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Abstract
Particulate matter exposure is a risk factor for lower respiratory tract infection in children.

Here, we investigated the geospatial patterns of community-acquired pneumonia and the

impact of PM2.5 (particulate matter with an aerodynamic diameter �2.5 mm) on geospatial

variability of pneumonia in children. We performed a retrospective analysis of prospectively

collected population-based surveillance study data of community-acquired pneumonia

hospitalizations among children <18 years residing in the Memphis metropolitan area, who were enrolled in the Centers for

Disease Control and Prevention sponsored Etiology of Pneumonia in the Community (EPIC) study from January 2010 to June

2012. The outcome measure, residence in high- and low-risk areas for community-acquired pneumonia, was determined by

calculating pneumonia incidence rates and performing cluster analysis to identify areas with higher/lower than expected rates of

community-acquired pneumonia for the population at risk. High PM2.5 was defined as exposure to PM2.5 concentrations greater

than the mean value (>10.75 lg/m3), and low PM2.5 is defined as exposure to PM2.5 concentrations less than or equal to the mean

value (�10.75 lg/m3). We also assessed the effects of age, sex, race/ethnicity, history of wheezing, insurance type, tobacco

smoke exposure, bacterial etiology, and viral etiology of infection. Of 810 (96.1%) subjects with radiographic community-acquired

pneumonia, who resided in the Memphis metropolitan area and had addresses which were successfully geocoded

(Supplementary Figure F2), 220 (27.2%) patients were identified to be from high- (n¼ 126) or low-risk (n¼ 94) community-

acquired pneumonia areas. Community-acquired pneumonia in Memphis metropolitan area had a non-homogenous geospatial

pattern. PM2.5 was associated with residence in high-risk areas for community-acquired pneumonia. In addition, children with

private insurance and bacterial, as opposed to viral, etiology of infection had a decreased risk of residence in a high-risk area for

community-acquired pneumonia. The results from this paper suggest that environmental exposures as well as social risk factors

are associated with childhood pneumonia.

Keywords: Pneumonia, pediatrics, particulate matter, spatial patterns, high-risk areas, outcomes research

Experimental Biology and Medicine 2021; 246: 1907–1916. DOI: 10.1177/15353702211014456

Introduction

Respiratory conditions are the most frequent reason for

non-neonatal hospitalization among US children, and

pneumonia is the most common principal diagnosis.1

Outdoor ambient air pollution is associated with higher

rates of lower respiratory tract infections (LRTI) in

children.2–6 Particulate matter (PM) can be generated
from a variety of sources including anthropogenic and nat-
ural sources; and the contribution of these sources to the
total concentration of PM can have significant health
impacts.7 Combustion sources contribute significantly to
most of the PM found in PM2.5, while dusts comprise a
significant portion of PM10. Since PM2.5 (and PM0.1

Impact statement
Residence in areas where ambient PM2.5

concentrations are greater than 10.75 lg/
m3, which is less than the Environmental

Protection Agency (EPA) allowable cut-

point for PM2.5 (<12 lg/m3), is associated

with high-risk for community-acquired

pneumonia (CAP) in children.
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contained within PM2.5) is most strongly correlated with
adverse health effects and children are known to be more
vulnerable than adults to the adverse effects of PM2.5, our
data are focused on this category of PM. Specifically, par-
ticulate matter less than or equal to 2.5 micrometers in
diameter (PM2.5) is implicated in causing respiratory dis-
ease,4,8,9 and high PM2.5 exposure has been linked to
increased risk for acute respiratory infection hospitaliza-
tions2,3,6,10,11 and prolonged length of stay for pneumo-
nia.12,13 Particulate matter exposure is measured using
monitoring data from on-road mobile emission sources,
major industrial facilities emission sources, and a high-
resolution surface 1 km by 1 km satellite-derived PM2.5

data. High-resolution 1 km by 1 km PM2.5 is emerging as
a more sensitive measure for assessing PM2.5 effects on sev-
eral health outcomes.14–18 Biologic and clinical risk factors
for pediatric pneumonia have been well studied;19–22 how-
ever, few studies have investigated how geospatial patterns
affect community-acquired pneumonia (CAP) risk in chil-
dren23–28 and this has not directly been examined in U.S.
children. Geographical Information Systems (GIS) provide
the opportunity to examine associations between clinical
factors, environmental factors, and spatial distribution of
disease.25,29–34 An earlier study demonstrated associations
between CAP hotspots hospitalizations for pneumonia and
asthma in children under 10 years of age and exposure to
air pollution over a moderate resolution grid of cells
30 km� 30 km.13 However, our study used a much higher
spatial resolution of PM2.5 grid (1 km� 1 km) to study expo-
sure to air pollution among children under 18 years of age
hospitalized with CAP in Memphis.

