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Abstract
Particulate matter is a significant public health issue in the United States and globally.

Inhalation of particulate matter is associated with a number of systemic and organ-specific

adverse health outcomes, with the pulmonary and cardiovascular systems being particularly

vulnerable. Certain subpopulations are well-recognized as being more susceptible to inhala-

tion exposures, such as the elderly and those with pre-existing respiratory disease. Metabolic

syndrome is becoming increasingly prevalent in our society and has known adverse effects on

the heart, lungs, and vascular systems. The limited evaluations of individuals with metabolic

syndromehavedemonstrated that theymay compose a sensitive subpopulation toparticulate

exposures. However, the toxicological mechanisms responsible for this increased vulnerabil-

ity are not fully understood. This review evaluates the currently available literature regarding

how the response of an individual’s pulmonary and cardiovascular systems is influenced by

metabolic syndrome and metabolic syndrome-associated conditions such as hypertension,

dyslipidemia, and diabetes. Further, we will discuss potential therapeutic agents and targets

for the alleviation and treatment of particulate-matter induced metabolic illness. The informa-

tion reviewed heremay contribute to the understanding of metabolic illness as a risk factor for

particulate matter exposure and further the development of therapeutic approaches to treat

vulnerable subpopulations, such as those with metabolic diseases.
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Introduction

Air pollution is a well-established and currently worsening
issue in the United States, responsible for thousands of
cases of respiratory illness and premature deaths each
year.1 While air pollution is composed of many substances,
the United States monitors six primary air contaminants:
particulate matter (PM), ozone, sulfur dioxide, nitrogen
dioxide, carbon monoxide, and lead.2 Each of these pollu-
tants has been determined to be associated with adverse
health outcomes in the population. PM, for instance, has
been linked to lung disease, heart attacks, irregular heart-
beat, aggravated asthma, decreased lung function, and a
variety of respiratory symptoms including airway irritation,

coughing, and difficulty breathing.3 Standards are set by the
EPA for the maximum allowance of criteria pollutants in
the air, taking into consideration the increased sensitivities
of vulnerable individuals.4 However, these measures may
not be sufficient to protect certain particularly susceptible
subpopulations. Susceptible, in the context of this review,
indicates a group more prone to the development of a
health outcome or suffer from exacerbated responses follow-
ing an exposure compared to individuals considered as
healthy.

Specific groups are recognized as more susceptible
to air pollution than the general population. Both epidemi-
ological and in vivo laboratory studies have demonstrated
that age impacts the adverse health outcomes associated
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with air pollution exposures, with children and the elderly
demonstrating susceptibility.5–8 For instance, children who
are exposed to higher levels of air pollution have increased
asthmatic and allergic symptoms and decreased lung func-
tion as compared to children who have lower exposures.9,10

Unsurprisingly, those who have pre-existing respiratory
conditions, such as asthma, chronic obstructive pulmonary
disease, and cystic fibrosis have also been determined to be
more susceptible to air pollution-induced health effects.11–
13 Together, these groups are well-known as susceptible
subpopulations; the EPA acknowledges that children, the
elderly, and those with respiratory diseases are at increased
risk. However, those with metabolic syndrome (MetS),
while demonstrating more susceptibility to adverse health
outcomes as a result of air pollution, have been largely
unacknowledged as a vulnerable subpopulation. MetS
affects over one-third of the United States population,
and its prevalence is increasing domestically and world-
wide.14–16 MetS is diagnosed when an individual exhibits
three or more of the following characteristics: central obe-
sity (increased waist circumference), hypertension, hyper-
glycemia/insulin resistance, high triglycerides, and
dyslipidemia.14 MetS impacts every part of the body and
has a significant detrimental impact on overall health.
Those with MetS are at increased risk for developing
other illnesses, including renal disease, diabetes, cardiovas-
cular disease, and certain cancers.17–20 MetS has been deter-
mined to increase the susceptibility of individuals to
adverse health outcomes following certain inhaled expo-
sures, such as carbon monoxide and cigarette smoke.21,22

MetS causes individuals to be more vulnerable to health
outcomes such as cardiovascular depression, decreased
heart rate variability (HRV), and altered cardiac repolariza-
tion as a result of inhaled PM.23–25 While reviews have pre-
viously been published on MetS and air pollution, they
have primarily focused on PM exposure as a contributing
factor to the development of metabolic disease, such as
MetS.26,27 The effects of PM exposure in those who already
suffer from metabolic disease, as well as the associated
causal mechanisms and systemic and organ-specific
impacts, are not fully elucidated.

