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Abstract
Ample evidence suggests that gut microbiota-derived products affect the circulatory

system functions. For instance, short chain fatty acids, that are the products of dietary

fiber bacterial fermentation, have been found to dilate blood vessels and lower blood pres-

sure. Trimethylamine, a gut bacteria metabolite of carnitine and choline, has recently

emerged as a potentially toxic molecule for the circulatory system. To enter the blood-

stream, microbiota products cross the gut–blood barrier, a multilayer system of the intes-

tinal wall. Notably, experimental and clinical studies show that cardiovascular diseases may

compromise function of the gut–blood barrier and increase gut-to-blood penetration of

microbiota-derived molecules. Hence, the bacteria products and the gut–blood barrier

may be potential diagnostic and therapeutic targets in cardiovascular diseases. In this

paper, we review research on the cardiovascular effects of microbiota-produced short

chain fatty acids and methylamines.
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Gut bacteria in human homeostasis

The mammalian gut and skin is colonized early after birth
by bacteria and fungi.1,2 The number of gut bacteria is at
least equal to the number of human body cells and, at the
same time, the composition of human microbiota is very
unique for each person. The composition of the gut micro-
biota depends on numerous factors including geography,
age, diet, the mode of delivery, and postnatal feeding.3–7

For example, it has been shown that vaginal birth
and breastfeeding are associated with more diverse micro-
biota than cesarean birth and formula-feeding.8–10 The
most common bacterial phyla in the human gut
include Firmicutes, Bacteroidetes, Actinobacteria, and
Proteobacteria.11,12

Increasing research provides evidence that human
homeostasis depends on reciprocal interaction with gut

microbiota. On the one hand, gut microbiota produces
vital compounds for human homeostasis such as
vitamin K or B group (cobalamin, biotin, pyridoxine, thia-
mine, folates, riboflavin and nicotinic acid), and
contributes to the metabolism of bile acids, steroids and xeno-
biotics.13–16 On the other hand, gut bacteria produce toxic
substances such as ammonia or trimethylamine and may
reduce the availability of essential nutrients for the host.17–19

Finally, recent research shows that microbiota produced
molecules such as hydrogen sulfide (H2S), indoles, short
chain fatty acids and trimethylamines affect the circulatory
system homeostasis, acting on its humoral and nervous
control.20–22 In particular, short chain fatty acids and trime-
thylamines have attracted a lot of attention, which resulted
in the explosion of experimental and clinical papers on the
circulatory effects of the two groups of microbiota
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products.23–25 It is also worth noting that some research
reported changes in gut bacteria composition also referred
to as dysbiosis in cardiovascular diseases (CVDs).26–28

Mechanisms of a crosstalk between gut
microbiota and the circulatory system

The mechanisms underlying the interaction between gut
microbiota and the circulatory system are far from clear.
However, increasing experimental data show that at least
two potential pathways are likely (Figure 1). Firstly, gut
microbiota-derived products may stimulate afferent (sen-
sory) nerves of the enteric nervous systemwhich maymod-
ulate the cardiovascular centers in the brain. The latter
affects the activity of the autonomic nervous system that
controls the function of the heart, vasculature and glands
releasing cardiovascular hormones. Secondly, gut micro-
biota products may enter the bloodstream and thereby
affect the function of organs and tissues that contribute to
the circulatory system homeostasis. As most of the gut-
derived molecules first pass the liver, the systemic effects
of microbiota products may also depend on liver metabo-
lites.29–31

It has been well established that biological effects of any
molecule depend on its concentration. In this regard, the
blood concentration of bacterial metabolites depends on
several factors including gut bacteria metabolic activity,
the function of the intestinal wall (gut-to-blood

permeability) and the function of the liver and the kidneys
(metabolism, detoxification and excretion). Deteriorated
function of the kidneys and the liver in cardiovascular dis-
eases is well established and has been described in numer-
ous papers.32–37 Recently, the decline of the intestinal
function and a “leaky gut” syndrome in cardiovascular dis-
eases has gained a lot of attention.38–40

