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Abstract
As a new optical coherence tomography (OCT) modality, OCT angiography (OCTA) provides

a noninvasive method to detect microvascular distortions correlated with eye conditions.

By providing unparalleled capability to differentiate individual plexus layers in the retina,

OCTA has demonstrated its excellence in clinical management of diabetic retinopathy,

glaucoma, sickle cell retinopathy, diabetic macular edema, and other eye diseases.

Quantitative OCTA analysis of retinal and choroidal vasculatures is essential to standardize

objective interpretations of clinical outcome. Quantitative features, including blood vessel tortuosity, blood vessel caliber, blood

vessel density, vessel perimeter index, fovea avascular zone area, fovea avascular zone contour irregularity, vessel branching

coefficient, vessel branching angle, branching width ratio, and choroidal vascular analysis have been established for objective

OCTA assessment. Moreover, differential artery–vein analysis has been recently demonstrated to improve OCTA performance for

objective detection and classification of eye diseases. In this review, technical rationales and clinical applications of these

quantitative OCTA features are summarized, and future prospects for using these quantitative OCTA features for artificial intel-

ligence classification of eye conditions are discussed.
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Introduction

As one part of the central nervous system, the retina is a
neurovascular complex network located at the back of the
eye. Color fundus photography has provided valuable
information for eye disease detection and treatment assess-
ment, but the spatial resolution and image contrast are lim-
ited to reveal subtle distortions in early stages of eye
diseases. Scanning laser ophthalmoscopy1,2 and adaptive
optics3–5 imaging systems provide enhanced image resolu-
tion, and fundus angiography6,7 allows better contrast of
retinal vasculatures. However, these imaging approaches
lack sectioning capability to differentiate individual retinal
neural layers and vascular plexuses. It is known that dif-
ferent diseases and stages can target retinal neurons and

vasculatures in different ways. Given the unprecedented
capability to differentiate individual functional layers, opti-
cal coherence tomography (OCT)8 has been extensively
employed for depth-resolved examination of morphologi-
cal abnormalities caused by eye diseases.9–11

As a new OCT modality, OCTangiography (OCTA) pro-
vides a noninvasive method to differentiate individual
plexus layers in the retina.12,13 Since its first commercial
product in 2014, OCTA has quickly demonstrated its excel-
lence in clinical management of diabetic retinopathy
(DR),14,15 glaucoma,16,17 sickle cell retinopathy (SCR),18

age-related macular degeneration (AMD),19 and other eye
diseases. Quantitative OCTA analysis is essential to stan-
dardize objective interpretation of clinical outcomes.

Impact statement
OCT angiography (OCTA) provides a non-

invasive method to detect microvascular

distortions correlated with eye conditions.

Quantitative analysis of OCTA is essential

to standardize objective interpretations of

clinical outcome. This review summarizes

technical rationales and clinical applica-

tions of quantitative OCTA features.
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Multiple OCTA features have been recently developed for
quantitative analysis of vascular distortions due to eye con-
ditions. In the following sections, technical rationales of
these quantitative OCTA features will be summarized.
Current status and future prospects of using OCTA features
for objective detection and artificial intelligence (AI) classi-
fication of eye diseases will be discussed.

Quantitative OCTA features

In this section, technical rationale of OCTA features, i.e.
blood vessel tortuosity (BVT), blood vessel caliber (BVC),
blood vessel density (BVD), vessel perimeter index (VPI),
fovea avascular zone area (FAZ-A), FAZ contour irregular-
ity (FAZ-CI), vessel complexity index (VCI), branchpoint
analysis (BPA), differential artery–vein (A–V) analysis,
flow analysis, and choroidal neurovasculature (CNV) anal-
ysis will be explained sequentially. To help the explanation
of quantitative OCTA analysis, Figure 1 illustrates major
procedures of quantitative feature extraction.