Our current mini-review focuses on the relationship
between air pollutants, MetS, and conditions associated
with MetS (hypertension, dyslipidemia, and diabetes).
Specifically, this review will discuss how PM exposure
contributes to the development and exacerbation of
local and systemic metabolic health problems, including
but not limited to the heart, vascular system, and lungs.
Areas which require additional research to further the
existing scientific knowledge will be highlighted
throughout.

Particulate matter and MetS development

It is well known that exposure to PM and other forms of air
pollution is a risk factor for the development of numerous
diseases. The causal link between air pollution and meta-
bolic disease has been supported by mechanistic in vivo and
in vitro laboratory studies. These evaluations have demon-
strated the contribution of PM exposure to the

development of metabolic disease. Specifically, PM has
been observed to interfere with glycogen storage, resulting
in altered glucose metabolism and disrupted insulin
homeostasis.28 This is in part due to the impaired cellular
signaling that occurs as a result of PM exposure, such as the
suppression of insulin receptor substrate 1 and the reduc-
tion of phosphorylated protein kinase B, which prevents
the effective uptake and utilization of glucose and thus
contributes to the development of insulin resistance.28–30

The alteration of glucose metabolism contributes to the
development of metabolic disease, with insulin resistance
being one of the key components of MetS. Additionally,
exposure to PM has been demonstrated to cause inflamma-
tion and alter the expression of genes associated with MetS,
such as tumor necrosis factor-a (TNF- a), interleukin 6, and
b,b-carotene-90,100-oxygenase 2.30–32 This inflammatory
response, in combination with the oxidative stress induced
by PM exposure, has been determined to be a contributing
factor to the development of dyslipidemia, a key character-
istic of MetS.33 These primary adverse health outcomes
caused by PM exposure have also been observed to con-
tribute to the development of secondary problems fre-
quently concurrent with MetS, such as non-alcoholic
hepatic steatosis.28 Multiple reviews have been published
on this subject which further detail the mechanistic link
between PM exposure and metabolic disease develop-
ment.26,27,34 It is clear that PM exposure does not cause
MetS through a singular mechanism, but rather by the dis-
ruption of multiple systems and signaling pathways, creat-
ing a complex network of dysfunction.

The ultimate outcome of this dysfunction in human pop-
ulations has been the subject of much research. Multiple
epidemiological studies have linked ambient PM exposure
to metabolic disease. Even relatively brief sub-acute expo-
sures to low concentrations of PM have been observed to
reduce insulin sensitivity in human subjects.35 As one
would expect, longer exposures and higher PM concentra-
tions are associated with more severe effects. Proximity to
major roadways is associated with a higher prevalence of
non-alcoholic hepatic steatosis, likely due to the exposure
to higher concentrations of PM.36 Studies which
have examined the effects of long-term PM exposure on
humans have identified an association between PM inhala-
tion and MetS, with one study finding a 72% increase in
MetS per 10 lg/m3 increase in mean PM.37 Other research-
ers have performed more thorough analyses, examining
not only MetS, but its components and associated condi-
tions. Hyperglycemia, dyslipidemia, obesity, and hyperten-
sion have all been determined to be associated with PM
exposure.38,39 The impact of PM on the development of
MetS and its associated conditions is well-established; how-
ever, metabolic disease as an aggravating factor contribut-
ing to the exacerbation of the adverse effects of air pollution
is less well studied.

Pulmonary effects associated with MetS and
PM exposures

Inhalation is the primary route of exposure for air pollu-
tants, making the pulmonary system particularly
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susceptible to adverse health outcomes. Once inside the
lungs, PM can interact with the cells and tissues of the
lung itself, causing local inflammation.40 Particles may
also translocate from the lungs to the circulation to cause
systemic effects throughout the body, with smaller particles
doing so with greater efficiency than larger particles.41

MetS and lung function

It is well established that MetS impacts lung function; MetS
has been shown to decrease forced expiratory volume
(FEV1) and forced vital capacity independent of factors
such as smoking status and alcohol consumption.42

Additionally, MetS is associated with various lung and
breathing disorders, including asthma, obstructive sleep
apnea, as well as resting and post-exercise dyspnea.43–45

