-A/SRF

transcription factors. This ensures that the

cell can balance the internal and external

mechanical forces by fine-tuning the

expression of cytoskeletal genes.
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Actin regulates MRTF/SRF pathway activity

Serum response factor (SRF) is a ubiquitously expressed
and conserved transcription factor that mediates both the
signal-stimulated transcriptional induction of immediate
early genes (IEGs), and the activation of cell type-specific
genes. It works as a key regulator of cell growth, migration,
cytoskeletal organization, differentiation and muscle-
specific or neuronal gene expression.6,7 Expression of SRF
target genes is promoted by two families of signal-
regulated co-activators, which interact competitively with
the DNA-binding domain of SRF, but also contact DNA
flanking the SRF-binding site.8,9 One family is composed
of three ternary complex factors (TCFs), Elk-1, Net, and
SAP-1 that contain a conserved DNA binding domain
ETS (E26 transformation-specific or E-26), and act in the
Ras – extracellular signal regulated kinase (ERK) signaling
pathway.10–12 The other SRF co-factor family, the myocar-
din family, is directly regulated by actin.8 Actin is a major
constituent of the cytoskeleton, and coordinated polymeri-
zation of actin monomers (G-actin) to actin filaments
(F-actin) plays a key role in processes such as cell shape
changes and motility.13 SRF activation can be regulated by
actin polymerization, which can be induced, for example
downstream of the small GTPase RhoA.14 There are three
homologous myocardin-related transcription factor
(MRTF) proteins: myocardin, MRTF-A (also known as
MKL1, MAL), andMRTF-B (MKL2). Myocardin, the found-
ing member of the family and very strong activator of SRF,
is expressed in cardiac (longer isoform of myocardin) and
smooth muscle cells (shorter isoform of myocardin).15

MRTF-A andMRTF-B are broadly expressed in a wide vari-
ety of tissues and play a critical role in skeletal muscle dif-
ferentiation.16 In addition, MRTF-B is also required for
normal vascular development and smooth muscle gene
expression.17 MRTF-A is the most ubiquitously expressed
mammalian MRTF. It was originally characterized as a
fusion with RNA-binding protein 15 (RBM15) in acute
megakaryoblastic leukemia.18 MRTF-A acts as a cofactor
for SRF-mediated gene activation in muscle differentiation,
but it also regulates expression of a number of cytoskeletal
genes in non-muscle cells.19 To clarify the interplay
between SRF and its cofactors and analyze their genomic
targets, transcriptional response of fibroblasts to serum
stimulation was investigated.20 ChIP-seq analysis showed
that recruitment of SRF cofactors is gene-specific, consistent
with predictions from earlier functional studies of model
genes,21 and majority of serum-responsive SRF-linked
genes are controlled through MRTF signaling.
Furthermore, SRF seems to be the primary targeting agent
for the MRTFs. The main role of SRF/MRTF complex was
defined as facilitating nucleosome displacement. MRTF
itself is required for both RNA Pol II recruitment and for
the post-recruitment step in transcriptional activation.20

Actin plays a key role in regulating MRTF localization
and activity. The conserved N-terminus of MRTFs contains
an RPEL (arginine-proline-glutamine-leucine consensus
sequence containing) domain that includes three actin-
binding motifs (RPEL1, RPEL2, RPEL3), overlapping with
an extended bipartite nuclear localization signal (NLS).22,23

