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Abstract
Microtubules are cytoskeletal elements known as drivers of directed cell migration, vesicle

and organelle trafficking, and mitosis. In this review, we discuss new research in the lens

that has shed light into further roles for stable microtubules in the process of development

andmorphogenesis. In the lens, as well as other systems, distinct roles for characteristically

dynamic microtubules and stabilized populations are coming to light. Understanding the

mechanisms of microtubule stabilization and the associated microtubule post-translational

modifications is an evolving field of study. Appropriate cellular homeostasis relies on not

only one cytoskeletal element, but also rather an interaction between cytoskeletal proteins as well as other cellular regulators.

Microtubules are key integrators with actin and intermediate filaments, as well as cell–cell junctional proteins and other cellular

regulators including myosin and RhoGTPases to maintain this balance.
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Introduction

The cytoskeleton is a structure that helps maintain
cell shape,1–6 organizes and transports organelles,1,7–12

provides mechanical support,1,5,13–16 and allows for cell
division and movement.2,17–20 Amongst these cytoskeletal
elements, microtubules specifically are known regulators
of directional cell migration,21–26 vesicle and organelle
trafficking,8,27,28 and mitosis.29–32 These polarized
hollow cylinders are composed of a-tubulin and b-tubulin
heterodimers and nucleated at the microtubule
organizing center at their minus ends, with the plus ends
growing outward.33–35 Movement along microtubules
to allow for trafficking and placement of cellular contents
is directed by molecular motor proteins kinesins and
dyneins, with kinesins moving toward the microtubule
plus end and dyneins moving toward the microtubule
minus end.27,36–40

Microtubules are characteristically defined by a constant
cycling between growing and shrinking referred to as
dynamic instability.41–44 Subpopulations of microtubules
can be stabilized by post-translational modifications
including acetylation45–53 or detyrosination48,49,54 as well
as their interactions with microtubule-associated proteins

(MAPs).55–58 This stabilization of microtubules is important
for several cell processes, with acetylated microtubules
found at the leading edge of actively migrating cells assist-
ing in directional migration.54 Acetylated microtubules are
also the foundation of primary cilia, which are generally
referred to as the antennae of the cell, involved in sensing
the cellular environment, cell signaling, liquid flow, cell
polarity and multiple sensory organ functions including
smell, sound, and sight.45,47,59–63

Microtubules’ role in cell functioning greatly depends on
its ability to coordinate the functioning of other cellular
elements, including other cytoskeletal components.64–68

This has proven especially true in the field of cellular
migration, with microtubules shown to have both direct
and indirect effects on the actomyosin machinery
in motile cells, partly through regulation of their
stability.64–68 Newer research has also demonstrated that
microtubule interaction with cellular elements includes
not only cytoskeletal elements and cytoplasmic organelles,
but also cell–cell junctional proteins.68–72 Here, we look at
the expanding role of microtubules in cellular functions
and how microtubules may serve as a keystone of cytoskel-
etal coordination.
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Microtubules in the lens: A
developmental role

The lens is a tissue whose structure defines its function.
A transparent tissue devoid of vasculature and nerves, it
serves to focus light rays onto the retina to allow for vision.
While generally looked upon as a simple clear gelatinous
structure, the lens is actually defined by a precise cellular
arrangement within the lens epithelium and among the dif-
ferentiated fiber cells as well as between these two primary
cell types of the lens.73–76 It is this interaction between and
among these two different cell types that allows for the
generation and maintenance of a three-dimensional struc-
ture that can adapt and accommodate to allow for proper
vision.77,78 This precise cytoarchitecture’s establishment
and maintenance relies heavily on cytoskeletal signaling
networks in conjunction with cell–cell junctions.79–83 This
reliance on cell–cell interaction makes the lens an ideal
system for studying the processes of development, mor-
phogenesis, and regeneration.