In short, to enter the circulation, gut bacteria products
need to cross the intestinal wall that forms the gut–blood
barrier (GBB). The GBB is a complex system of several bio-
logical layers, including vascular endothelium, epithelial
cell lining and mucus layer. The integrity and proper func-
tioning of the GBB depend on numerous, not fully under-
stood factors. The GBB enables the absorption of nutrients
and beneficial bacterial metabolites such as SCFAs from
intestinal lumen and, at the same time, reduces the passage
of potentially toxic substances.41 A pivotal factor for the
proper functioning of the GBB is adequate blood perfusion.
There is some experimental and clinical evidence showing
that CVDs compromise the GBB function by decreasing
intestinal blood flow and disrupting the GBB structure.
A leaky gut has been reported in patients with heart
failure42 and in several experimental models of CVDs.39,43

For example, we have found that hypertension in rats is
accompanied by morphological and hemodynamic altera-
tions in the colon, and increased permeability of the colon
to TMA, a toxic gut bacteria metabolite.43

Short-chain fatty acids

Various biological effect of short-chain fatty acids (SCFAs)
have been described in medical literature since ancient
times. However, only recently it has been recognized that
gut microbiota is an important source of SCFAs in mamma-
lian organisms. SCFAs are produced chiefly by the colon
microbiota in fermentation process from dietary fiber. This
group of fatty acids consists of aliphatic tail with five or
fewer carbons.44,45 There is evidence that SCFAs are also
present in intestinal content of germ-free animals, but at
lower concentration than in conventional animals.46,47 In
addition, a group of dietary products constitutes a direct
source of short chain fatty acids including acetate, propio-
nate and butyrate (Figure 2).

SCFAs play an important role locally in intestines serv-
ing as an energy source for enterocytes and inhibiting the
growth of pathogens by reducing pH. In addition, SCFAs
may affect the local intestinal microcirculation.48,49

Furthermore, SCFAs originating from gut microbiota
metabolism enter the systemic circulation through the
GBB. Biological effects of SCFAs including metabolic,
hemodynamic and inflammatory effects are thought to be
mediated by GPR41 (also known as Free Fatty Acid
Receptor 3, FFAR3), GPR43 (Free Fatty Acid Receptor 2,
FFAR2), or Olfr78 receptors which are located in the gas-
trointestinal tract, adipose tissue, immune cells, and
peripheral nerves.30,50–54 Accumulating evidence suggests
that SCFAs may exert blood pressure lowering effect
by decreasing vascular tone.55–59 Furthermore, SCFAs
may change blood pressure by mechanisms related to

Figure 1. Suggested pathways of cardiovascular actions of gut microbiota

products. (A) Gut bacteria products cross the gut–blood barrier, bypass the liver

via rectal plexuses and reach cardiovascular tissues. (B) The liver produces

derivatives of microbiota metabolites that affect the heart and vasculature.

(C) Gut microbiota metabolites stimulate sensory fibers of the enteric nervous

system which project to the brain that controls the circulatory system via the

autonomic nervous system.

Onyszkiewicz et al. Gut microbiota products and the circulatory system 167
...............................................................................................................................................................



gut-to-brain nervous signaling60 renal sensory nerves31,53

and renin-angiotensin-aldosterone pathway.53,61–63

Acetic acid

Acetic acid is a colorless liquid organic compound which
consists of methyl group attached to a carboxyl group. It
possesses acrid smell and sour taste. Liquid containing
5–20% of acetic acid is called vinegar and was used as a
food preservative by Babylonians (c. 5000 BC).64 Moreover,
vinegar was used for dressing wounds by Hippocrates
(c. 420 BC) and in American civil war, likely due to its anti-
microbial properties.65 It has also been suggested that acetic
acid prevents osteoporosis by increasing calcium intestinal
absorption and the concentration of calcium in bones.66

Moreover, acetic acid was reported to exert antidiabetic
effects by improving glucose uptake in skeletal
muscles and decreasing fasting and postprandial glucose
levels.67–69 With regard to cardiovascular effects, acetic acid
has been found to lower arterial blood pressure in rats.70,71

The mechanisms behind the hypotensive effect may
include the inhibition of ACE activity, decrease in plasma
renin activity or increase in tissue level of cAMP.72–75 In
vitro studies report that acetic acid produces vasodilatation
in colonic resistance vessels.76 Additionally, acetate might
play a role in flow-mediated vasorelaxation by inducing
eNOS phosphorylation in the endothelium.77 Clinical stud-
ies involving patients regularly undergoing hemodialysis
with dialysate containing acetate showed a significant
decrease in peripheral vascular tone and diminished
myocardial contractility.78–80