We used data from the Centers for Disease Control and
Prevention (CDC) Etiology of Pneumonia in the
Community (EPIC) Study, an active, population-based, sur-
veillance study of pediatric CAP hospitalizations, to assess
the geospatial patterns CAP in the Memphis Metropolitan
area (MMA) and the impact of PM2.5 on geospatial variabil-
ity of pneumonia in children. We hypothesized that geo-
graphical heterogeneity exists among pediatric CAP
patients in the MMA, and that high PM2.5 exposure is asso-
ciated with residence in high-risk CAP areas of the MMA.

Materials and methods

Study population, study design, and settings

The EPIC study was a prospective, population-based,
multi-center active surveillance study of the incidence
and etiology of CAP hospitalizations in the United States;
details have been previously published.35 In brief, between
January 2010 and June 2012, children <18 years old were
eligible for enrollment in the EPIC study, if they were hos-
pitalized at one of three pediatric study hospitals in three
different U.S. cities (Memphis and Nashville, TN; and Salt
Lake City, UT); resided within a defined catchment area;
and had evidence of clinical and radiographic evidence of
pneumonia within 72 h of admission. Children were
excluded if they were recently hospitalized (i.e. within
the past 90 days), enrolled in the study in the preceding

28days, severely immunocompromised, had cystic fibrosis
or a tracheostomy.35 This analysis is limited to the children
enrolled at Le Bonheur Children’s Hospital (LBCH) in
Memphis, Tennessee who resided in the MMA (Figure 1).
The market share for LBCH for pneumonia for patients
living in the study area is estimated to be 86% and is
accounted for in data analysis.35 The MMA is made up of
eight counties (Arkansas: Crittenden; Mississippi: Desoto,
Marshall, Tate, Tunica; Tennessee: Fayette, Shelby, Tipton)
comprising a population of approximately 1,320,000
according to the U.S. 2010 Census Bureau. For this analysis,
we defined the population at risk as all children <18 years
old living in the MMA. The Institutional Review Boards for
The University of Tennessee Health Science Center and the
CDC approved the study protocol.

Demographic, clinical, and laboratory data were collect-
ed by caregiver interview and chart abstraction. Etiology of
pneumonia was determined using a combination of sam-
ples collected for study purposes and clinical samples col-
lected by treating physicians.35 The methods for data
collection, specimen collection, laboratory testing, and def-
initions for pathogen detection have been previously
described.35 For this analysis, patients were placed in two
mutually exclusive categories; they had a bacterial etiology
if they had detection of any bacteria with or without one or
more viruses and a viral etiology if one or more viruses and
no bacteria were detected, as defined by the EPIC study.

Residential addresses of CAP cases were geocoded and
quality checked using ArcGIS Street Maps (ESRI Inc.,
Redlands, CA, USA), and any unmatched addresses were
resolved using online Google maps (Google Maps/Google
Earth, Google Inc. Mountain View, California, USA).
Geographical information systems (GIS) mapping and
local cluster detection were conducted using both ArcGIS
10.4 and SpaceStat 4.0.21 (ClusterSeer, a BioMedware Inc.,
Ann Arbor, Michigan). We accounted for inflated CAP rates
caused by small numerator or denominator data by adjust-
ing for population at risk using an Empirical Bayesian
filter.36,37 Descriptive statistics, bivariate, and multivariable
analyses were conducted using IBM SPSS Software version
24 (IBM SPSS Statistics, Armonk, New York).