Additionally, the lens is a structure that continues to
develop and grow throughout an organism’s life.84–86

Given that the lens lacks blood and nervous supply,87 it is
the structural architecture and cell–cell communications
that allow for this tissue to retain integrity across the
course of an animal’s life. The disruption of this system
leads to opacities such as cataracts, often accompanied by
changes in protein density, cellular depolarization, osmotic
disruption, and oxidative stress damage leading to cellular
degeneration, membrane disruption, and loss of tissue
architecture.88–92 This makes the lens a system also well-
suited to examining pathogenesis, at how cellular and
structural changes affect tissue development and mainte-
nance and how this tissue and those around it respond
to injury.

Despite early research into the presence and potential
role of microtubules in lens culture systems,93–96 very
little was understood about the role of microtubules in
the in vivo lens. In this early work, microtubules were
demonstrated to orient themselves along the axis along
which they would elongate and were found to be present
in both the epithelium and fiber cells,97 and were abundant
in elongated fiber cells.97 Early work from the Beebe lab
looked at lens epithelial cell elongation and found that
only certain microtubule inhibitors, namely colchicine, pre-
vented epithelial cells in culture from elongating.98

However, these in vivo studies looked at epithelial cells in
isolation under the influence of fetal calf serum to promote
differentiation rather than looking at how the microtubules
in actively elongating fiber cells may play a role in overall
lens development. Moreover, microtubule inhibitors
caused significant inhibition of lens cell elongation and cat-
aract56,99 and cataractous lenses were often found to dem-
onstrate loss of microtubules97 demonstrating that
microtubules must play some role in lens development
and maintenance.

More recently, a form of autosomal-recessive congenital
cataract was linked to a mutation in a mediator of micro-
tubule plus-end-directed vesicle transport, FYCO1, sug-
gesting that there is a role for microtubule trafficking in

proper lens development.56 FYCO1 is also associated with
autophagosomes, and thus microtubules’ role may also
involve trafficking of autophagosomes for organelle-free
zone formation,100 similar to its role in other sys-
tems.63,101–103 Additional studies have also suggested that
microtubules may play a role in lens fiber cell differentia-
tion related to their known function in transporting pro-
teins, membrane, and organelles.9

New findings using the embryonic lens as a model dem-
onstrate that microtubule isoforms are expressed abun-
dantly in both epithelial and fiber cells68,104 unlike other
cytoskeletal elements, in particular lens-specific intermedi-
ate filaments, that are greatly enriched in either epithelial or
fiber cell compartments.104–108 Instead, it is the post-
translational modifications that are highly localized in the
lens, with stable, acetylated microtubules concentrated in
newly differentiated fiber cells and the apical aspects of
lens equatorial epithelial cells.68 Disruption of dynamic
microtubules does not impede normal fiber cell elongation
and morphogenesis, but depolymerization of the stable
acetylated microtubules results in opacities.68 These opaci-
ties coincide with separation along the transition zone of
the apical surfaces of lens equatorial epithelial cells and
newly differentiating fiber cells at the epithelial-fiber inter-
face (EFI),68 revealing a requisite role for the stable micro-
tubule population in lensmorphogenesis. In addition, these
studies demonstrated that loss of acetylated microtubules
resulted in aberrant directionality of movement of the ante-
rior tips of lens fiber cells as they elongated, as well as
dysregulation of actin organization along lateral cell–cell
borders of both lens epithelial and fiber cells and increased
activation of myosin.68 These studies using the lens as a
model system both reinforce previously known functions
of microtubules, while also providing greater insight into
the developmental process as a whole and how cytoskeletal
elements’ interactions and interrelation underlie crucial cel-
lular processes.

Microtubule stability and dynamics:
Expanding understanding of roles

Microtubules are traditionally characterized by their prop-
erty of dynamic instability41–44 (Figure 1) as described in a
variety of cell populations including brain, kidney, and cell
lines. However, tubulin itself is a highly modifiable protein,
subject to a variety of post-translational modifications,
including detyrosination,109,110 glutamylation,111,112 poly-
gyclation,113 acetylation,114,115 and phosphorylation of
serine112,116 and tyrosine117 residues. Many of these have
been examined in brain tissue, which greatly relies on
axonal plasticity, with dynamic growing and shrinking
and directionality, as well as incorporation of a neurofila-
ment network as an essential cytoskeletal component.
These modified forms of tubulin are generally found to
accumulate in the subpopulation of stabilized microtubules
within a cell48,118–121 (Figure 1), as demonstrated in brain,
kidney, ovary, intestine, and fibroblast cells. These post-
translational modifications and changes in microtubule sta-
bility also provide several alterations in terms of microtu-
bule functioning including microtubule interaction with
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other cytoskeletal elements122,123 as well as microtubule
roles in cellular processes such as morphogenesis48,124,125