BVD

BVD, also named as vessel density (VD),21 vessel area
density,22 capillary density,23 or percent area of non-
perfusion,24 reflects the ratio of the image area occupied
by the blood vessels (Figure 1(b)). Eye diseases such as
DR,25,26 SCR,27,28 AMD,29,30 glaucoma,31,32 and vein occlu-
sion (VO)33,34 may involve vessel abnormalities, including
ischemia and drop out zones in retinal and choroidal vas-
culatures. Most of these diseases manifest at the capillary
level at early phases, which can be detected in OCTA. BVD
can be quantified as35

BVD ¼
Xn

x¼1; y¼1
Aðx; yÞXn

x¼1;y¼1
Iðx; yÞ

(1)

where A(x, y) represents the pixels occupied by the vessels,
and I(x, y) represents all the pixels in the OCTA image. In this
article, the OCTA image is assumed to be a square frame,
consisting of n� n pixels, and x and y correspond to the
horizontal and vertical coordinates of individual pixels.

If the skeletonized vessel map (Figure 1(c)) is used for
VD analysis, this feature is alternatively termed as vessel
skeleton density (VSD) or skeleton density.32 The VSD can

be quantified as36

VSD ¼
Xn

x¼1; y¼1
Sðx; yÞXn

x¼1;y¼1
Iðx; yÞ

(2)

where S(x, y) represents the pixels occupied by the vessel
skeleton and I(x, y) represents all the pixels in the OCTA.

BVC

BVC, also named as vessel diameter, vessel width, or vessel
diameter index,37 is used to quantify vascular dilation or
shrinkage due to eye conditions. BVC distortions have been
commonly observed in different retinopathies, such as
SCR35,38 and DR.39 The BVC can be calculated as the ratio
of the vessel area to the vessel length35

BVC ¼
Xn

x¼1; y¼1
Aðx; yÞXn

x¼1;y¼1
Sðx; yÞ

(3)

where A(x, y) represents the pixels occupied by the
vessels in the segmented vessel map (Figure 1(b)) and
S(x, y) represents the pixels occupied by the vessels in
the skeletonized vessel map (Figure 1(c)). In the
skeletonized map, the width of each vessel is one pixel.
Therefore,

Xn

x¼1; y¼1
Aðx; yÞ represents total vessel area,

and
Xn

x¼1;y¼1
Sðx; yÞ represents overall vessel length.

BVT

BVT35,38 is a measure of the degree of vessel distortion. In
normal condition, the blood vessels transport blood effi-
ciently, with a relatively smooth structure. However, in dis-
eased conditions,35,38–41 the transportation efficiency of
some blood vessels may be compromised due to distorted
structure. The tortuosity of each blood vessel can be quan-
tified by measuring the ratio of the geodesic distance to the
Euclidean distance35

BVT ¼ 1

n

Xn
i¼1

Geodesic distance between two
endpoints of a vessel branch i

� �

Euclidean distance between two
endpoints of a vessel branch i

� ��
0
BBB@

(4)

Figure 1. Feature extraction for quantitative OCTA analysis. (a) Representative OCTA image from a DR patient. (b) Segmented blood vessel map. (c) Skeletonized

blood vessel map (red) with segmented fovea (blue region) and FAZ contour (green curve). One representative vessel branch is highlighted in green with X and Y

endpoints identified with yellow dots. (d) Vessel perimeter map. (e) FD contour map. Source: Modified from Alam et al.20 (A color version of this figure is available in the

online journal.)
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where i represents the ith branch and n is the total number
of branches; Euclidian distance is the straight-line distance
between two end points of a vessel branch and geodesic
distance is the total curve length between two end points
(shown in Figure 1(c)).