The distinctive feature of myocardin is its exclusively
nuclear localization due to divergent RPEL motifs that
have a lower affinity for actin compared to the other
MRTFs.24 On the other hand, MRTF-A (and likely MRTF-
B) constantly shuttle in and out of the nucleus,25 and the
subcellular localization of both is tightly regulated by actin
dynamics. In resting conditions MRTF-A localizes in the
cytoplasm due to formation of a pentavalent RPEL-actin
complex, where three RPEL motifs and two intervening
spacers bind five actin molecules.23 Structural analysis
showed that in this complex, actin-binding sterically
occludes the NLS, preventing its recognition by the impor-
tin-a/b (Ipoa/b) heterodimer and thus blocking nuclear
import of MRTF-A. Mitogenic or mechanical stimuli lead
to RhoA-mediated actin polymerization and reduction of
the actin monomer (G-actin) pool in the cell. Consequently,
G-actin dissociates from MRTF-A, allowing the import fac-
tors access to the NLS to promote MRTF nuclear transloca-
tion, where it binds to SRF and activates expression of
target genes.22,25 An additional layer of MRTF nuclear
import regulation, which is not dependent on actin, is
mediated by Ddx19, an RNA helicase required for mRNA
export. Mechanistically, Ddx19 regulates the conformation
of MRTF-A, facilitating the acquisition of an open confor-
mation, which can then efficiently bind with Importin-b for
nuclear import.26 Taken together, the transcriptional activ-
ity of MRTF-A/SRF is tightly regulated by actin dynamics,
indicating that this transcription complex integrates signal-
ing inputs from numerous pathways that control the actin
cytoskeleton.

Nuclear actin has a key role in regulating
MRTF-A/SRF activity

In addition to cytoplasmic actin dynamics, nuclear
actin has also been shown to play an important role in
controlling MRTF-A/SRF activity by influencing both the
subcellular localization and nuclear activity of MRTF-A.
Actin-binding is required for Crm1-mediated nuclear
export of MRTF-A.25 Several Crm1-dependent nuclear
export sequence (NES) elements have been reported in
MRTF-A, and some of them have been shown to be con-
trolled by phosphorylation (see also below),27,28 but the
exact mechanism by which actin promotes nuclear export
of MRTF-A is still not clear. Besides regulating MRTF-A
subcellular localization, actin also controls intranuclear
activity of MRTF-A. Confinement of MRTF-A to the nucle-
us without disrupting the actin-binding, for example, via
blocking MRTF-A nuclear export or fusion to an extra NLS,
does not activate SRF-dependent transcription,25 indicating
that actin monomer-binding inhibits MRTF-A transcrip-
tional activity within the nucleus. This view is also sup-
ported by experiments with nuclear targeted actin
mutants that promote actin polymerization (actin-G15S)
and stimulate SRF activity.29 In addition, ectopic expression
of NLS-actin also inhibits expression of MRTF-A target
genes leading to decreased cell motility.30 These data thus
point to a repressive role for nuclear monomeric actin in
MRTF-A/SRF regulation, although the underlying mecha-
nism is unclear.
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The polymerization status of nuclear actin was for a long
time under debate and it was suggested that nuclear actin
would exist predominantly in its monomeric, or globular,
form (G-actin) or form short oligomers.31 However, devel-
opment of novel probes has demonstrated that nuclear
actin can indeed polymerize in response to specific signals.
Baarlink et al. showed, for the first time, actin filament
assembly in the nucleus in response to serum stimulation.
To visualize nuclear actin filaments, they used LifeAct
fused with an NLS. The rapid assembly of the nuclear
actin filaments is promoted by diaphanous-related formins
(mDia1/2) that are well-known actin nucleation and
elongation factors, and required for efficient MRTF-A/
SRF activation.32 Also, cell spreading induces nuclear
actin polymerization and transcriptional activation of
MRTF-A/SRF. Cell spreading is a mechanosensing process
that involves the formation of integrin-based adhesion to
the substrate. Although the nuclear actin filaments in
spreading cells have different shape than those observed
after serum stimulation, their nucleation is also driven by
mDia1/2 formins. However, nuclear actin polymerization
in spreading cells also requires mechanical coupling
between the cytoplasm and the nucleus via the linker of
nucleoskeleton and cytoskeleton complex (LINC)33

(Figure 1(a)). Nuclear actin polymerization likely regulates
MRTF-A/SRF pathway by releasing MRTF-A from the
inhibitory actin monomer.25 Moreover, the filamentous
actin-binding protein filamin A (FLNA) plays a role here.
FLNA is necessary for nuclear actin polymerization, but it
also interacts with MRTF-A, and is required for expression
of MRTF-A/SRF target genes (Figure 1(a)). In the suggested
model, MRTF-A-FLNA interaction impairs MRTF-A phos-
phorylation (see also below), which is a prerequisite for
G-actin binding, thereby switching of MRTF-A from its
repressive G-actin bound state to an MRTF-A/FLNA
complex that transduces actin polymerization into SRF acti-
vation.34 Also, other proteins that regulate nuclear actin
polymerization have been shown to influence MRTF-A-
SRF activity. One such protein is molecule interacting
with CasL (MICAL)-2, which can catalyze the disassembly
of nuclear actin filaments in a redox-dependent manner.
MICAL2 activity leads to a reduction in nuclear actin
levels,35 likely because the export competent actin mono-
mer pool largely governs nucleo-cytoplasmic shuttling
of actin.36 Reduction of nuclear monomeric actin subse-
quently promotes MRTF-A/SRF activity.35