Propionate

Propionic acid is a colorless oily liquid organic compound,
miscible with water, with characteristic unpleasant smell
fairly resembling body odor. Antimicrobial effects of pro-
pionic acid and its salts have been known for a long time.
Propionates are used in the food industry as preservatives
in many products such as bread or cheese.81,82 Propionic
acid has been found to exert several potentially health-
promoting effects which may lower cardiovascular risk.
Firstly, propionate may inhibit lipid synthesis in
hepatocytes and thereby decrease cholesterol level.83,84

Secondly, some evidence suggests that propionic acid
has anti-inflammatory effect85 and improves insulin sensi-
tivity.86–88 Notably, propionic acid is the strongest ligand
for the SCFAs receptors Gpr41 and Gpr43.89,90

Finally, some studies show that propionic acid exerts
direct cardiovascular effects. A dose-dependent vasodila-
tory effect have been reported in rat mesenteric arteries and
in isolated human colonic resistance arteries.76,91

Butyric acid

Butyrate is a colorless carboxylic acid produced in the
mammalian gut by bacterial fermentation of dietary fiber.
However, butyric acid is also present in butter and other
dairy products. The taste of butyrate is characterized as
pungent, with a sweetish aftertaste which can be linked
with the taste of ether. The acid is responsible for the obnox-
ious smell of human vomit.

Butyrate has been found to affect numerous
physiological processes including energy homeostasis,

Figure 2. Sources of short chain fatty acids (SCFAs) in human organism. (a) SCFAs are produced during fermentation process from dietary fiber; (b) Dietary products

constitute a direct source of SCFAs including acetate, propionate and butyrate.
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cardiovascular parameters, immune response, and brain
functions. The underlying mechanisms may range from
metabolic effects of receptor’s signaling to enzymatic inhi-
bition.92,93 Some evidence suggests that butyric acid exerts
anticarcinogenic effect that may be explained by the
Warburg effect. The opposing effect of butyric acid on
normal and cancer cells sometimes is called as butyrate
paradox.94,95

Numerous studies show that butyrate may affect the
regulation of arterial blood pressure. The hypotensive
and bradycardic effect of intravenous administration of
butyric acid was described already in 1957 by Wretlind.96

Blood pressure lowering effect of butyrate seems to be
dependent on vasodilation. Mortensen et al. showed that
butyric acid and other SCFAs produce a concentration-
dependent dilation of human colonic resistance arteries.76

Likewise, a weak vasodilatory effect of butyric acid at
concentrations above 5mM was reported in the coronary
arteries.57 The vasodilatory effect of butyric acid was also
demonstrated in rat caudal artery.58 Several mechanisms of
the butyric acid-dependent vasodilation have been pro-
posed including stimulation of the cyclic AMP second mes-
senger system97 and increased synthesis of F2 alpha
prostaglandins.59 It has also been suggested that the hypo-
tensive effect of butyric acid may depend on the inhibition
of the intrarenal renin-angiotensin system.62

Our recent findings suggest that gut-derived butyric
acid affect the circulatory system via the following two
mechanisms. Firstly, butyric acid stimulates afferent fibers
of the vagus nerve which project from the gut to the brain.
This decreases tonic sympathetic activity and thereby
lowers arterial blood pressure. Secondly, gut-derived
butyric acid crosses the GBB, enters the bloodstream and
produces vasodilation acting on GPR41/43 receptors.
Interestingly, our study showed that physiological concen-
tration of butyric acid in the colon is three orders of mag-
nitude higher than that in systemic blood, which makes the
colon a very likely site of butyric acid action under physi-
ological conditions.60

Further indirect evidence for the hypotensive effect of
butyric acid produced by gut microbiota is provided by
studies showing an inverse correlation between arterial
blood pressure and the abundance of bacteria producing
butyrate in rats.98 Similarly, in overweight pregnant
women the abundance of butyrate-producing bacteria
and butyrate production was associated with lower arterial
blood pressure.99