including brain development and regeneration,126 barrier
function127,128 of the epidermis and vasculature, cytokine-
sis,129 and cell migration130 as described in multiple sys-
tems including neurons and fibroblasts.

Early work initially demonstrated the presence of a
distinct stable microtubule population131,132 that proves
resistant to depolymerization.133,134 From the beginning,
stability was linked to differences in MAPs135 as well as
post-translational modification.49,110 In multiple systems,
both acetylation as well as detyrosination have been
shown to correlate with microtubule stability.49,118,136,137 It
has been difficult to identify whether the posttranslational
modifications are the cause of increased stability or a con-
sequence of stable microtubules being a longer lived
population due to prior modification such as end cap-
ping.49,121,138 Tyrosination or detyrosination involves the
removal or re-addition of a tyrosine residue on the
C-terminus of a-tubulin.48 Detyrosination is increased
artificially when microtubules are exposed to stabilizing
treatments54,139 and detyrosinated microtubules show
resistance to depolymerization by microtubule antagonistic
drugs,137 preventing microtubule disassembly by blocking
interaction with microtubule depolymerizing motor pro-
teins.140,141 These detyrosinated microtubules have special-
ized organization and distribution in both morphogenesis
and cellular migration. In migrating cells, those cells
responsible for leading wound healing have been shown
to be rich in detyrosinated microtubules and are responsi-
ble for appropriate orientation of migration.54 Additionally,
the presence of detyrosinated microtubules has been linked
to morphogenetic change and differentiation.142–147 The
distribution of detyrosination may act as a cellular cue to
help direct cellular polarity.148 More recent work has shown
that tyrosination/detyrosination of tubulin impacts other
cellular functions, including interaction of microtubules
with microtubule plus end tracking proteins50,140 as well
as molecular motors, such as kinesin-1.149 As will be dis-
cussed further later, these detyrosinated microtubules have
also been shown to preferentially interact with intermedi-
ate filaments, specifically vimentin, and help to localize
vimentin.150

Although detyrosination has been the most studied
tubulin modification, acetylation has also been greatly
linked to microtubule stabilization. Acetylated microtu-
bules are highly enriched in certain cellular structures
including the mitotic spindle, centrioles, and cilia51

as well as being highly accumulated in stable microtubule
subpopulations.118,151–153 Changes in acetylation have been
linked to several disease states including Huntington’s,154

polycystic kidney disease,155 Alzheimer’s,156 and
Parkinson’s.157 Acetylated microtubules have been shown
to play a role in cellular polarity52,158,159 as well as contact
inhibition of proliferation and cellular adhesion.160 Recent
work also shows a functional role for acetylated microtu-
bules in lens fiber cell morphogenesis, elongation, and
directionality.68 Acetylated microtubules also show differ-
ential interactions with microtubule motors51 and organ-
elles.161–163 Interestingly, formin proteins, traditionally
known to function as actin nucleators, have been shown
to act as microtubule stabilizers and help control microtu-
bule acetylation.164,165 Formins promote microtubule stabi-
lization by promoting end capping166 while also promoting
expression of the tubulin acetylation protein a-TAT1
gene.167,168 The overlapping functions of formin proteins
on both actin and microtubule proteins demonstrate a
potential coordinate activity between cytoskeletal elements
in cellular functioning.167