Statistical analysis

Using the Memphis EPIC study dataset, we performed spa-
tial analysis to assess if there were geographic clusters of
CAP in the MMA, and if high PM2.5 exposure, along with
other risk factors, could predict residence in high-risk
versus low-risk CAP areas. All spatial analysis was done
either at individual or census tract-level. Count of all child-
ren< 18 years of age living in the study region was com-
piled from the US Census data and served as the
denominator (population at risk), while the numerator
was the count of pneumonia (PN) cases. The outcome var-
iable, residence in high-risk versus low-risk CAP areas, was
determined by “hotspot” analysis using Turnbull’s method
38 which evaluates local spatial clusters using the number of
CAP cases, user-defined population threshold, and popu-
lation size (total population of children <18 years old in
each census tract). Incidence calculations, adjusted for
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market share, were made to assess hotspots and cold spots.
The lower and upper limits of the 95% confidence intervals
for the incidence were derived using two methods previ-
ously described.39,40 For the first part of presented results,
we are using bootstrap methods using 10,000 samples,
while for the remaining analyses CI was derived from
Chi-square tests and logistic regression. A map showing
significant spatial clusters of locations of CAP cases was
generated (Figure 2). Identified high- (hotspots) and low-
risk (cold spots) areas of CAP incidence were used as the
outcome variables. Patients who did not reside in high- or
low-risk areas of CAP were not included in the final
analysis.

Exposure to PM2.5 was the primary independent vari-
able of interest. We assessed proximity to PM2.5 by looking
at residence within 500-m radius of major roadways and
residence within a 2.5-km radius from individual sources.
Residential PM2.5 exposure was measured using a high spa-
tiotemporal resolution 1 km by 1 km grid of satellite-
derived PM2.5 concentrations (Supplementary Methods)
and this was chosen as our primary PM variable of interest
(Supplementary Discussion). PM2.5 data spanning the
study period were obtained from a published source.16

Individual-level residential geocodes for each child (point
data) were used to extract a specific PM2.5 value from the
PM2.5 surface (raster data). Each geocoded address was
assigned this PM2.5 value, which was then compiled as an
input variable for the model. The mean PM2.5 for the MMA

during the study period was 10.75 lg/m3 (interquartile
range (IQR): 10.30; 10.90; 11.30; 12.90; range 8.20–
12.90 lg/m3), which is less than the Environmental
Protection Agency (EPA) allowable cut-point for PM2.5

(<12 lg/m3).41 We then converted this to a dichotomous
variable, higher and lower exposure, based on the mean
PM2.5 concentration of 10.75.

We also assessed the effect of other independent varia-
bles including: age (<2 years, 2–4 years, 5–9 years, 10–
17 years), sex, race/ethnicity (White, non-Hispanic (NH)
Black, Hispanic, and “other” encompassing other races,
along with multiracial), history of wheezing, insurance
type (private vs. public, other), tobacco smoke exposure
(number of household smokers “0,” “1,” or “�2”), bacterial
etiology, and viral etiology of infection. We defined severe
CAP as admission to the intensive care unit (ICU), pro-
longed length of stay (prolonged LOS; hospital stay
longer than the median length of stay of 2.8 days), and/or
any complication (invasive mechanical ventilation, severe
sepsis, parapneumomonic effusion requiring intervention,
extracorporeal membrane oxygenation, or continuous renal
replacement therapy).

Chi-square tests and logistic regression were used to
compute unadjusted and adjusted odds ratios (OR) to
describe the association of residential PM2.5 exposure
with residence in a high-risk CAP area. After identification
of CAP clusters, a preliminary analysis revealed PM2.5 as
the primary independent variable of interest to include in

Figure 1. Map showing location of study area including eight major regions of the Memphis Metropolitan Area, EPA monitoring sites, major roads, Superfund sites,

and top PM2.5 stationary emission sites based on tons of PM produced.
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the model (Supplementary Table 1). Other variables, with
P< 0.10, were considered for inclusion in the multivariable
model. All comparisons were two-sided and P< 0.05 was
considered statistically significant in the final multivariable
model.