Apart from the hypotensive action, butyric acid have
been suggested to possess a direct antiatherogenic
activity by diminishing vascular smooth muscle cells
proliferation.100

Trimethylamines: TMAO vs. TMA

Trimethylamine (TMA) is a simple tertiary aliphatic amine
with the formula N(CH3)3. It is synthetized in colon by
several bacterial genera including Clostridium, Collinsella,
Desulfovibrio, Lactobacillus, and Proteus from dietary
L-carnitine, choline, and their derivatives. After absorption
in large intestine TMA passes through the portal vein to the

liver where most of it is oxidized to trimethylamine N-
oxide (TMAO) by the flavin-containing monooxygenase
(FMO3).101

TMAO

In terms of cardiovascular effects, TMAO has gained much
more attention than its precursor TMA as recent studies
showed positive correlation between plasma TMAO con-
centration and cardiovascular risk. However, despite hun-
dreds of studies investigating TMAO, it is not clear whether
it is a harmful factor, sign of adaptive response or just a
confounder.23

It has been shown that plasma TMAO may be used in
risk assessment in general population102 and in patients
with heart failure,103–105 acute myocardial infarction,106,107

coronary artery disease,108 peripheral artery disease,109

stroke,110 and hypertension.111,112 In particular, the associa-
tion between TMAO and atherosclerosis burden has been
observed.113–116 It has also been reported that TMAO con-
tributes to platelet hyperreactivity by increasing intracellu-
lar Ca(2þ) release and enhancing thrombotic potential and
it independently predicted incident thrombosis risk.117

However, there are some issues that call into question the
above results. Some research found no evidence linking
TMAO to increased cardiovascular risk.118–121 Other stud-
ies suggest that increased TMAO is only a manifestation of
decreased kidney function and association with cardiovas-
cular risk become insignificant after adjustment for
eGFR.122–124 It is along with the fact that TMAO is excreted
mainly with urine and elevated plasma TMAO level has
been widely reported in chronic kidney disease.114,125,126

It was shown that impaired renal function was the main
variable affecting plasma TMAO concentration.127 It is also
worth noting that plasma TMAO concentration may be
confounded by the disturbed GBB function43 or FMO3
activity.128 FMO3 is mostly active in liver, however, it was
detected in lung, kidney and other tissues as well. Besides,
its expression is sex- and age-specific,129,130 which may fur-
ther interfere with the results. In addition, it has been
shown that the association between TMAO and cardiovas-
cular events may vary depending on race131 or gender.132

Finally, the connection between TMAO and atherosclerotic
progression in patients has been questioned.133–135

A lot of experimental studies have been performed to
determine a mechanistic insight into how TMAO potential-
ly promotes cardiovascular diseases. Supplementation of
TMAO136,137 or its dietary precursors116,137–139 augmented
atherosclerotic plaque formation in atherosclerosis-prone
mice, possibly due to toxic effect on endothelial progenitor
cells140 or acting by CD36/MAPK/JNK pathway.136

However, some studies do not support these findings141

and surprisingly, Collins et al. suggested even a protective
effect of TMAO precursor against atherosclerotic lesion
development.142 Diet enriched by TMAO and its precursors
caused a significant increase in heart failure severity in
mice143 and reduction in TMAO concentration resulted in
improvement in heart failure symptoms induced by myo-
cardial infarction.144 Some studies showed that TMAOmay
induce cardiac fibrosis145,146 and disturb energy
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metabolism in the heart.147 However, experiments carried
out by Querio et al.148 and in our laboratory149 do not sup-
port the damaging effect of TMAO on cardiomyocytes. The
connection between TMAO and aging is controversial as
well. In mouse model, TMAO treatment for 16weeks
induced vascular aging.150 On the other hand, TMAO did
not increase with age in rat plasma and did not affect
smooth muscle cells viability.151 Indirect evidence of dam-
aging effect of TMAO followed from the fact that its pre-
cursors, choline and carnitine, are abundant in red meat
which is known to increase cardiovascular risk. However,
consumption of fish and other seafood, which are linked to
cardio-protective effects, produce substantially greater
increase in circulating TMAO than red meat.152,153

Therefore, the causative role of TMAO in cardiovascular
diseases remains under question.