VPI

VPI42 measures the ratio between overall contour length of
blood vessel boundaries (Figure 1(d)) and total blood vessel
area in the segmented vessel map (Figure 1(b)). VPI can
reflect vessel dropout or early ischemia,39,43 and has been
used to quantify OCTA images of DR43 and SCR.38 It can be
measured as follows35

VPI ¼
Xn

x¼1; y¼1
Pðx; yÞXn

x¼1;y¼1
Iðx; yÞ

(5)

where P(x, y) represents the pixels within the vessel perim-
eters, i.e. the overall contour length of blood vessel bound-
aries (Figure 1(d)), and I(x, y) represents all the pixels
occupied by the blood vessels, i.e. total blood vessel area
(Figure 1(b)).

FAZ

Foveal shape can be affected by eye diseases such as DR,44

SCR,38 and VO,45 due to parafoveal vessel drop out and
foveal ischemia. FAZ-A has been demonstrated as a sensi-
tive feature to differentiate severities of non-proliferative
diabetic retinopathy (NPDR).39 The FAZ-A is measured
by segmenting the FAZ (demarcated as a blue region in
Figure 1(c)) and calculating the total area using the follow-
ing equation35

FAZ� A¼
�
Area of single pixel ðin lm2Þ

�
Xn

x¼1; y¼1

Aðx; yÞ
� (6)

where A(x, y) represents the pixels occupied by the seg-
mented FAZ region.

FAZ-CI

FAZ-CI, also named as FAZ-circularity38 or FAZ acircular-
ity index,46 measures the structural irregularity of the
foveal shape.38 FAZ-CI distortions have been observed in
DR,46 AMD,47 SCR,35 and glaucoma.48 The FAZ-CI can be
quantified by calculating the ratio of the perimeter of the
FAZ-A to the perimeter of a reference circle with area iden-
tical to the FAZ35

FAZ � CI ¼
Xn1

x¼1; y¼1
Oðx; yÞXn2

x¼1;y¼1
Rðx; yÞ

(7)

where O(x, y) represents the pixels occupied by the perim-
eter of the FAZ (green demarcation in Figure 1(c)), R(x, y)

represents the pixels occupied by the perimeter of a refer-
ence circle with area identical to the segmented FAZ, n1
denotes the maximum number of pixels that encompasses
the perimeter of the FAZ, n2 denotes the maximum number
of pixels that encompasses the perimeter of the reference
circle, x and y denote the pixel coordinates with respect to
the perimeter of the FAZ or reference circle.

VCI

Fractal dimension (FD) has been used as a parameter to
quantify the VCI (Figure 1(e)). FD is commonly calculated
with the box-counting method in which a relationship is
established by the number of boxes (of a certain resolution)
that enclose the pattern in an image (Figure 1(e)).49 This
count is iteratively measured for different image scales.
The box-counting method is formalized as49

FD ¼ logNr

log r�1
(8)

where Nr is the number of boxes that encloses the pattern
by the scale of the image, r. Lacunarity (LAC) is a comple-
mentary parameter to FD and is a measure of rotational
inhomogeneity or the voids between vessel structures.50

LAC provides information regarding the distribution and
size of gaps in a binary image and is calculated using a
similar box-counting strategy as the FD.

BPA

It is well known that decreased efficiency in blood transport
can affect bifurcation in vascular structures.51 Quantitative
BPA, including both angle and width features (Figure 2),
has been recently demonstrated for objective OCTA classi-
fication of DR.52 For angle parameters, vessel branching
angle and child (also referred to as daughter) branching
angles (CBA1 and CBA2) are measured to quantify changes
in bifurcation.52 As shown in Figure 2, in order to deter-
mine the branching angles, the branchpoint (green dots,
Figure 2(b)) must first be determined, and then the vessel
endpoints (red dots, Figure 2(c)). For the application in
Figure 2, a radius of 0.097mm was empirically determined
and used to identify the vessel endpoints. It should be
noted that there are no strict guidelines; however, the
user should choose a radius that is large enough to contain
the region of interest and small enough to not overlap
with adjacent branchpoints. Furthermore, the application
was for a 6� 6 mm2 FOV, therefore for other FOV, i.e.
3� 3 mm2 or 8� 8 mm2, the user should adjust accordingly.
After identification of the vessel endpoints, using geometric
identities the branchpoint angles, including the overall
branching angle h, and the individual child angles a1 and
a2 (Figure 2(d)), are determined. Furthermore, an area of
approximately 0.157� 0.157 mm2 surrounding the vessel
endpoints was used to determine the width of each
vessel.52 Similarly, the area size for width measurement
should also be tailored to the specific application.