The transcriptional response of the SRF/MRTF complex
to alterations in actin dynamics may be induced by not only
biochemical, but also mechanical cues. In particular, actin
polymerization pathways regulated by small GTPases have
been shown to be activated in response to mechanical stim-
uli.37,38 Substrate stiffness can influence the ratio between
monomeric and filamentous actin in fibroblasts and epider-
mal cells, thereby promoting the nuclear localization of
MRTF-A and transcription of SRF target genes.39 Indeed,
MRTF-A nuclear translocation and activation are signifi-
cantly increased in cells on stiff substrates, compared to
cells plated onmore compliant substrates.40,41 In fibroblasts,
it was found that static tensile forces applied through
collagen-coated microbeads activate RhoA-dependent

actin assembly, promote nuclear translocation of MRTF-A
and transcriptional activation of its target genes.37

Interestingly, in the cells maintained at tensional homeosta-
sis (with a balance between the external and internal forces),
nuclear accumulation of MRTF-A stimulated by serum,
drugs that target actin polymerization or mechanical
stress, is blocked.40 These data demonstrate that MRTF-A
can act as a mechanical sensor that links actin dynamics to
SRF-mediated gene expression.

As mentioned above, MRTF-A is also regulated by
phosphorylation. It is subject to extensive Rho-dependent
phosphorylation,8,42,43 and serum-stimulation induces
phosphorylation of at least 26 Ser/Thr sites within MRTF-
A.28 Elimination of all 26 phosphorylation sites lead to
impaired activation of SRF-dependent genes, suggesting
that phosphorylation, which is also inhibited by G-actin
binding, contributes positively to transcriptional activation
of the SRF/MRTF-A complex. In particular, phosphoryla-
tion of Ser98 within the RPEL domain inhibits the forma-
tion of the MRTF-A–actin complex, hence, promoting
nuclear accumulation of MRTF-A. By contrast, phosphory-
lation of Ser33 of MRTF-A facilitates its Crm1-dependent
nuclear export.28 Phosphorylation therefore influences
MRTF-A activity both positively and negatively.

Actin therefore plays a key role in regulating MRTF-A/
SRF activity both in the cytoplasm and in the nucleus.
It is likely that cell-type specific differences exist in terms
of which pool of actin contributes most to the regulation.
In addition, it is important to remember that actin itself
constantly shuttles in and out of the nucleus,44 adding
another potential regulatory layer also for the MRTF-A/
SRF pathway.

Nuclear lamina and lamina-associated
proteins in MRTF-A/SRF complex regulation

During the past few years, structural components of the
nuclear lamina, including lamina-binding proteins, have
emerged as potential regulators of the MRTF-A/SRF tran-
scription complex. The nuclear lamina is a structural pro-
tein framework that underlies the inner membrane of the
nuclear envelope and provides mechanical support for the
nucleus.45 The lamina is composed of A- and B-type lamins
that form distinct networks in mammalian cells.46 The
A- and B- type lamins have fundamentally different prop-
erties and expression patterns: B-type lamins are widely
expressed in embryonic and adult cells, but A-type
lamins are expressed mainly in differentiated cells.47