Beyond these two better studied post-translational mod-
ifications associated with microtubule stability, newer work
has also investigated the roles for polyamination and trans-
glutamination in microtubule stability.169 This was exam-
ined in neuronal axons, where stable microtubules serve as
the structural framework and tracks for axonal transport,
while dynamic microtubules are more linked to reorgani-
zation and repair during neurite growth and remodel-
ing.170–172 Transglutaminase activity and polyamine levels
were known to increase with brain maturation and neuro-
nal differentiation,173 and were found to be modulators of
microtubules by promoting stability.53,169 Further research
will likely further develop our understanding of how post-
translational modifications and their link to microtubule
stability impact microtubule function. New approaches
may help to differentiate between microtubule posttransla-
tional modification and microtubule stability to better

Figure 1. Microtubule stabilization and dynamic instability. Microtubules are typically characterized by cycles of polymerization and depolymerization, termed

dynamic instability (b, c). However, some subpopulations of microtubules can be stabilized, a process that involves GTP capping of terminal a-tubulin monomers and is

promoted by microtubule associated proteins (MAPs), formins and microtubule plus-end binding proteins (þTIPs) (a, b). This stabilization can then give rise to post-

translational modifications of microtubules including acetylation and detyrosination (a).
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understand the differential roles these play in microtu-
bule functions.

In addition to the correlation between certain post-
translational modifications and microtubule stability, cer-
tain MAPs play a role in microtubule stability as well
(Figure 1). Among these are several structural MAPs that
in binding to microtubules affect their stability and poly-
merization.174 In particular, all MAP1 proteins have been
associated with a stabilization function,58,175–177 with
MAP1B playing a larger role in modulating microtubule
stability and catastrophe depending on its phosphorylation
state.178–180 Other MAPs, including MAP4, also enhance
tubulin polymerization and stability, potentially by sterical-
ly blocking disassembly,180–182 again with phosphorylation
of the MAP regulating its activity.183–185 In addition to
these, tau, a MAP highly studied in neurodegeneration,
also promotes axonal microtubule stabilization,186–188 and
work has demonstrated that tau stabilizes a protofilament
conformation that favors the formation of microtubules,
and increases microtubule stability.189,190 Recent work has
shown that this tau binds at the interface between tubulin
heterodimers to promote stability.57,191

Microtubule plus end binding proteins (þTIPs) also
have a role to play in microtubule stability. Regulators of
prototypical þTIPs including CLIP-170, specifically a
family of proteins called CLASPs, have been identified as
microtubule stabilizers and also help to orient stable micro-
tubules toward the leading edge of migration.192–194 Other
þTIPs involved in microtubule stabilization include APC,
which has been shown to be necessary for axonal out-
growth.195,196 Additionally, end binding proteins, particu-
larly EB1, are involved in the formation of the
EB-stabilizing cap at microtubule plus ends.197–201

Formins, previously recognized as promoters of microtu-
bule stability, can also interact with þTIP proteins, includ-
ing EB1, APC, and CLIP-170, and these interactions may
also serve to promote microtubule stabilization down-
stream of Rho activity.152,202,203 Interestingly, new research
also demonstrates a role for certain microtubule motor pro-
teins in promoting microtubule stability as well204 and that
in particular kinesin Kif4 can induce microtubule stability
by interactions with the formin-EB1 microtubule stabiliza-
tion pathway.205

Importantly, this subpopulation of stable microtubules,
as opposed to those more characteristic dynamically unsta-
ble microtubules, has differing functions. In many cell
types, there is a characteristic distribution of stable versus
dynamic microtubules.45,68,129,206 Partly, this works to help
establish cellular polarity, with stable microtubule popula-
tions generally found at the cell front versus dynamic
microtubules more likely to be present at the rear of the
cell.48,54 Further work to better understandmicrotubule sta-
bility and its various roles in the cell is essential to global
understanding of microtubule function.

Microtubules as a keystone of cytoskeletal
coordination

The cytoskeleton is comprised of three major subtypes—
microtubules, actin, and intermediate filaments—that

have distinct functional and morphological properties
that are important for their individual functions.
However, despite these distinctions, all three interact to
form a complex network necessary for proper cell function-
ing. Dynamic interactions between these groups are critical
for multiple cellular processes as well as maintaining cyto-
plasmic homeostasis. These interactions are just the begin-
ning of our understanding of how microtubules, through
interaction with other cellular elements, play critical roles
in a variety of cellular functions.