The exact mechanism by which MetS leads to lung disor-
ders is not fully understood; however, previous research
has demonstrated that exposure to excess levels of insulin
may induce hypercontractility in the smooth muscle of the
airway and bronchoconstriction through the phosphoinosi-
tide 3-kinase/rho kinase pathways and the loss of musca-
rinic receptor 2 functionality, respectively.46–48 The role of
insulin in decreased lung function is also supported by epi-
demiological data; the National Health and Nutrition
examination survey has provided evidence of a link
between insulin and decreased lung function, with insulin
resistance being inversely associated with FEV1 and forced
vital capacity (FVC).49 Interestingly, the detrimental effect
of excess insulin on the lungs is not exclusive to adults.
Exposure to high levels of insulin during development
has been demonstrated to delay fetal lung development
through the inhibition of surfactant protein A and B
genes, which is likely a contributing factor in a higher inci-
dence of infants with respiratory distress syndrome and
asthma born to diabetic mothers.50–52 It has been proposed
that the altered pulmonary function caused by MetS results
in disordered breathing during sleep, increasing the levels
of pro-inflammatory cytokines present in the body and
resulting in a positive feedback loop, in which the condi-
tions of MetS cause disordered breathing during sleep, and
the hypoxic conditions caused by disordered breathing in
turn worsen MetS and thus perpetuate the cycle.53 Other
components of MetS have been observed to alter lung func-
tion, as well. Obese individuals have decreases in FEV1,
FVC, total lung capacity, and residual volume.54 A reduc-
tion in functional residual capacity is well-documented to
occur even at modest weight increases, and is thought to be
the result of adipose tissue in the abdomen placing pressure
on the chest wall.55 Hypertension and dyslipidemia have
also been determined to be associated with lung disease
and functional pulmonary decline, though the mechanisms
behind these associations is not thoroughly understood56–58

It is clear that the impact of MetS on lung function is both
adverse and cyclical, with metabolic and breathing prob-
lems contributing to and exacerbating one another. Even in
the absence of external factors, these factors would present
a significant health issue to those affected by MetS, but
unfortunately, these issues do not occur in isolation, and

individuals with MetS must contend with an additional
problem: air pollution.

Metabolic disease as an aggravating factor

A limited number of studies have been performed specifi-
cally addressing the impact of MetS as a susceptibility
factor increasing health outcomes resulting from PM expo-
sure. However, more studies have examined the role of
distinct components of MetS and their individual capacity
to alter PM-induced pulmonary toxicity and enhance vul-
nerability. Of these, hypertension is perhaps among the
most well-studied. Several in vivo laboratory studies have
demonstrated that hypertensive animals are more suscep-
tible to adverse pulmonary health outcomes as a result of
the effects of PM. These adverse health outcomes include
but are not limited to increased inflammation, oxidative
stress, bronchoalveolar lavage fluid protein, edema, thick-
ening of the alveolar wall, and hemorrhage to alveolar
parenchyma, all of which have the potential to cause defi-
cits in lung function.59,60 TLR-4 cell signaling is likely par-
tially responsible for these lung problems, as it is known to
promote the inflammatory response and has been observed
to be enhanced in hypertensive rats following PM inhala-
tion.61 Enhanced ventilatory dysfunction has also been
observed in hypertensive conditions following exposure
to PM.62 This has been supported by epidemiological stud-
ies, which have shown that hypertensive individuals have
an altered reaction to PM exposure compared to healthy
individuals. Specifically, exposure to PM is associated
with a decrease in 8-hydroxy-20-deoxyguanosine in hyper-
tensive individuals compared to an increase in non-
hypertensives, possibly indicating that hypertension
impairs the ability to repair oxidative DNA damage.63

Combined, these results indicate that hypertension, a dis-
ease commonly associated with MetS, increases individu-
als’ susceptibility to adverse pulmonary health outcomes as
a result of PM exposure.

Other MetS-associated conditions have been determined
to increase susceptibility to PM exposure, as well.
Cardiomyopathy, similarly to hypertension, has been deter-
mined to increase individuals’ vulnerability to PM expo-
sure, exacerbating pulmonary inflammation and injury.64