Lamin filaments typically associate with the inner nuclear
membrane (INM) and interact with a plethora (more than
150) of transmembrane (TM) proteins,48 but A-type lamins
are also found as a highly dynamic pool in the nucleo-
plasm, except for the nucleolus.49–51 In addition to its struc-
tural role, the nuclear lamina is implicated in signaling and
gene expression. Large portion of the genome is associated
with the lamina as lamina-associated domains (LADs).
Genes in these domains are transcriptionally silent or
express at low levels,3,52 and enriched in the repressive
histone marks.52,53 However, nuclear lamina may also pos-
itively regulate gene expression. Recent studies have
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revealed that many lamina-binding proteins interact with
signaling effectors such as b-catenin,54 rSMADs,55 pRB pro-
tein,56 and GLI1 transcription factor.57 Laminopathies are a
group of genetic disorders caused by mutations in genes
encoding for nuclear lamina proteins, and various signal-
ing pathways are perturbed in model organisms and sam-
ples obtained from laminopathy patients, further

highlighting the essential role of the lamina in controlling
gene expression. This has led to the hypothesis that, in
addition to its barrier function, the nuclear envelope
serves as an integration “hub” for important signals in
developing and mature tissues. These “signaling” func-
tions are likely to be diverse, ranging from the regulation
of “classical” signal transduction pathways, to integration

Figure 1. Schematic model of MRTF-A/SRF complex regulation by nucleoskeletal components. (a) Regulation via nuclear actin polymerization and stabilization of

filaments. (I) LINC complex mediates cell spreading-induced signaling from integrins to nuclear formins mDia that promote nuclear actin polymerization. (II) Inner

nuclear membrane protein emerin facilitates polymerization of nuclear actin via an unknown mechanism. (III) Filamin A (FLNA) facilitates nuclear actin polymerization

and links the filaments to MRTF-A/SRF complex. (b) Regulation of RhoA and MRTF-A/SRF activity by LINC complex. SUN2 LINC complexes signal from the nuclear

envelope through the cytoplasm to increase the pool of active RhoA and consequently promote MRTF-A/SRF complex activation. SUN1 complexes antagonize this

network. (A color version of this figure is available in the online journal.)
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of cellular mechanical events and to the control of the
nucleocytoplasmic transport of specialized cargoes
(reviewed in Choi and Worman58and Gerace and Tapia59).

Nuclear lamina and lamina-binding proteins have
attracted interest as potential MRTF-A/SRF regulators for
several reasons. First, some nuclear lamina components,
such as emerin as well as A- and B-type lamins bind
actin,60,61 which is an established regulator of MRTF-A as
discussed above. Second, the nuclear lamina influences
gene expression especially in response to mechanical ques
by various mechanisms.62–64 Given the fact that mutations
in lamin A affect cardial and skeletal muscles where MRTFs
play an indispensable role, lamin A/C has been considered
as a potential regulator of the MRTF-A/SRF-dependent
transcription. The Lammerding laboratory has made
seminal findings on this front, and they have found that
fibroblasts derived from lamin A/C-deficient mouse
embryos have impaired biomechanical signaling through
NF-jB pathway.62 Based on these data, they proposed
that activity of other mechanosensitive transcription factors
might also be altered in cells with altered nuclear lamina.
Indeed, impaired nuclear translocation of MRTF-A, fol-
lowed by decreased expression of SRF target genes, is
observed in Lmna�/� mouse embryonic fibroblasts
(MEFs), in lamin A/C downregulated HeLa cells and also
in Lmna N195K/N195K mouse model with a lamin mutation
associated with cardiomyopathy, pointing towards a gen-
eral effect of lamin A/C knock-out or mutation on the
MRTF-A-SRF pathway activity. To explore the molecular
background of this effect, FRAP experiments revealed
that both nuclear and cytoplasmic actin are more mobile
in lamin A/C null or mutant cells. In these cells, emerin, a
transmembrane LEM-domain containing protein, is redis-
tributed from the inner nuclear membrane (INM) to the
peripheral endoplasmic reticulum. Emerin is multifunc-
tional INM-anchored protein, which has multiple binding
partners in the nucleus.65 It requires lamin A/C for proper
localization66 and has been characterized as an actin
pointed-end capping protein that promotes actin polymer-
ization in vitro.60 Indeed, emerin-deficient fibroblasts also
display impaired nuclear translocation of MRTF-A, which
could be rescued by expression of exogenous emerin, but
not by an emerin mutant that did not bind actin.