Results

Characteristics, demographics, and spatial distribution
of study sample

The MMA comprises eight counties, with a population of
1,320,000 per the U.S. 2010 Census Bureau (Figure 1). At the
Memphis study site, 977 children were enrolled; 842
(86.2%) had radiographic CAP and the specimens neces-
sary to determine the etiology of infection. Of these, 810
(96.2%) resided in the MMA and were successfully geo-
coded (Supplementary Figure 1). The overall incidence of
hospitalized pediatric pneumonia for the MMA was 28.72
cases per 10,000 children (95% confidence interval (CI): 28–
30). Rates were higher for Hispanics, 75.2 cases per 10,000
(CI: 63–89) non-Hispanic Blacks, 33 cases per 10,000 (CI: 30–
36), and other races, 37 cases per 10,000 (CI: 25–54) com-
pared with White children (4 cases per 10,000 [CI: 3–5]).
Most pneumonia cases 83.6% (184/220) were from Shelby
County followed by Crittenden County 7.3% (16/220), and
Desoto County 5% (11/220). The lowest number of cases
was observed in descending order in the following coun-
ties: Marshall, Fayette, and Tunica.

Among 810 eligible CAP cases, 220 (27.2%) were identi-
fied to be from high- or low-risk CAP areas; 126 (57.3%)
were from high-risk CAP areas, and 94 (42.7%) from low-

risk CAP areas (Supplementary Figure F1). Figure 2 shows,
at census tract level, spatial clusters for CAP in children
included in our study. Most (44.1%) children admitted
with CAP were <2 years of age (Table 1). The racial distri-
bution of CAP cases was mostly NH-Black (76.3%), with a
significantly higher proportion of NH-Black children living
in high- compared to low-risk CAP areas (89.9% vs. 58.0%,
P <0.01). The majority of children had public insurance
(84.1%); and a greater proportion who reside in high-risk
CAP areas, had public insurance (95.8% vs. 68.2%, P <0.01)
compared to those who reside in low-risk CAP areas.
Most of the included CAP cases were exposed to high
levels of PM2.5 (63.8%), and a higher proportion of cases
residing in high-risk CAP areas were exposed to high
PM2.5 compared with cases living in low-risk CAP areas
(75.6% vs. 47.7%, P <0.01).

Bivariate analyses and multivariate analyses were con-
ducted with a reduced sample size (n¼ 207) due to exclud-
ed cases belonging to categories where cell size was <10
(Supplementary Methods). In the bivariate analysis
(Table 2), compared with children with CAP in low-risk
CAP areas, children with CAP in high-risk areas were
more likely to be NH-Black (OR 21.7; 95% CI 6.33–74.25)
and Hispanic (OR 15.5; 95% CI 3.2–74.7). In addition, com-
pared with children with CAP in low-risk areas, children
with CAP in high-risk areas were less likely to have private
insurance (OR 0.09; 95% CI 0.04–0.26) and were more likely
to be exposed to high PM2.5 (OR 3.4; 95% CI 1.9–6.1).

On multivariate analysis, we have shown two models
(Tables 3 and 4). The first model includes PM2.5 exposure
as the primary explanatory variable (Table 3). This model

Figure 2. Map showing, at census tract level, spatial clusters/hotspots and cold spots for community acquired pneumonia cases.
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Table 1. Descriptive statistics for children hospitalized with community-acquired pneumonia (CAP) from higher than expected and lower than expected

CAP areas (n¼ 220).a

Variable Total (n5220)

Higher than

expected (n5 126)

Lower than

expected (n5 94)

Age

<2yrs 97 (44.1) 55 (43.7) 42 (44.7)

2–4yrs 71 (32.3) 43 (34.1) 28 (29.8)

5–9yrs 29 (13.2) 15 (11.9) 14 (14.9)

10–17yrs 23 (10.5) 13 (10.3) 10 (10.6)

Race/ethnicity

White 35 (15.9) 3 (2.4) 32 (34.0)

Hispanic 15 (6.8) 9 (7.1) 6 (6.4)

NH-Black 162 (73.6) 109 (86.5) 53 (56.4)

Other 8 (3.6) 5 (4.0) 3 (3.2)

Sex

Male 121 (55.0) 73 (57.9) 48 (51.1)

Female 99 (45.0) 53 (42.1) 46 (48.9)

History of wheeze

Yes 131 (59.5) 73 (57.9) 58 (61.7)

No 89 (40.5) 53 (42.1) 36 (38.3)

Smokers in home

0 113 (51.4) 37 (54.4) 53 (56.4)

1 65 (29.5) 18 (26.5) 24 (25.5)