Obesity is associated with increased wheezing and a
decline in lung function in those exposed to PM.65 In
patients with pre-existing respiratory diseases such as
asthma or chronic obstructive pulmonary disease
(COPD), obesity is associated with increases in the frequen-
cy or severity of symptoms, such as dyspnea.66,67 This
enhanced vulnerability as a result of excess weight is
likely due in part to the innate hyperresponsiveness of
the airway in obesity.68 Diabetes, which frequently occurs
as a result of or in conjunction with MetS, has also been
observed to sensitize individuals to PM exposure. Studies
have observed increased apoptosis, oxidative stress, and
inflammation in the lung in a mouse model of diabetes
exposed to PM.69,70 These effects, when present in the clin-
ical setting, are often linked with increased mortality. There
is an approximately two-fold increase in the risk of respi-
ratory and stroke-related deaths in the presence of diabetes,
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which researchers suggest may be due to impaired vascular
function.71 Finally, lipid dysregulation inherent to MetS is
likely a contributing factor in their increased susceptibility,
as patients with dyslipidemia have been demonstrated to
be at increased risk of developing COPD due to air
pollution.72

Though the mechanism responsible for this increased
susceptibility is not well understood, it may be in part
due to increased lung inflammation which is observed in
hypercholesterolemia.73 Additionally, this may lead to
exacerbated systemic effects, as pulmonary inflammation
has been determined to enhance particle translocation from
the lungs to the circulation.74 Pulmonary inflammation
itself is enhanced in MetS, as well. A recent study of the
effect of particles in the lung using both healthy and MetS
mouse models demonstrated that MetS mice had not only
an exaggerated inflammatory response to exposure, but
decreased levels of specialized pro-resolving mediators.75

This suggests that MetS may not only result in exacerbated
pulmonary effects, but also an impairment of inflammatory
resolution, prolonging the inflammatory response and con-
tributing to disease development. Regarding the impact of
MetS specifically in humans, lung injury, airway hyperreac-
tivity, and decreases in lung function have been determined
to be more common in individuals who suffered fromMetS
around the time their exposure to dust generated by the
destruction of the United States World Trade Center.76–78

These effects persisted even 16 years after exposure, and
will likely affect exposed individuals for the remainder of
their lives. Furthermore, individuals with biomarkers of
inflammatory or cardiovascular disease such as
macrophage-derived chemokine, granulocyte-macrophage
colony-stimulating factor, lysophosphatidic acid, or apoli-
poproteins AI, CII, and CIII have also been determined to
have increased risk of lung injury and impaired lung func-
tion as a result of exposure.79–81

Multiple other mechanisms have been proposed to
explain the increased risk of the development and exacer-
bation of pulmonary illness. Increased protein turnover in
MetS may lead to reduced bioavailability of arginine and
reduced nitric oxide production, resulting in epithelial
damage and dysfunction.82 A study of MetS in combination
with an allergic mouse model demonstrated the presence of
dysfunction and stressed mitochondria in the bronchial
epithelium, which resulted in airway hyperreactivity even
with no allergen present.83 Chemokine (C-X-Cmotif) recep-
tor 3 also likely plays a role in the increased vulnerability of
individuals with MetS, as it is known to be involved in
allergic airway inflammation and has been demonstrated
to modulate diet-induced insulin resistance and macro-
phage infiltration in visceral adipose tissue.84,85 Lipid dys-
regulation may also contribute to the exacerbation of
pulmonary dysfunction, as both metabolic disease and
PM inhalation have been determined to alter lipid profiles
and metabolism86–88 Given that lung surfactant is com-
posed of 90% lipids by mass, alteration of lipid metabolism
has the potential to significantly impact lung function and
disease, with overproduction, underproduction, and
changes to surfactant composition all being associated
with illness.89 While MetS itself has been the topic of few

studies examining increased susceptibility, research of its
components and associated diseases has demonstrated that
individuals with MetS are more vulnerable to adverse pul-
monary health outcomes as a result of PM air pollution.
This enhanced susceptibility associated with MetS and its
associated should be taken into account when affected indi-
viduals enter areas which are known to have elevated
levels of PM air pollution. These individuals likely require
additional safety measures, such as reduced time outdoors
during high pollution days. Further, these findings suggest
that physicians may need to consider supplemental screen-
ing of individuals with MetS following exposures to detect
PM-associated diseases at earlier stages.

Conclusions

While further research is needed to elucidate biological
mechanisms of increased susceptibility to PM exposure
due to metabolic disease, it is likely excess levels of insulin
present in MetS contribute by inducing airway hypercon-
tractility and bronchoconstriction. There is also evidence to
suggest that metabolic disease and PM inhalation aggra-
vate one another through inflammatory mechanisms and
the dysregulation of lipid metabolism. It is likely that the
increased sensitivity of individuals with MetS is due to a
combination of the above listed factors, as well as others yet
to be discovered. One of the most conspicuous gaps in our
current knowledge is the comparative lack of studies on
lipid mediators of inflammation. Underlying diseases that
alter lipids, such as MetS, may cause deficient resolution
signaling resulting in exacerbated and extended pulmo-
nary inflammation. Furthermore, modulation of lipids
may be a potential therapeutic target for treatment of pul-
monary issues in individuals with MetS exposed to PM.
Additional research is required to gain a more complete
understanding of the complex interactions between PM,
MetS, and pulmonary illness.