Utilizing the vessel widths, three width-based parame-
ters were determined, i.e. the vessel branching coefficient
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and child width ratios are calculated to measure the struc-
tural change of the vessels as a result of bifurcation52

VBC ¼ d21 þ d22
d20

(9)

CWRi ¼ di
d0

(10)

where d0 is the width of the parent vessel, d1 and d2 are the
widths of the child vessels, and i represents the ith child
vessel. As noted by Le et al.,52 due to ischemia and neo-
vascularization caused by DR, changes in vessel widths
and branching angles could be related to vascular remod-
eling. We presume that branch geometry could be well cor-
related with other OCTA features such as BVT or VPI.

Differential A–V analysis

Differential A–V analysis compares the changes in arteries
relative to the veins. Color fundus image analysis has
been demonstrated to guide A–V classification in OCTA
(Figure 3), showing improved sensitivity of OCTA detec-
tion of DR41 and SCR.35,38 For color fundus image guidance,
vessel nodes are identified as arteries and veins by evalu-
ating optical density ratio between red and green channels
of the fundus image.41 Once the source nodes have been
identified, a fundus A–V map is generated. Employing
image registration for the fundus and corresponding
OCTA images, a vessel tracking algorithm is implemented
to generate an A–V map in OCTA guided by the fundus
A–V map.41 In addition to the color fundus image guided
A–V differentiation in OCTA, OCT feature analysis guided

A–V differentiation53 and near infrared oximetry guided
A–V differentiation54 have been also demonstrated.

Flow analysis

Several parameters, including the flow index (FI),55 adjust-
ed flow index,24 flow void (FV),56 vascular connectivity,57

and total retinal blood flow (TRBF), have been developed
to quantify alterations in blood flow.58 The information
captured by OCTA is the decorrelation value of each
pixel. Higher blood flow velocity results in increased decor-
relation, i.e. enhanced OCTA brightness. FI is defined as the
average decorrelation value within a region of interest in
the en-face OCTA.59 The FI can be measured by using the
following equation

FI ¼
Xn

x¼1; y¼1
Aðx; yÞ

N
(11)

where A(x, y) represents the decorrelation of the pixel (x, y)
and N is total the number of pixels in the OCTA image.

The FV is calculated as the percentage of the area with-
out flow signal over the total scanned region56

FV ¼ AreaFlowvoid
Areawhole

� 100% (12)

Because BVD represents the percentage of the area with
flow signal over the total scanned region, the FV can also be
determined by

FV ¼ 1� BVD (13)

Figure 2. (a) Sample branchpoint. (b) Branchpoint in a vessel skeleton, where the green pixel represents the branchpoint, the red pixels represent the end points, the

blue pixels represent our vessels of interest, and the yellow circle represents the dilated area. (c) A composite image of the branchpoint (green) and endpoint (red),

where the yellow square represents the window area. (D) Branch angle measurement. Angles A and B in the left image are complementary angles used to calculate h,
a1, and a2 in the right image. Source: Modified from Le et al.52 (A color version of this figure is available in the online journal.)
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TRBF is a parameter used to estimate the flow of all
vessel segments with Doppler OCT. TRBF is determined
by integrating the axial velocity derived from the Doppler
phase shift in the en-face plane58