�2 42 (19.1) 13 (19.1) 17 (18.1)

Insurance

1 (public) 181 (82.3) 119 (94.4) 62 (66.0)

2 (private) 34 (15.5) 5 (4.0) 29 (30.9)

3 (other) 5 (2.3) 2 (1.6) 3 (3.2)

Year admitted

2010 74 (33.6) 40 (31.7) 34 (36.2)

2011 82 (37.3) 46 (36.5) 36 (38.3)

2012 64 (29.1) 40 (31.7) 24 (25.5)

Season of hospitalization

Spring 63 (28.6) 40 (31.7) 23 (24.5)

Summer 30 (13.6) 15 (11.9) 15 (16.0)

Fall 64 (29.1) 38 (30.2) 26 (27.7)

Winter 63 (28.6) 33 (26.2) 30 (31.9)

1 km� 1 km surface PM2.5

Low 81 (36.8) 32 (25.4) 38 (40.4)

High 139 (63.2) 94 (74.6) 56 (59.6)

500-m radius from major roadways

No 37 (16.8) 13 (10.3) 24 (25.5)

Yes 183 (83.2) 113 (89.7) 70 (74.5)

2.5-km radius from individual sources

No 144 (65.5) 62 (49.2) 82 (87.2)

Yes 76 (34.5) 64 (50.8) 12 (12.8)

ICU admission

No 191 (86.8) 109 (86.5) 82 (87.2)

Yes 29 (13.2) 17 (13.5) 12 (12.8)

PLOS

No 118 (53.6) 71 (56.3) 47 (50.0)

Yes 102 (46.4) 55 (43.7) 47 (50.0)

Complications

No 210 (95.5) 121 (96.0) 89 (94.7)

Yes 10 (4.5) 5 (4.0) 5 (5.3)

Bacterial etiology

No 196 (89.1) 115 (91.3) 81 (86.2)

Yes 24 (10.9) 11 (8.7) 13 (13.8)

Viral etiology

No 54 (24.5) 28 (22.2) 26 (27.7)

Yes 166 (75.5) 98 (77.8) 68 (72.3)

Any infection

No 28 (12.7) 15 (11.9) 13 (13.8)

Yes 192 (87.3) 111 (88.1) 81 (86.2)

NH: non-Hispanic; PLOS: prolonged length of stay (i.e. >2.8 days); ICU: intensive care unit stay.
aData presented as n (%).
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showed that compared to children with CAP in low-risk
CAP areas, children with CAP in high-risk areas were
more likely to have high PM2.5 exposure (aOR 2.47; 95%
CI 1.28–4.76), and less likely to have private insurance
(aOR 0.12, CI 0.04–0.34). The second model includes race
and showed that compared with children with CAP in low-
risk CAP areas, children with CAP in high-risk areas were
more likely to be NH-Black (aOR 9.821; 95% CI 2.62–36.84)
or Hispanic (aOR 6.43; 95% CI 1.20–34.60) versus White
children, and were less likely to have private insurance
(aOR 0.178; 95% CI 0.059–0.537). Children residing in
high-risk CAP areas were also more likely to have high
PM2.5 exposure (aOR 1.66; 95% CI 0.81–3.38), though not
statistically significant.

Discussion

In our prospective study of CAP in a metropolitan, racially
diverse city with varying PM2.5 exposure, we found that
PM2.5 levels are associated with geospatial patterns of
CAP incidence and residence in CAP hotspot areas for chil-
dren with CAP; however, race is a more significant factor
associated with living in high-risk CAP areas. Insurance
type is also associated with residence in high-risk areas
for CAP in the MMA. Geospatial patterns of CAP incidence
were concentrated among children living in north,
south, and downtown in the City of Memphis and Shelby
County. These findings are supported by previous
studies which highlight geospatial patterns of CAP
admissions,6,8,13,24,25,28,34,42–45 environmental exposure,
specifically PM2.5, as a risk factor for CAP,2–5,7,13,43,46–49

and racial and socioeconomic differences in CAP distribu-
tion44,50–52 and in exposure to air pollution.53,54