Cardiovascular effects associated with MetS
and PM exposures

While the pulmonary system is directly exposed to inhaled
air pollutants, the cardiovascular consequences may be the
most concerning and also exacerbated due to MetS. The
relationship between PM exposure and cardiometabolic
disease is robust, and is demonstrated by well-
documented associations with cardiac arrhythmia,
hypertension, atherosclerosis, myocardial infarction, and
ischemic stroke.90–94 Due to the increased risk of cardiovas-
cular events, the effects of PM on the cardiovascular system
have been the subject of many studies. A number of mech-
anisms have been proposed to explain the impact of PM on
the cardiovascular system, including direct translocation of
particles to the circulation, the induction of pulmonary oxi-
dative stress and systemic inflammation, and triggering of
autonomic nervous system responses.95–99

Cardiovascular dysfunction resulting from MetS

The impact of metabolic disease on cardiovascular function
is significant and well-documented. Multiple studies have
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established that MetS is associated with an increased risk of
cardiovascular disease and mortality.19,100,101 Specifically,
MetS is related to a number of cardiovascular conditions,
including microvascular and cardiac dysfunction, coronary
calcification, myocardial infarction, and heart failure.102–106

In terms of cardiovascular function, MetS causes alterations
in heart rate, cardiac output, and vascular resistance, creat-
ing a hemodynamic phenotype with a higher risk of car-
diovascular disease (CVD).107–109 A number of mechanisms
are thought to contribute to the increased cardiac vulnera-
bility seen in MetS, with one of the most prominent being
the altered handling and storage of calcium ions (Ca2þ).
This is thought to occur primarily through impaired func-
tion of ryanodine receptors and altered activity of the car-
diac sarco(endo)plasmic reticulum Ca2þ ATPase (SERCA2)
protein.110 Type 2 ryanodine receptors (RyR2) act as the
major release channels through which Ca2þ exits the sarco-
plasmic reticulum in the heart, causing cardiac muscle con-
traction.111 Phosphorylation of RyR2 is enhanced in MetS,
and binding affinity is reduced.112 This causes the RyR2
channels to be “leaky,” leading to disrupted calcium
homeostasis and contributes to impaired contraction, ven-
tricular arrhythmia, and heart failure.113 The role of
SERCA2 in increasing individuals’ susceptibility to CVD
is less well understood. In healthy individuals, SERCA2
transfers Ca2þ from the cytosol to the sarcoplasmic reticu-
lum, regulating muscle contraction through the mainte-
nance of normal Ca2þ levels.114 However, in MetS
conditions, the activity of SERCA2 is reduced, leading to
impaired Ca2þ uptake and contractile dysfunction.115 There
is conflicting research regarding the exact mechanism by
which SERCA2 activity is reduced; while some studies
indicate that the reduced functionality is likely due to
decreases in protein expression, others have demonstrated
a decrease in activity with no change in expression.106,115,116

Evidence suggests that the reduced activity of SERCA2 in
MetS is not driven solely by protein abundance, andmay be
due partially to oxidative-stress induced structural
changes.117 While the altered activity of SERCA2 and
RyR2 are core elements of the MetS-induced electrophysi-
ological cardiac dysfunction, myocardial titin, which con-
trols muscle elasticity in the sarcomere, is also a probable
mediator.106,118 In an animal model of metabolic disease,
titin was determined to be hyperphosphorylated, increas-
ing cardiac muscle stiffness and contributing to heart fail-
ure.119 This finding has been supported by human studies,
as well; patients with hypertension and diastolic heart fail-
ure have been determined to have altered myocardial titin
phosphorylation and increased titin-dependent stiffness
when compared to controls.120 Metabolic disease even
goes as far as to alter the metabolism of the myocardium
itself; with obesity causing increased cardiac uptake and
oxidation of fatty acids.121 This has been observed in
animal models, as well as humans with obesity, insulin
resistance, and diabetes.122–124 This increased uptake and
utilization of fatty acids as an energy source is not without
consequence, and causes an increase in insulin resistance
and reactive oxygen species while also decreasing cardiac
efficiency.125,126 The mechanisms described here are not an
exhaustive list, as the link in betweenmetabolic disease and

CVD is complex and has been the topic of multiple
reviews.127–129 The exacerbation of CVD as a result of
MetS is likely not the result of any one specific mechanism,
but rather a variety of pathways contributing to cardiac
dysfunction and illness.