TRBF ¼ �
Z Z

xy�plane

vzðx; yÞdxdy (14)

where the flow in a vessel is computed by integrating the
axial flow velocity vzðx; yÞmeasured from different pixels in
the en-face image over the surface (xy� plane) normal
to vzðx; yÞ.58 This method is primarily used in OCTA sys-
tems with high acquisition speeds, e.g. 100 kHz. For
slower acquisition speeds, e.g. 70 kHz, strategies have
been developed to determine TRBF using optimized en-
face planes.59,60

Another important OCTA parameter related to flow was
described by variable interscan time analysis (VISTA),61,62

which was performed to assess the alteration of chorioca-
pillaris and differentiate varying degrees of flow impair-
ment. VISTA has been used to quantify NPDR, PDR,
geographic atrophy (GA), and AMD eyes.

CNV analysis

CNV analysis has been used to assess morphological dis-
tortions, named as seafan, medusa, tangled, and dead-tree,
in choroidal vasculature.30 A commonly examined param-
eter is CNV area, which can be determined as follows63

CNV area ðmm2Þ ¼ CNV area ðpixelÞ
� ð3mm=304 pixelÞ2 (15)

where 3mm represents the 3mm FOV OCTA images
(304� 304 pixels) used in Uchida et al.63

The essential step for quantitative OCTA analysis is reli-
able segmentation of CNV (Figure 4).

The segmentation has been commonly performed using
manual or semi-manual processes.12 Projection-resolved
(PR-OCTA) method has been explored to determine the
CNV area and skeleton automatically.57 The binarized
vessel or skeleton map of CNV area can be used for FD
analysis using Fractalyse and likewise.30 BVD or LAC can
also be determined from the vessel or skeleton map. Other
characteristics used to assess CNV include CNV location,
CNV maturity, the presence of core vessels, and the pres-
ence of margin loops.64 Quantitative OCTA parameters,
such as BVD, FD,30 and LAC,65 have also been used for
CNV analysis of AMD.30 They are useful parameters to
evaluate neovascularization activity by assessing the
degree of complexity, and vessel nonuniformity of the
lesions, respectively.

Discussion

Fundus photography has been established for clinical man-
agement of eye diseases. However, the spatial resolution
and image contrast of traditional color fundus cameras
are limited to reveal subtle distortion of retinal and choroi-
dal vasculatures in early stages of eye diseases. OCTA pro-
vides a label-free solution for high resolution examination
of ocular vasculatures. With depth-resolved capability to
visualize retinal vasculatures at capillary level resolution,
OCTA has been rapidly adopted for clinical management of
eye diseases.

A brief summary of quantitative OCTA features estab-
lished for clinical and customOCTA instruments is listed in

Figure 3. A–V classification using fundus guided (row 1) and en-face OCT guided (row 2) techniques developed by Alam et al.41,53 (a) Sample fundus image, (b)

corresponding OCTA image, (c) OCTA A–V map overlaid on the fundus image, (d) sample OCT en-face image, (e) A–V information from en-face OCT overlaid on OCTA

binary vessel map, and (f) OCTA A–V map. Source: Modified from Alam et al.41,53 (A color version of this figure is available in the online journal.)
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Table 1 along with demonstrated applications. Quantitative
features, including BVT, BVC, BVD, VPI, FAZ-A, FAZ-CI,
VCI, BPA, and differential A–Vanalysis, have been demon-
strated to foster the standardization of objective interpreta-
tion of OCTA. Pathological mechanisms may affect the
OCTA features sensitive to eye conditions. In other
words, different eye diseases may cause OCTA distortions
in different ways. For example, SCR is known to produce
sickle shaped blood cells, which may lead to tortuous and
dilated vessels that can be quantified by BVT and BVC,
respectively. BVT has been recently demonstrated as the
most sensitive feature for SCR detection and classifica-
tion.20 DR patients may frequently accompany with hyper-
tension to cause arterial narrowing41 that can be quantified
by BVC analysis. Capillary level ischemia can be assessed
by BVD analysis in DR patients.39 BVD has also been used
to evaluate central and branch VOs.34,45,124,161,162 BVD,
FAZ-A, and FAZ-CI have been commonly used for OCTA
assessment of glaucoma.48,78 Recent studies also suggest
that vascular distortions may manifest in different regions
due to different diseases. For example, localized BVDmeas-
urements revealed perifoveal region as the most sensitive
region to classify NPDR stages.39,79 However, for SCR, the
parafoveal in the temporal retina was the most sensitive
region for SCR staging.38