Most pneumonia studies performed in high-income
countries have not focused on socioeconomic disparities
in the distribution of CAP.35,55–58 In the United States,
there have been improvements in wide health disparities
in mortality from pneumonia between Black and White
children.59 In this study, we do not directly measure socio-
economic status as the small sample size increases the risk
of de-identification. Instead, we use insurance and race/
ethnicity as proxies. In MMA, the race/ethnicity demo-
graphic shows non-Hispanic Blacks are the majority60 and
also represent the largest racial/ethnic group living in

Table 2. Bivariate analysis for risk factors associated with residence in a

higher than expected vs. lower than expected community acquired

pneumonia (CAP) areas (n¼ 207).a

Variable OR (95% CI) P-value

Age 0.94

<2yrs Reference

2–4yrs 1.19 (0.63–2.26) 0.59

5–9yrs 0.97 (0.41–2.29) 0.94

10–17yrs 0.95 (0.36–2.50) 0.91

Race/ethnicityb <0.01

White Reference

Hispanic 15.50 (3.22–74.66) 0.001

NH-Black 21.68 (6.33–74.25) <0.01

Sex

Male Reference

Female 0.82 (0.47–1.43) 0.31

History of wheeze

No Reference

Yes 1.14 (0.65–1.99) 0.66

Smokers in home 0.36

0 Reference

1 1.60 (0.84–3.04) 0.16

�2 1.21 (0.57–2.55) 0.62

Insuranceb,c

Public Reference

Private 0.09 (0.04–0.26) <0.01

Season 0.72

Spring Reference

Summer 0.64 (0.26–1.57) 0.33

Fall 0.83 (0.40–1.74) 0.63

Winter 0.71 (0.34–1.47) 0.35

1 km� 1 km surface PM2.5
b,c

Low Reference

High 3.40 (1.88–6.14) <0.001

ICU

No Reference

Yes 0.91 (0.40–2.06) 0.83

PLOS

No Reference

Yes 0.84 (0.48–1.46) 0.54

Complications

No Reference

Yes 0.58 (0.15–2.22) 0.42

Bacterial etiology

No Reference

Yes 0.60 (0.052–1.40) 0.23

Viral etiology

No Reference

Yes 1.41 (0.74–2.68) 0.30

NH: non-Hispanic; PLOS: prolonged length of stay (i.e., >2.8 days)
an¼ 207 (excludes 13 cases with small sample size).
bStatistically significant P <0.05.
cIncluded in final model (P <0.1).

Table 3. Multivariable model results for residence in higher than

expected versus lower than expected CAP areas with PM2.5 as the primary

independent variable (reduced model).

Variable OR (95% CI) P-value

1 km� 1 km surface PM2.5

Low Reference

High 2.47 (1.31–4.66) 0.005

Insurance

Public Reference

Private 0.12 (0.04–0.35) <0.001

Table 4. Multivariable model results for residence in higher than

expected versus lower than expected CAP areas (full model).

Variable OR (95% CI)

P-

value

Insurance

1 (public) Reference

2 (private) 0.178 (0.059–0.537) 0.002

Bacterial etiology (no vs. yes) 0.183 (0.053–0.634) 0.007

Race/ethnicity

White Reference 0.003$

Hispanic 6.434 (1.197–34.595) 0.030

NH-Black 9.821 (2.618–36.838) 0.001

1 km� 1 km surface PM2.5 (0 vs 1) 1.655 (0.810–3.379) 0.167

$Test for heterogeneity.
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poverty.60 Our findings show race/ethnicity, and public
insurance are associated with residence in high-risk CAP
areas. This finding may imply a persisting socioeconomic
disparity for CAP and is supported by previous
studies.11,44,50,51,61–65 Potential explanations for this socio-
economic disparity include low maternal education,51 and
the disparity may be potentiated by parent/patient factors
such as poor access to primary care, and medication adher-
ence issues.62–64 This disparity is likely associated with sub-
optimal living conditions such as having poor indoor/
outdoor air quality, as shown by high PM2.5 exposure in
high-risk CAP areas. The use of GIS to identify CAP risk
areas helps demonstrate geographic high-risk CAP areas
which need further study and may benefit from targeted
holistic interventions including cleaner air.44,62