MetS as an aggravating factor

By itself, PM exposure is known to increase individuals’
susceptibility to adverse cardiovascular outcomes.130

Given this, a significant amount of research has been per-
formed to determine if metabolic disease, which also neg-
atively impacts cardiovascular function, acts as an
additional risk factor.131,132 Toxicological studies in animal
models have determined that MetS predisposes individuals
to greater cardiovascular dysfunction following PM inha-
lation, including decreased HRV, increased arrhythmia,
and depressed heart rate and blood pressure.25,133

Interestingly, this is likely not the result of any direct effects
of PM on the cardiovascular system itself, but rather lung-
mediated activation of the autonomic nervous system.
Exposure to PM induces increased production of norepi-
nephrine in the hypothalamus of insulin-resistant obese
rats, more so than in healthy animals.134 This norepineph-
rine acts as an agonist of the a2 adrenoceptor, which has
been shown to be sensitized to respond to ligands due to
MetS.135,136 It is likely that the increased baseline sensitivity
of the adrenoceptor in combination with increased agonist
stimulation by norepinephrine results in a high level of
receptor responsiveness. The resulting increased activation
of the a2 adrenoceptor decreases the activity of the sympa-
thetic nervous system, and thus alters cardiac func-
tion.136,137 Interestingly, a2 adrenoceptor agonists have
been used to treat sympathetic nervous system hyperactiv-
ity, which can also cause cardiac dysfunction.138 The capac-
ity of metabolic disease to worsen cardiovascular health
outcomes is seen in humans as well, with alterations
observed in cardiac function as well as biomarkers of car-
diovascular health. Specifically, PM has been demonstrated
to cause decreases in plasminogen and thrombomodulin,
and increases in C-reactive protein, serum amyloid A, and
white blood cell count (WBC).23,24,139 This is indicative of an
acute phase response, demonstrating a systematic response
to inhaled exposures. Decreased HRV and altered cardiac
rhythm have also been observed to be exacerbated in indi-
viduals with MetS.24,140 Plasminogen and thrombomodulin
are both involved in the fibrinolytic pathway, indicating
that MetS could potentially lead to worse cardiovascular
health outcomes as a result of impaired breakdown of
blood clots.141,142 C-reactive protein, serum amyloid A,
and WBC are all well-established biomarkers of heart dis-
ease, with all being indicative of widespread inflamma-
tion.143–145 Reduced HRV has not only been linked to an
increased risk of cardiovascular events, but also an
increased risk of mortality.146,147 The evidence would
appear to overwhelmingly indicate that MetS presents a
clear additional risk for those exposed to PM, but paradox-
ically, one of the largest studies to date of the relationship
between MetS and PM has demonstrated exactly the oppo-
site. A nationwide prospective cohort study of over 669,000
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individuals concluded that metabolic disease does not
increase the risk of PM-induced cardiovascular mortali-
ty.148 However, the researchers concede that a number of
issues exist in their study which may have confounded the
results, including imperfect classification of pre-existing
conditions and a biased sample pool, which included a dis-
proportionate number of well-educated, affluent individu-
als and was not representative of the population at large.
Further, the researchers speculate that rather than directly
increasing the risk of cardiovascular mortality as a result of
exposure, metabolic disease may have instead been exacer-
bated by PM inhalation, leading to ancillary health effects.
In light of this seemingly contradictory laboratory and epi-
demiological evidence, additional studies are needed to
clarify the impact of MetS on the cardiovascular health out-
comes associated with PM inhalation.