In the suggested model, emerin regulates nuclear actin
polymerization, which controls MRTF-A nuclear export
and transcriptional activity. In the lamin A/C null or
mutant cells, mislocalization of emerin leads to aberrant
nuclear actin polymerization, and consequently to
decreased nuclear localization of MRTF-A and decreased
expression of MRTF-A-SRF target genes67 (Figure 1(a)).
Although the mechanism by which emerin regulates poly-
merization of nuclear actin is still somewhat unclear,
its functional role in this process is also supported by the
findings that both emerin and lamin A/C are required for
cell-spreading-induced polymerization of nuclear actin,
and consequently for MRTF-A-SRF activation during this
process.33 Interestingly, emerin has also been linked to actin
polymerization at the outer nuclear membrane (ONM),
forming a mechanosensitive complex with non-muscle
myosin, which seems to regulate nuclear actin levels by

controlling nuclear import competent actin monomers.
Reduced nuclear actin leads to transcription attenuation
and Polycomb-dependent gene silencing, which is required
for lineage commitment in epidermal stem cells.68 Emerin
may thus regulate nuclear actin by acting both at the inner
and at the outer nuclear membranes.

Emerin seems to also play a critical role in the mechan-
ical regulation of MRTF-A activity. The maximum level of
MRTF-A nuclear accumulation after stimulation is lower in
cells grown on soft substrates, although the kinetics of
MRTF-A nuclear accumulation in general is not significant-
ly affected by substrate stiffness. However, experiments
with emerin-knock-out (EmdKO) fibroblasts revealed that
emerin is required for maximal MRTF-A nuclear accumu-
lation on the stiffest hydrogel substrate and glass cover-
slips. Similar pattern of MRTF-A nuclear translocation is
also observed in case of lamin A/C depletion.
Interestingly, emerin seems to be required for steady state
expression of MRTF-A/SRF target genes, but not for their
transcription activation. Expression of a constitutively
active form of MRTF-A bypasses the requirement for
emerin in MRTF-A/SRF-dependent gene expression and
reverses the focal adhesion defects evident in EmdKO fibro-
blasts. Nuclear lamina, and especially emerin, seems there-
fore to be specifically required for coupling ECMmechanics
to MRTF-A localization and activity in cells on stiff sub-
strates.69 However, the mechanism by which emerin oper-
ates here needs to be clarified, and it would be important to
study, if the ability of emerin to polymerize actin, either at
the INM or the ONM plays a role here.

The LINC complex and MRTF-A/SRF
complex regulation

The linker of nucleoskeleton and cytoskeleton (LINC) com-
plex has also been implicated in MRTF-A regulation. LINC
complex is essential for mechanotransduction to the nucle-
us, because it provides a physical link between the cyto-
skeleton and the nuclear envelope.70,71 This is achieved
through the interaction between ONM proteins nesprins,
or KASH (named after Klarsicht, ANC-1 and SYNE1
homology) -domain proteins, which connect the nuclear
envelope to cytoskeletal elements, and INM proteins
SUN1/2 (Sad1 and UNC-84), which bind with lamins and
other components of the nuclear lamina.72 The LINC com-
plex structurally supports the nucleus and translates
mechanical cues and alterations in the extracellular
matrix into biochemical signals.73–76 Like lamin A/C and
emerin, the LINC complex has also been reported to be
required for nuclear actin polymerization upon cell spread-
ing, and consequently for MRTF-A-SRF activation during
this process.33 However, the LINC complex may also
impinge on MRTF-A activity also by controlling the
upstream signaling pathways (Figure 1(b)). In HeLa cells,
LINC complexes containing the Sun2 protein activate the
small GTPase RhoA, which is an established regulator of
actin cytoskeleton dynamics, thus affecting MRTF-A/SRF
complex activity.77 It is noteworthy that LINC proteins
SUN 1 and SUN2 that possess similar domain organization
and identical topology at the INM78 have been found to
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have opposing roles in regulating RhoA activity. SUN2 sig-
naling increases the pool of active RhoA. RhoA, in turn,
promotes focal adhesion assembly and initiates a MRTF-
A/SRF-dependent positive feedback loop. Sun1 antago-
nizes this network, probably by limiting the activity of
SUN2,77 although precise mechanisms need to be clarified.
Biochemically, SUN1 co-precipitates more avidly with
nesprins, and consequently incorporates more efficiently
into LINC complexes than SUN2 in HeLa cells under
normal growing conditions. Ectopic expression of the con-
stitutively active form of MRTF-A was found to increase
SUN2 expression and to flip cells into a state favoring
SUN2 LINC complex function. Interestingly, overexpres-
sion of a SUN1 mutant that is unable to form LINC com-
plexes is sufficient to reduce MRTF-A/SRF target gene
expression. This indicates that SUN1 operates also inde-
pendently of LINC complexes in repressing MRTF-A/
SRF. This may take place by regulating Lamin A/C and/
or emerin,79 but the mechanisms need to be clarified.