Previous work has shed light on various coordinate roles
for actin and microtubules, with their interaction being crit-
ical for such processes as cell division, migration, vesicle
and organelle transport, axonal growth, and wound heal-
ing67,207,208 (Figure 2). These roles often rely on actin’s abil-
ity to guide as well as stabilize microtubules.209 Previous
work has shown that microtubules can grow along actin
bundles210,211 and when actin becomes disorganized,
microtubular growth can be inhibited, with redistribution
and misdirectionality.21,195,212,213 More recent studies show
that in turn microtubule depolymerization causes upregu-
lation and reorganization of the actin cytoskeleton,68 imply-
ing a mutual regulatory process.

One of the more studied aspects of this interaction has
been in the field of growth cone steering and dynamics. In
growth cones, actin filaments exhibit dynamicity, with a
constant cycle of polymerization and severing, that is nec-
essary for rapid axonal outgrowth.214–216 It is this instability
of the actin cytoskeleton that is able to facilitate microtubule
extension.217 Microtubules in growth cones have been pri-
marily linked as guidance sensors in growth cones control-
ling directionality as well as forward progression.218–221

For this to occur, F-actin networks provide tracks for
microtubule growth, while actin dynamics allow for
targeted distribution of microtubules to help oversee direc-
tionality.222–226

Actin filaments and microtubules can be crosslinked by
direct linkage mediated by crosslinking proteins227,228 or
indirectly via protein complexes or signaling molecules.
Direct linkage by crosslinking proteins is usually consid-
ered to be static interactions, whereas indirect interactions
mediated by motor protein complexes or signaling mole-
cules are thought to be dynamic in nature.229 Some of the
key mediators of these interactions are MAPs, which come
in multiple types. Among these are structural MAPs,
including MAP 1, MAP 2, MAP4 and tau, that bind along
the surface of microtubules and enhance stability and
assembly, motor proteins such as dyneins and kinesins
and microtubule plus end tracking proteins (þTIPs) that
interact with the growing (plus) end of microtubules as
well as other protein complexes.229

For many structural MAPs, their expression is develop-
mentally regulated, including MAP1, MAP2, and tau230–235

particularly in neurons. Previously, it was shown that these
proteins indirectly regulated actin by modulating microtu-
bule dynamics and can act as structural links to hold these
filaments together.236–238 However, studies have also
shown that these proteins can act to bundle as well as cross-
link actin filaments independent of their actions on micro-
tubules, with differential abilities among different classes of

Logan and Menko Microtubules, morphogenesis and cellular interactions 1243
...............................................................................................................................................................



structural MAPs.229,239,240 The properties of these MAPs,
including their regulation and interaction with cytoskeletal
proteins, are also impacted by post-translational modifica-
tions, similar to microtubules themselves.241,242

Additionally, tau-mediated changes in actin organization
have been linked to the development of neurodegenerative
disorders such as Alzheimer’s and taupathies.243 Future
research to better understand the in vivo role that these
proteins play in dynamic coordinated interactions is
needed to better understand the mechanisms of
their function.

þTIPS are the other major subgroup of microtubule
interacting proteins that can regulate crosslinking with
other cytoskeletal proteins. These proteins can interact not
just with microtubules but also actin filaments and regula-
tory kinases, which can induce microtubule-actin crosslink-
ing.195,196,223,244–248 They have been linked as mediators of
actin-microtubule interaction for growth cone guidance

and regulated distribution of þTIPS can promote interac-
tion of F-actin and microtubules that allows for effective
growth cone steering.244,246,247,249–251 Some of the more
studied of these þTIPS include CLASP, which binds actin
and microtubules through a shared domain247 and whose
loss results in both disrupted actin morphology as well as
impaired axon outgrowth.250 Additionally, þTIPS such as
APC can act as microtubule stabilizers as discussed above,
which can promote their outgrowth.195,196 These þTIPS do
not only act on microtubules, but also may have a role in
microtubule-F-actin coupling.252,253 Other studies have
looked at end-binding (EB) proteins as regulators of micro-
tubule dynamics254,255 and studies within the lens demon-
strate a coordinate localization between EB1 and acetylated
stable microtubules.68 These proteins are also important
scaffolding proteins that can recruit actin modulators as
well as MAPs that alter actin dynamics.175,245,256–258 Of
note, one of the major classes of proteins known to interact