While further research is required to determine the
capacity of MetS to increase individuals’ susceptibility to
PM exposure, several associated components of MetS have
abundant evidence supporting their ability to worsen car-
diovascular health following PM exposure. In vivo studies
have demonstrated that individuals with hypertension are
more prone to a variety of cardiovascular issues following
PM inhalation, including depressed heart rate and blood
pressure, increased WBC, and dysrhythmia.60,149–151 The
increased impact of PM in such conditions has been sup-
ported by epidemiological studies of human populations,
which have observed decreased HRV as well as increased
rates of doctor visits for dysrhythmia and heart failure in
hypertensive individuals.152,153 Biomarkers of heart dis-
ease, including C-reactive protein (CRP) and WBC, are
also observed to be increased in hypertensive individuals
as compared to healthy following PM inhalation.154 Similar
effects have been observed in obesity, with greater increases
seen in the levels of CRP and WBC.154,155 Interestingly, ele-
vations have also been observed in soluble vascular cell
adhesion molecule (sVCAM-1).156 SVCAM-1 is an
immunoglobulin-like marker of inflammation and endo-
thelial function that binds integrins found on the surface
of monocytes, thus allowing for monocytic migration into
the vessel wall.157–159 This likely indicates that obese indi-
viduals are at a greater risk of developing or worsening
arterial disease as a result of PM exposure, as this process
is crucial to the development of atherosclerosis.160

Functional deficits have also been observed in obesity,
including decreases in HRVand endothelial function.161,162

Unsurprisingly, these biological and functional alterations
have a tangible effect on the health of those affected.
Obesity significantly increases the risk of experiencing a
cardiovascular event, such as myocardial infarction, as a
result of PM exposure.163 While fewer studies have been
performed regarding the impact of diabetes on the cardio-
vascular effects of PM exposure, those which do exist indi-
cate a decidedly negative influence. Diabetes has been
determined to worsen the biochemical and functional phys-
iological changes associated with PM exposure, increasing
CRP and WBC levels and as well as the risk of dysrhyth-
mia.153,154 This is likely due at least in part to the PM-
induced exacerbation of cardiomyocyte dysfunction
which is observed in diabetic conditions. Specifically, PM

has been determined to inhibit the sarcomere contractile
properties of cardiomyocytes, which already experience a
functional decline due to the presence of excess glucose.164

The production of reactive oxygen species is likely at least
partially responsible for this additional decline, as markers
of oxidative stress such as 8-hydroxydeoxy-guanosine are
elevated in diabetic conditions following PM exposure, and
antioxidants have a restorative effect.164,165

Epidemiological studies have determined the real-world
impact of the increased vulnerability of this subpopulation;
diabetics are twice as likely to be admitted to the hospital
for PM-induced cardiovascular events or diseases.166

Dyslipidemia is perhaps the most studied MetS-
associated condition regarding its impact on the cardiovas-
cular effects of PM exposure. Perhaps the most impactful
effect PM has on cardiovascular health is its well-
documented ability to worsen atherosclerosis, increasing
the size and number of plaques present, as well as altering
their composition.167–172 Some of these alterations make the
plaques more susceptible to rupture, an event which causes
thrombosis and can lead to eventual oxygen deprivation
and myocardial infarction.171,173 Mechanistically, the
enhanced progression of atherosclerosis is likely due to a
number of factors, including expression of pro-
inflammatory and oxidative stress markers such as visfatin,
TNF-a, iNOS, and others.167,170,172,174 This in turn leads to
increased expression of cell adhesion molecules such as
vascular cell adhesion molecule-1, enhancing monocytic
migration, and worsening atherosclerosis.172,175 Changes
in cardiac function are observed in dyslipidemia, as well,
such as decreases in HRVand heart rate.176,177 It is clear that
bothMetS and its associated conditions have the capacity to
exacerbate PM-induced cardiovascular system effects.

Conclusions

The cardiovascular system is sensitive to the effects of
inhaled PM that may be enhanced due to MetS. The
advancement of atherosclerosis following PM exposure in
MetS may be the most significant toxicological outcome.
While additional research is needed to establish mecha-
nisms by which MetS itself constitutes an additional risk
factor for PM exposure, the evidence indicates that the
associated disorders of hypertension, obesity, diabetes,
and particularly dyslipidemia do increase an individual’s
risk for adverse cardiovascular outcomes following PM
inhalation.