Differential A–V analysis has been demonstrated to
improve OCTA performance.40,41 Pathological alterations
in the artery and vein compartments are known to be affect-
ed in different ways.163 For example, DR may cause
increased arterial tortuosity, venous beading, narrowing
artery, and dilated vein.164 If only mean value of arterial

and venous distortions is evaluated between control and
diseased eye, the OCTA sensitivity can be compromised.
A recent study revealed two differential A–V features, i.e.
artery vein ratio of blood vessel caliber and tortuosity to
improve the OCTA performance for DR classification,41

and predominant BVD and BVT distortions were observed
in venous system in case of SCR.40

Quantitative analysis of choroidal vasculature has been
explored predominantly for AMD assessment.61,158 Dry
AMD is generally characterized by decreased foveal cho-
roidal blood flow and increased drusen and GA. In case of
wet AMD, CNVs are the most commonly used biomarkers
for quantitative OCTA analysis.61,165 Jia et al.15 first pre-
sented a study focused on using OCTA to detect and clas-
sify the types of CNVs. This study reported that the en-face
angiograms showed decreased choroidal flow adjacent to
the CNV in all cases. Cross-sectional angiograms were able
to visualize location and classify the CNVas type I and type
II. In following studies,57 the researchers analyzed artifact
removal algorithms, slab subtraction, and PR-OCTA for
quantification of CNV area and connectivity. Miller
et al.159 compared CNV using SS and SD-OCTA, and
reported statistically significant differences between SS-
OCTA and SD-OCTA measured lesion areas. SS-OCTA
showed larger lesion area when compared to SD-OCTA
in both 3� 3 mm2 and 6� 6 mm2, with larger differences
reported in the 6� 6 mm2. Similarly, Zhang et al.56 reported
that SS-OCTA allowed for deeper light penetration into the
choroid. Another parameter that has been studied for AMD
is FD. Al-Sheikh et al.30 studied CNV lesions in AMD pre-
and post-treatment of anti-vascular endothelial growth

Figure 4. Method of determining CNV area and skeleton. Illustrative steps of generating the CNV area and skeleton from the original outer retinal en-face OCTA image

using a saliency model. Source: Reprinted from Patel et al.57(A color version of this figure is available in the online journal.)

CNV: choroidal neovascular.
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factors, and reported a lower FD in the inner part of the
lesion after treatment.

Quantitative OCTA opens a unique opportunity to
enable computer-aided disease detection and AI classifica-
tion of different eye diseases. Machine learning techniques
have been explored to segment microvasculature,166 non-
perfusion areas,167 optical nerve head.168 A support vector
machine (SVM) classifier was recently demonstrated for
supervised machine learning based OCTA classification
of SCR35 and DR.39 Six OCTA features, i.e. BVD, BVC,
BVT, VPI, FAZ-A, and FAZ-CI, were used to train the
SVM classifier for identifying control, mild, and severe
SCR subjects.35 The SVM was able to identify control
versus disease and mild versus severe SCR with 100 and
97% accuracies, respectively. A similar approach was also
adopted for OCTA classification of NPDR.39 The study
demonstrated 94.41% accuracy for control versus disease
(i.e. NPDR) and 92.96% accuracy for control versus mild
NPDR classification. The control versus mild NPDR classi-
fication was important for early DR detection. In another
study, three OCTA features, i.e. BVD, BVC, and FAZ-A,
were used for automated classification of NPDR with
94.3% accuracy.108 Supervised machine learning was also
recently validated for multiple-task classification to differ-
entiate control, SCR and DR from each other.20 In principle,