Figure 2. Microtubules as a cornerstone of cellular interaction. Microtubules interact with a variety of cellular components (a–g). Interaction with actin is important for

growth cone dynamics, cell division, and cell migration (c) and is facilitated by microtubule-associated proteins (MAPs) (a) and microtubule plus-end binding proteins

(b). Interactions with myosin have been seen in collective migration and lens fiber cell elongation (d). Intermediate filaments, including vimentin, interact with micro-

tubules for organelle positioning, wound repair, and cellular migration (e). Cadherins, especially N-cadherin, have been shown to interact with microtubules as well as

myosin and RhoGTPases (d, f, g). Cadherins and microtubules reciprocally regulate one another’s stability (f) and the interaction of cadherins with microtubules as well

as myosin and RhoGTPases is important for cell migration and lens morphogenesis (d, f, g). RhoGTPases are also direct interactors with microtubules for processes

such as lens fiber cell elongation and migration as well as Contact Inhibition of Locomotion.
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with both microtubules and actin cytoskeletal elements is
spectraplakins.259–264 Some of these essential interactions
are facilitated by spectraplakin binding to cytoskeleton
through interaction with end binding proteins such as
EB1.244–265 Just as importantly, þTIPS can also act as
microtubule-actin uncouplers, including LIS1.266

Newer evidence also expands the potential role ofþTIPS
in terms of its role in actin functioning, including serving as
sites that facilitate F-actin nucleation. This is likely related
to interactions between APC and mDia, a formin linked to
actin remodeling267–269 and also an influencer of microtu-
bule stability.153,270,271 Future research will likely reveal
expanding ways by which different cytoskeletal elements
impact one another and evolving roles that microtubule-
actin crosslinking plays in a variety of cellular processes.

It is not only actin that has been shown to interact with
microtubules, but also certain intermediate filament sub-
types, in particular, vimentin (Figure 2). In earlier work, it
was demonstrated that distribution of vimentin corre-
sponded to microtubule distribution272 and depolymeriza-
tion of microtubules causes retraction of the vimentin
network to the perinuclear region of the cell.273,274

Additionally, studies suggest that vimentin as well as
other intermediate filaments, including neurofilaments,
can be rearranged by microtubule-associated motor pro-
teins, kinesin, and dynein, implying that vimentin distribu-
tion relies on microtubule transport.275–280 Further research
demonstrates that vimentin filament transport is depen-
dent on microtubules and their acetylation state but not
impacted by microtubule dynamics or polymerization.281

Additionally, these studies also showed that vimentin
motility was also linked to interactions between vimentin
and polymerized actin that may in turn be impacted by
microtubules.281–283

This interaction between microtubules and vimentin is
necessary for several cellular processes. This includes
proper positioning of organelles requires the combined
efforts of microtubules as well as intermediate filaments
such as vimentin and neurofilaments.284–287 Studies in a
mock cataract surgery model demonstrated that collapse
of intermediate filaments, and in particular, vimentin, fol-
lowing microtubule depolymerization results in impaired
wound closure.288 These studies, as well as others, demon-
strate a role for vimentin-microtubule interaction in cellular
migration. Vimentin-null fibroblasts demonstrate impaired
locomotion and it is possible that normal locomotion relies
on the associations between vimentin and MTs and their
molecular motors to provide for rapid turnover and reor-
ganization of the vimentin network.276,289,290 Recent work
on astrocytes has shown that APC, already known to inter-
act with microtubules and control their organization in
migrating astrocytes291–293 is necessary for microtubule
interaction with intermediate filaments in these cells.294