As a conclusion, many components of the nuclear
lamina have been implicated in MRTF-A/SRF regulation,
and this process seems to be especially important in
response to mechanical stimulation. At least in some
cases, the regulation seems to take place at the level of
nuclear actin polymerization, but further studies are
required to elucidate the mechanisms involved.

Crosstalk between MRTF and YAP/TAZ
transcriptional co-activators

In addition to the MRTF-A/SRF pathway, RhoA signaling
and mechanical stress also activate the transcriptional
response mediated by YAP/TAZ, which are downstream
effectors of the Hippo growth control pathway. The core
Hippo-pathway consists of a kinase cascade of MST1/2
and Lats1/2, which regulate phosphorylation, and thus
subcellular localization and stability of YAP/TAZ tran-
scription coactivators. In the nucleus, YAP/TAZ interact
with the TEA domain (TEAD) transcription factor family
to regulate expression of a wide variety of genes linked
with cell migration, proliferation, and survival (reviewed
in Meng et al.80). Interestingly, mechanical cues from the
cytoskeleton have been identified as important regulators
of YAP/TAZ activity and these regulatory mechanisms
partly recapitulate those that control MRTF family proteins.
Like MRTFs, YAP/TAZ localize to the nucleus upon RhoA-
induced cytoplasmic actin assembly, although the mono-
meric/filamentous actin ratio does not seem to play a role
in controlling YAP/TAZ activity. Regulation via mechani-
cal cues acts independently of the Hippo cascade.81,82 In
addition, MRTFs and YAP/TAZ may functionally interact
to coordinate transcriptional responses to various extracel-
lular stimuli. For example, activation of both MRTF-A and
YAP/TAZ pathways is required for transcriptional control
of RhoA-regulated genes as well as for cell proliferation.83

In support of this idea, MRTF is enriched at genomic loci
containing TEAD-binding sequences.20 On the other hand,
YAP-TEAD target gene sets include many genes earlier
determined as MRTF/SRF targets, and these genes contain
binding sites for both MRTF/SRF and YAP/TEAD. In line

with this, MRTF and YAP have been shown to function in a
mutually dependent manner in cancer-associated fibro-
blasts (CAFs). MRTF and YAP could each indirectly acti-
vate (or inhibit) the other through their ability to affect actin
cytoskeleton dynamics.84 However, YAP has also been
suggested to physically interact with MRTF, and this inter-
action linked to recruitment of the NCOA3 transcriptional
coactivator to enhance YAP-TEAD target gene expression,
required in vitro for LPA-induced cancer cell invasion and
in vivo for the metastasis of breast cancer cells.85

As discussed above, nuclear actin plays a critical role in
regulating MRTF-A activity,25,32 and a recent study suggest
that nuclear actin, in its filamentous form, could regulate
YAP/TAZ activity as well. The SWI/SNF chromatin remod-
eling complex has previously been reported to associate with
actin filaments in vitro.86 The Piccolo laboratory has demon-
strated that at highmechanical stress, nuclear actin filaments
interact with AT-rich interactive domain-containing protein
1A (ARID1A) containing SWI/SNF complexes. This antag-
onizes the interaction between ARID1A-SWI/SNF and
YAP/TAZ, allowing YAP/TAZ to bind TEAD to activate
transcription.87 These studies demonstrate that MRTF-A is
not the only transcription factor regulated by nuclear actin.
Further studies are required to reveal the mechanisms
involved, as well as to identify potential other transcription
factors that respond to nuclear actin dynamics.