both supervised and unsupervised machine learning tech-
niques can be considered for AI classification of OCTA
images. However, the limited size of currently available
database is a major challenging factor for deep learning-
based AI classification of OCTA. With the increasing
OCTA applications in ophthalmology to expand the avail-
able OCTA datasets, we anticipate that deep learning-based
classification, which has been well established for fundus
image classification, will play an important role to enable
automated OCTA detection and classification of eye condi-
tions. Alternatively, transfer learning-based technology169

may find valuable application in the near future to foster
the deep learning OCTA classification of eye diseases.
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Table 1. Summary of quantitative OCTA features.

Features Applications

Clinical OCTA with

built-in software

Clinical OCTA with custom

software

Custom

OCTA

BVD To quantify blood vessel density

and identifies ischemic regions

in DR, SCR, AMD, glaucoma,

VO, etc.

21, 29, 47, 50, 66–77 22, 24, 25, 30 –33, 35–39, 41, 42, 45, 65, 72,

74, 78–112

113, 114

BVC To quantify blood vessel width,

dilation, or shrinkage in DR,

SCR, etc.

115 22, 35, 37–41, 43, 85, 87–89, 95, 96, 99, 102,

108, 110, 116, 117

113, 114, 118

BVT To quantify blood vessel tortuosity

due to change in morphology in

DR, VO, SCR, etc.

119 26, 33, 35, 38–41, 98, 101, 117, 120–123 114

VPI To quantify changes in the perime-

ter of blood vessels in DR, VO,

SCR, etc.

– 22, 35, 38, 39, 42, 95, 96, 102, 110, 112 –

FAZ-A To quantify changes in foveal area

in DR, DME, SCR, etc.

21, 26–29, 34, 44, 47, 50, 66–71,73,

75, 77, 115, 119, 124–137

24, 26, 33, 35, 38, 39, 43–46, 48, 72, 74, 78,

79, 81, 89–94, 98, 100, 101, 103, 105, 107,

108, 110, 119, 132, 138–148

–

FAZ-CI To quantify changes in foveal com-

plexity in DR, DME, VO, AMD

and SCR.

47, 48, 66, 67, 70, 72, 136 46, 78, 79, 89, 90, 92, 110, 132, 139, 142 –144 –

VCI To quantify changes in retinal vas-

cular complexity in DR, SCR, etc.

– 30, 32, 36, 37, 49, 65, 79–88, 90, 102, 104,

149, 150–154

–

BPA To quantify changes in vascular

bifurcation in DR, etc.

– 52 –

A–V analysis To achieve differential artery and

vein analysis in DR, SCR, etc.

– 40, 41, 116 54

Flow analysis To quantify changes in blood flow in

DR, GA, AMD, etc.

21, 125 24, 55–57, 106, 109, 138, 155, 156 15, 61, 157

CNV analysis To quantify neovascularization

activity in AMD, etc.

– 30, 57, 63–65, 82, 117, 149, 151, 156, 158–160 15, 61, 159

AMD: age-related macular degeneration; A–V: artery–vein; AVR: artery–vein ratio; BPA: branchpoint analysis; BVC: blood vessel caliber; BVD: blood vessel density;

BVT: blood vessel tortuosity; CI: contour irregularity; CNV: choroidal neovascular; DME: diabetic macular edema; DR: diabetic retinopathy; FAZ: foveal avascular

zone; FAZ-A: fovea avascular zone area; FAZ-CI: FAZ contour irregularity; FD: fractal dimension; GA: geographic atrophy; LAC: lacunarity; OCTA: OCT angiography;

SCR: sickle cell retinopathy; VCI: vessel complexity index; VO: vein occlusion; VPI: vessel perimeter index.
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