Hepatic and developmental effects

It is apparent based on both the epidemiological and mech-
anistic laboratory research that metabolic disease has the
capacity to worsen adverse cardiovascular and pulmonary
health outcomes that occur as a result of PM exposure.
Individuals who suffer from MetS and other metabolic ill-
ness are more susceptible to the development or worsening
of diseases such as asthma and atherosclerosis, potentially
increasing the risk of mortality. While the pulmonary and
cardiovascular systems are the focus of this review, it
should be emphasized that PM has systemic effects on mul-
tiple organ systems throughout the body. Non-alcoholic
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fatty liver disease (NAFLD), a condition frequently consid-
ered to be a component of MetS, is thought to be aggravated
by exposure to PM.178 MetS models have been shown to be
more susceptible to lipid accumulation following particle
exposure, contributing to the development of steatosis.179

Additionally, a greater overall decrease in liver function has
been observed in mouse models of metabolic disease fol-
lowing PM exposure, with lowered ALT and AST,
enhanced steatosis, and increased levels of hexanoyl-
lysine, a marker of oxidative stress.180 While the mecha-
nisms responsible for this increased vulnerability are not
fully understood, it is thought that inflammation plays a
large role. Reduction of TNF-a signaling through the use of
an inactive rhomboid protein 2 knockout model significant-
ly attenuated PM-induced dyslipidemia and hepatic
injury.181 Further, PM inhalation has been demonstrated
to induce TLR-4 dependent activation of Kupffer cells,
increasing pro-inflammatory cytokine production and
potentially exacerbating NAFLD.178 It is likely that the
inflammation and TNF-a signaling caused by PM are par-
tially responsible for the TLR activation of Kupffer cells,
and thus the worsening of metabolic liver disease. The
effects of PM are in fact so far-reaching that they may influ-
ence the development of metabolic disease even before
birth. Maternal inhalation of fine PM has been demonstrat-
ed to predispose offspring to the development of MetS.182

Specifically, rat studies have shown that pups that are born
tomothers that were exposed to fine PM not only suffer from
impaired organogenesis, but disrupted lipid and glucose
homeostasis, elevated hepatic lipids, and increased plasma
glucose and fatty acids concentrations in adulthood.183 A
similar association has been observed in human newborns
as well; exposure to PM during pregnancy has been

determined to be associated with higher levels of cord
plasma insulin, potentially indicating an increased risk of
glucose intolerance and metabolic disease later in life.184

Potential interventional approaches to
mitigate MetS-associated exacerbations

The effects of PM on the body are systemic and adverse.
The inhalation of PM can contribute to the development or
exacerbation of metabolic disease, reducing not only indi-
viduals’ lifespans, but their quality of life as well.
Fortunately, research has indicated a number of methods
that may attenuate the negative impact of PM exposure.
Physical activity has been determined to have a negative
association with MetS, though its protective effect is
reduced at higher ambient PM concentrations.185 A variety
of medications have also demonstrated effectiveness at
reducing the metabolic effects of PM inhalation.
Treatment with hydralazine, a medication used to reduce
blood pressure, reduced PM-induced pulmonary leakage
in exposed rats, though it did not alter neutrophilic inflam-
mation or lung injury.186 Statin medications have also been
determined to potentially have a protective effect, attenu-
ating the development of atherosclerosis and endothelial
dysfunction induced by PM exposure.187 One study deter-
mined that a statin treatment inhibited the exacerbated
particle-induced acute inflammatory response observed
in MetS, with a corresponding inhibition of alterations in
specialized pro-resolving mediators.75 Together, these find-
ings suggest that statins may modulate the induction and
resolution of the inflammatory response and be protective
against the development and exacerbation of MetS and its
associated conditions.

Figure 1. Mechanistic pathways and pathological effects of inhaled particulate matter on the pulmonary, cardiovascular, and hepatic systems (Figure created with

Biorender.com). (A color version of this figure is available in the online journal.)
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Overall conclusions

While the associations between PM exposure andmetabolic
illness are clear, the mechanisms responsible are still largely
undetermined. This is likely due, at least in part, to the
complexities of the interactions between the multiple
organ systems impacted by PM, as illustrated in Figure 1.
While this review focused primarily on the impact of PM on
the pulmonary and cardiovascular systems, the effects are
in fact systemic, impacting every system in the body.
Inflammation, oxidative stress, and insulin resistance
have all been implicated in the susceptibility of individuals
with metabolic illness, and it is likely the interaction
between these and other factors which is the cause of the
enhanced vulnerability. Physical activity and medication
have been demonstrated to have protective effects, but
additional research is necessary to understand both the
mechanisms underlying the increased sensitivity of those
with metabolic illness, and the most effective way to protect
this vulnerable subpopulation. By understanding the
mechanisms by which PM exposure contributes to the
development and progression of MetS and Met-associated
diseases, intervention strategies for these conditions may
be developed and implemented to assist with the treatment
of the underlying condition, as well as any complications
which may arise as a result of PM exposure.
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