Intriguingly, TMAO has protective functions against
osmotic and hydrostatic pressures. Number of biochemical
studies show that TMAO stabilizes protein structure and
counteracts the effects of urea and other denaturants.154–156

It may be speculated that TMAO is accumulated as a
mechanism of adaptation to hydrostatic pressure or
water-electrolyte imbalances which occur in cardiovascular
diseases.

TMA, a toxic precursor of TMAO

On the other hand, cardiovascular effects of TMA, a TMAO
precursor, have not been sufficiently studied yet. It is rather
surprising because natural occurrence of TMA has been
recognized for a long time and its toxic properties
have been described in medical literature already in
19th century. Nowadays it is mainly known as a compound
responsible for fish odor syndrome i.e. trimethylaminuria.
Genetic FMO3 deficiency causes TMA accumulation
in the body fluids inducing the characteristic smell of

urine, breath, and sweat in patients suffering from this
disease.157

TMA is a pollutant widely present in industry, and sev-
eral guidelines with exposure limit are available, e.g., the
Recommendation from the Scientific Committee on
Occupational Exposure Limits.158 Numerous studies
show toxic effect of TMA at relatively low concentra-
tions.159–162 TMA causes eye160 and skin163 irritation,
developmental toxicity,161 epilepsy and behavioral disor-
ders164–166 and promotes hepatic encephalopathy.167

Strikingly, to the best of our knowledge, there is no research
evaluating the association between TMA and cardiovascu-
lar risk. Unfortunately, clinical studies focused on TMAO
did not assess TMA concentration but it may be speculated
that increased TMAO levels were accompanied by
increased level of its precursor. Possibly, it is TMA and
not TMAO that contributes to increased mortality. There
is some evidence to support this view. Increased TMA
level has been observed in cardiovascular patients149,168

and kidney deterioration seems to play a key role in these
changes as demonstrated by a significant inverse correla-
tion between level of TMA and eGFR. It must be stressed
that TMA has been considered a uremic toxin for almost
40 years169,170 contributing to neurotoxicity and uremic
breath in patients with end-stage renal disease.171

Moreover, as demonstrated by Srinivasa et al., TMA and
not TMAO is associated with atherosclerotic plaque forma-
tion in HIV patients.133 Recently, we have found that TMA
and not TMAO elevates blood pressure, exerts cytotoxic
effect on cardiomyocytes and vascular smooth muscle
cells as well as disturbs LDH and albumin struc-
ture.149,151,172 It is also worth noting that most of experi-
mental studies showing positive effects of reduction in
TMAO level were associated with TMA decrease at the
same time because they targeted precursors of TMA.173,174

Figure 3. Dietary sources, metabolism and elimination of trimethylamine (TMA) and trimethylamine N-oxide (TMAO) in humans. Suggested main cardiovascular and

other effects of both methylamines based on currently available data (details in the text). FMO3: flavin-containing monooxygenase 3.
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Formation and major biological effects of TMA and
TMAO are depicted in Figure 3.

Conclusions

Increasing experimental and clinical evidence suggests that
gut microbiota-derived products affect the circulatory
system functions. Both beneficial and toxic effects have
been described. For instance, short chain fatty acids have
been found to lower blood pressure. On the other hand,
trimethylamine has been suggested to increase blood pres-
sure and exert negative effect on the circulatory system.
Hence, the bacteria products may have a therapeutic poten-
tial in cardiovascular diseases. Further studies are needed
to establish the role of gut microbiota products in the cir-
culatory system homeostasis.
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153. Krüger R, Merz B, Rist MJ, Ferrario PG, Bub A, Kulling SE, Watzl B.

Associations of current diet with plasma and urine TMAO in the

KarMeN study: direct and indirect contributions. Mol Nutr Food Res
2017;61:1700363

154. Ma J, Pazos IM, Gai F. Microscopic insights into the protein-stabilizing

effect of trimethylamine N-oxide (TMAO). Proc Natl Acad Sci USA
2014;111:8476–81

155. Venkatesu P, Lee M-J, Lin H-M. Trimethylamine N-oxide counteracts

the denaturing effects of urea or GdnHCl on protein denatured state.