More importantly, it also controls the microtubule-
dependent rearrangement of IFs during astrocyte migra-
tion, as well as having a role in vimentin organization in
other cell types as well.294

Beyond interaction with cytoskeleton, microtubule func-
tioning through reciprocal regulation with cell–cell adhe-
sion molecules is becoming better understood. Both

N-cadherin and microtubules have been demonstrated
to be critical in regulating cellular migration
processes.38,66,67,70,72,295–299 In many instances, the cell–cell
adhesions and cytoskeleton have been shown to work coor-
dinately in regulating these processes, with classical and
non-classical cadherins traditionally associated with the
actin and intermediate filament elements of the cytoskele-
ton. However, there are several insights into how micro-
tubules and cadherin junctions may interact to function
together in cellular processes.245

Microtubules have been shown to directly interact with
cadherin junctions in other systems300,301 and potentially
regulate the presence of cadherin junctions at the cell sur-
face for cell–cell contact302,303 (Figure 2). In addition to this,
microtubule depolymerization has also been shown to dis-
rupt integrity of cadherin junctions as well.304–306 This
effect is not limited solely to microtubule depolymerization
but also applies to impedance of microtubule dynamics or
overstabilization.303 It is possible that the function micro-
tubules play in maintaining cadherin junction integrity is
intrinsic to the role that microtubules play in regulating
vesicle transport, with N-cadherin having been shown to
traffic along microtubules.307,308 Clearly, there is a depen-
dence of N-cadherin on microtubules for proper function.

Conversely, cadherin junctions have also been shown to
regulate microtubules. Microtubule polymerization has
been linked to interaction with the actin cytoskeleton for
guidance, with cadherin junctions playing roles in anchor-
ing actin bundles at the cell surface.309,310 Additionally, cad-
herins have been shown to also play direct roles in
recruiting microtubules to sites of cell–cell contact.303

Microtubules have been shown to anchor to cadherin junc-
tions304,305 and p120 catenin, an atypical catenin found at
cadherin junctions, has also been demonstrated to directly
interact with microtubules.311,312 These interactions can
play a role in regulating microtubule dynamics by either
increasing or decreasing microtubule stabilization.69,313–315

New work has shed insight into how interaction between
cadherins and microtubules, along with actin, may be crit-
ical in how cells sense guidance cues and underlie mecha-
noresponsive behavior316,317 and suggest that polarization
of cell–cell junctions as well as the actin cytoskeleton that is
crucial cellular processes including migration and angio-
genesis are dependent on microtubule dynamics as well
as RhoGTPases.318

It is therefore not surprising that systems such as the lens
would have interactions between the microtubule cytoskel-
eton and N-cadherin junctions. Recent findings show
that microtubules, especially acetylated microtubules, and
N-cadherin junctions interact strongly in the cortical fiber
cell region, the site of active lens fiber cell elongation, and
that stable microtubules are necessary for appropriate
localization and likely functioning of N-cadherin junc-
tions.68 However, loss of N-cadherin does not disrupt the
presence and assembly of these acetylated microtubules,
nor does the presence of these microtubules alone prevent
dysmorphogenesis demonstrating the necessity of both
proteins.319

Since the loss of either N-cadherin or stable microtu-
bules also causes alteration in actin distribution as well as
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an aberrant overactivation of myosin II, it is likely that the
regulation of the actomyosin network plays a critical role in
N-cadherin and microtubule coordinate activity within the
lens68,319 and plays a part in the process of lens fiber cell
elongation and migration, given active myosin’s role in cell
contractility and movement.79,320–323 Microtubule function-
ing therefore relies not just on interactions with other cyto-
skeletal proteins but also further expands to include other
cellular networks (Figure 2).