Nuclear actin in gene expression

In addition to regulating the transcriptional activity of the
MRTF/SRF and YAP/TAZ-TEAD complexes, actin has also
been linked to a number of other processes that regulate
gene expression. Actin is a well-established component of a
variety of chromatin-modifying and remodeling com-
plexes. It has been linked to ATP-dependent chromatin
remodeling complexes such as INO80, SWR1, and SWI/
SNF (reviewed in Kapoor and Shen88 and Klages-Mundt
et al.89). The interactions with the actin-related proteins
(Arps) keep actin monomeric in these complexes.90,91

Recent structural and functional studies have also started
to reveal how actin operates in these complexes, and for
example in the Ino80 chromatin remodeling complex, a
module containing actin, Arp4 and Arp8 is involved in rec-
ognizing the extranucleosomal linker DNA.92 Actin also
associates with all three RNA polymerases: Pol I,93,94 Pol
II,95 and Pol III,96 and has been linked to transcription-
related processes from pre-initiation complex assembly97

to transcription elongation.98–100 Analysis of genome-wide
actin-chromatin interactions supports the wide role of actin
in transcription, and has revealed that actin binds with
essentially all transcribed genes in Drosophila ovaries. On
most genes, actin is found near the transcription start site
(TSS) together with RNA polymerase II, and on highly
expressed genes, these proteins are also found on gene
bodies. Generally, actin seems to have a positive effect on
transcription. Decreasing available nuclear actin levels by
inhibiting nuclear import of actin44 or by polymerizing
actin to stable filaments101 attenuates transcription. As
mentioned above, a similar phenomenon is also observed
upon activation of the mechanosensitive complex of
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non-muscle myosin II and emerin, which leads to
decreased nuclear actin by local actin polymerization.68

Nuclear actin levels are also decreased upon quiescence,
and this is linked to reduced global transcription activity.102

Finally, decreased nuclear actin levels lead to transcription-
al defects also in vivo. Mutants of the nuclear actin import
receptor, RanBP9 (Drosophila ortholog of Importin-9), dis-
play reduced nuclear actin. These RanBP9 mutant flies lay
fewer eggs than control flies, and RNA-seq analysis
revealed decreased expression of chorion genes in the
mutant flies. Mechanistically, the RanBP9 deletion leads
to decreased binding of both actin and Pol II to the chorion
genes, which are required for the eggshell formation.103 The
molecular mechanisms by which nuclear actin affects tran-
scription are still largely unclear. In the future, it will be
important to decipher these mechanisms in order to under-
stand how nuclear actin dynamics impinges on both gene
specific (for example MRTF/SRF and YAP/TAZ-TEAD
target genes) and general transcription.

Conclusion

It has become apparent that the “nucleoskeleton,” in addi-
tion to providing a structural framework for nuclear func-
tions, also regulates different signaling pathways,
modulating the activity of numerous transcription factors,
and thereby contributes to key cell fate decisions. Several
components of the nucleoskeleton have emerged as impor-
tant regulators of the MRTF-A/SRF pathway, and this
seems to constitute a critical mechanism to sense and main-
tain the mechanical balance in the cell by appropriate con-
trol of cytoskeletal gene expression. Not too surprisingly,
this mechanism is impaired in many diseases, such as lam-
inopathies, necessitating deeper understanding of the
mechanisms involved. Future studies are needed to reveal
the exact mechanisms by which the nucleoskeletal compo-
nents impinge on MRTF-A/SRF activity. Although several
mechanisms may exist, it is also tempting to speculate that
many of these may converge at the level of nuclear actin.
While the regulation of cytoplasmic actin polymerization
has been extensively studied, nuclear actin has only recent-
ly been shown to polymerize (reviewed in Grosse and
Vartiainen104). Consequently, this process is still relatively
poorly understood, and for example the mechanisms by
which emerin and LINC complex33 participate in nuclear
actin polymerization remain unclear. Beyond MRTF-A/
SRF, further studies are also required to reveal how the
nucleoskeleton actually operates in the nucleus to control
important nuclear processes, such as transcription. If the
nucleoskeleton is a “dynamic network of networks,”4 we
must not restrict our analysis only to its individual compo-
nents, but analyze the system as whole.
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