Arch Biochem Biophys 2007;466:106–15
156. Zou Q, Bennion BJ, Daggett V, Murphy KP. The molecular mechanism

of stabilization of proteins by TMAO and its ability to counteract the

effects of urea. J Am Chem Soc 2002;124:1192–202
157. Mitchell S, Smith R. Trimethylaminuria: the fish malodor syndrome.

Drug Metab Dispos 2001;29:517–21
158. Pospischil E, Johanson G, Nielsen GD, Papameletiou D, Klein CL.

Recommendation from the Scientific Committee on Occupational

Exposure Limits. Luxembourg: Publications Office of the European

Union, 2017. DOI: 10.2767/440659

159. Brieger H, Hodes WA. Toxic effects of exposure to vapors of aliphatic

amines. AMA Arch Ind Hyg Occup Med 1951;3:287–91

160. Friemann W, Overhoff W, Wolter JR. [Eye diseases in the fishing

industry]. Arch Gewerbepathol Gewerbehyg 1959;17:1–56

161. Guest I, Varma DR. Selective growth inhibition of the male progeny of

mice treated with trimethylamine during pregnancy. Can J Physiol
Pharmacol 1993;71:185–7

162. Kinney L, Burgess B, Chen H, Kennedy G. Inhalation toxicology of

trimethylamine. Inhal Toxicol 1990;2:41–51
163. Fluhr JW, Kelterer D, Fuchs S, Kaatz M, Grieshaber R, Kleesz P, Elsner

P. Additive impairment of the barrier function and irritation by bio-

genic amines and sodium lauryl sulphate: a controlled in vivo tandem

irritation study. Skin Pharmacol Physiol 2005;18:88–97
164. Gajda Z, Gyengesi E, Hermesz E, Ali KS, Szente M. Involvement of

gap junctions in the manifestation and control of the duration of seiz-

ures in rats in vivo. Epilepsia 2003;44:1596–600

165. McConnell H, Mitchell S, Smith R, Brewster M. Trimethylaminuria

associated with seizures and behavioural disturbance: a case report.

Seizure 1997;6:317–21
166. Pellicciari A, Posar A, Cremonini MA, Parmeggiani A. Epilepsy and

trimethylaminuria: a new case report and literature review. Brain Dev
2011;33:593–6

167. Marks R, Dudley F, Wan A. Trimethylamine metabolism in liver dis-

ease. Lancet 1978;1:1106–7
168. Zordoky BN, Sung MM, Ezekowitz J, Mandal R, Han B, Bjorndahl TC,

Bouatra S, Anderson T, Oudit GY, Wishart DS, Dyck JR, Alberta H.

Metabolomic fingerprint of heart failure with preserved ejection frac-

tion. PLoS One 2015;10:e0124844
169. Duranton F, Cohen G, De Smet R, Rodriguez M, Jankowski J,

Vanholder R, Argiles A, European Uremic Toxin Work G. Normal

and pathologic concentrations of uremic toxins. J Am Soc Nephrol
2012;23:1258–70

170. Wills MR, Savory J. Biochemistry of renal failure. Ann Clin Lab Sci
1981;11:292–9

171. Simenhoff ML, Ginn HE, Teschan PE. Toxicity of aliphatic amines in

uremia. Trans Am Soc Artif Intern Organs 1977;23:560–5
172. Jaworska K, Bielinska K, Gawrys-Kopczynska M, Ufnal M. TMA (tri-

methylamine), but not its oxide TMAO (trimethylamine-oxide), exerts

haemodynamic effects: implications for interpretation of cardiovascu-

lar actions of gut microbiome. Cardiovasc Res 2019;115:1948–9
173. Gregory JC, Buffa JA, Org E,Wang Z, Levison BS, ZhuW,Wagner MA,

Bennett BJ, Li L, DiDonato JA. Transmission of atherosclerosis

susceptibility with gut microbial transplantation. J Biol Chem
2015;290:5647–60

174. Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, Gu X,

Huang Y, Zamanian-Daryoush M, Culley MK, DiDonato AJ, Fu X,

Hazen JE, Krajcik D, DiDonato JA, Lusis AJ, Hazen SL. Non-lethal

inhibition of gut microbial trimethylamine production for the treat-

ment of atherosclerosis. Cell 2015;163:1585–95

Onyszkiewicz et al. Gut microbiota products and the circulatory system 175
...............................................................................................................................................................