Myosin II activity has been shown to serve as a regulator
of both microtubule stability and N-cadherin distribu-
tion,64,295,324–326 both of which have proven necessary for
lens fiber cell elongation. Myosin activation has been
shown to antagonize microtubule acetylation, with the con-
verse also proven true.64 Additionally, myosin activity has
been shown to weaken the ability of cells to migrate coor-
dinately when intercellular junctions are compromised; a
block in myosin activity can rescue collective migration
even when cadherins are lost.325 Beyond this general role
in the process of collective migration, active myosin II has
been shown to regulate the concentration of cadherin junc-
tions at cell–cell interfaces326,327 and this myosin activity
may depend on dynamic microtubules.303 This may explain
the stable microtubule dependent, myosin activity mediat-
ed N-cadherin distribution in the lens epithelium and
fiber cells.

The roles myosin may play in relation to microtubules
and N-cadherin are likely also dependent on actin regula-
tion. While myosin can be activated by myosin light chain
kinase, its activity is also regulated by Rho-dependent
kinase (ROCK). Through this downstream regulation,
ROCK has been shown to mediate effects on the stability
of microtubules65 and the distribution of N-cadherin326

(Figure 2). In addition to this downstream regulation of
myosin activity, RhoGTPases also play a large role in mod-
ulating N-cadherin and microtubule functions.

Interestingly, the regulation of the stabilization of
microtubules has been linked to the RhoGTPase
family.152,153,270,328–333 Multiple reports have shown that
RhoA can promote the stabilization of microtubules,270,328

while Rac1 can inhibit the destabilization of microtu-
bules.334–336 The active growth and stabilization of micro-
tubules have been shown to promote activation of Rac1 and
lamellipodial protrusions,315,337,338 creating a potential
feedback loop that allows for cellular migration which
may tie microtubules to Rac1’s role in lens fiber cell elon-
gation and migration.

Rac1 involvement in lens fiber cell elongation and
migration has been previously documented,82 with lens
conditional deletion of Rac1 preventing elongation of lens
fiber cells along both the posterior lens capsule and the
epithelial fiber cell interface and is now confirmed in our
N-cadherin knockout system. RhoGTPases are also linked
to regulation of cadherin cell–cell adhesion.339–345 It is likely
therefore that there may exist an integral role for the mul-
tifold regulation of these RhoGTPases by cell–cell adhesion
molecules, the cytoskeleton as well as signaling cascades
including FGF346 that allows for proper lens fiber cell elon-
gation and migration, which may explain the high associ-
ation of N-cadherin junctions and microtubules

particularly in the area of fiber cell elongation.68 This inter-
connectivity may also provide insight into the effects of
microtubule depolymerizing agents on the stability and
solubility of N-cadherin junctions within the lens.

The RhoGTPases’ role in migration has also been greatly
tied to Contact Inhibition of Locomotion (CIL), a process
that relies on both cadherins and microtubules as media-
tors. In CIL, N-cadherin-mediated cell–cell contact forma-
tion regulates RhoGTPase activity, causing a switching in
Rac1 versus RhoA localization and activation within the
cell that can help determine the directionality of further
motion.296–298,347–349 This requires an alteration of cell
polarity, mediated by RhoA, Rac1, and ROCK regulation
of microtubule dynamics, causing a switch in the localiza-
tion of stable microtubules to lead the new directionality of
motion.350–352 Given the importance of this mechanism for
collective movement of cells during development, it is pos-
sible that this interplay between N-cadherin and microtu-
bules mediated through RhoGTPases may be a critical part
of overall lens morphogenesis.

Conclusions

Microtubules are a critical aspect of the cellular cytoskele-
ton. Newer studies in the lens have given insight into the
continuously evolving roles of microtubules, both dynamic
and stable subpopulations, in a variety of cellular process-
es. The dynamic versus stable microtubular interplay is an
evolving field that leads to a deeper look into how micro-
tubule modifications and interaction with other cellular ele-
ments also are integral in cellular functioning. More and
more research points to the cytoskeletal network of the
cell as highly interactive. Microtubules are becoming
more and more understood as a key integrator with other
cytoskeletal proteins including actin and intermediate fila-
ments, as well as cell–cell junctional proteins and other cel-
lular regulators including myosin and RhoGTPases. For
appropriate cellular homeostasis, all of these elements
must interact in precise balance, with microtubules playing
an integral role in this balance.
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