The MMA has higher than average concentrations of
chronic childhood respiratory conditions such as asthma
which have been noted in the same geographical areas
found in this study.61 This is thought to be related to the
presence of industrial facilities and PM2.5 mobile emissions
sources in these areas.61 Previously published studies
assessing environmental exposures and respiratory-
related admissions in children have also noted CAP hot-
spot areas to have more sources of environmental pollution
such as PM2.5 stationary emission sites and Superfund
sites.8,44,61,66,67 Such studies highlight the need to include
geospatial risk factors of CAP in children. To the best of our
knowledge, this is the first study to show the association
between residence in high-risk CAP areas and exposure to
high PM2.5 using satellite-derived PM2.5 estimates in a pro-
spectively collected cohort of children hospitalized with
radiographic and clinical CAP. This finding highlights the
areas in the MMA, and other similar communities, as
locales where interventions for cleaner air and other strat-
egies to decrease air pollution can be focused and may help
reduce CAP rates. Our findings suggest that residential
location is associated with CAP incidence among children
in the MMA.

PM2.5 originates from the combustion process of diesel
and gasoline-powered vehicles, and burning of biomass
and coal to generate power among other sources.46

Satellite-derived PM2.5 has emerged as a more sensitive
measure for assessing PM2.5 effects on health outcomes
compared with ground monitoring networks, proximity
measures (see Supplementary), and use of air quality
models.14–18,68 For this study, PM2.5 levels were obtained
via high spatiotemporal resolution 1 km by 1 km grid of
satellite-derived PM2.5 concentrations. The population-
derived mean for high PM2.5 in the MMA (10.75 lg/m3)
was less than the annual EPA allowable threshold
(<12lg/m3). Despite this, we detected a significant and
clinically relevant association of geographic clustering of
CAP cases to PM2.5. We also assessed the association
using measures of PM obtained by other measures
(Supplementary Table 1(b)). While a few studies have
assessed respiratory outcomes in children using high reso-
lution PM estimates,9,10,17 this study is unique because,
using satellite-derived PM2.5, we are able to show associa-
tion of possible PM2.5 effects at exposure levels lower than
the current EPA PM2.5 limit. This contributes to the body of

evidence supporting a need for continuous review and
adjustment to health standards given harmful effects
from PM2.5 exposure.

41

Viral infection is more likely to spread through close
proximity with an infected person such as seen in daycares,
homes with high number of occupants, and in children
<2 years of age. The etiology of infection seen in most
CAP cases residing in high-risk areas, specifically viral eti-
ology of infection, may speak to the pattern of exposure in
high-risk areas compared to low-risk areas where there
may be less daycare attendance, and lower number of occu-
pants in the home. While we did not assess daycare atten-
dance and crowding as risk factors in this study, these are
known risk factors 20,52,69,70 and are common in areas of low
socioeconomic status (SES) such as the high-risk areas in
this study.

There are several limitations to our study. First, conduct-
ing a retrospective analysis on a sample that did not include
prospective measurement of environmental exposures
lends itself to uncertainty in the quality of data for PM.
And while 1 km by 1 km PM2.5 is thought to be highly sen-
sitive, it is still an estimate of individual level exposure.
Second, it is clear to us residents in high-risk CAP areas
may be affected by many things other than pollution.
There are other variables that cannot be directly measured
and instead we have used proxies for such variables; for
instance, we use race/ethnicity and insurance as proxies for
SES. There may be other ecologic factors that may also play
a role given the concentration of high-risk CAP areas in
documented pollution sites (Figure 2). We recognize,
given the existing literature, that hotspots tend to be pre-
sent in inner city locations versus suburban areas and this is
what our data and results reflect. Third, despite accounting
for market share in our incidence calculations, it is unclear
if market share is uniform across the entire MMA. Fourth,
although local cluster detection using Turnbull’s method
allows for variations in population density when adjusting
for spatial clusters of CAP incidence, it requires a user-
defined population size for the area. Despite this constraint,
this method is computer-intensive and fully accounts for
spatial autocorrelation during cluster evaluation to identify
the most significant cluster locations of CAP incidence.
Fifth, our sample size was small and thus may have limited
power to detect differences; however, this study is useful to
inform a larger prospective study of similar populations.
And lastly, because this is a retrospective study using home
addresses to estimate PM2.5 exposure, we could not account
for other areas (i.e. school, other homes, parks, etc.) in
which the children in our population could have been
exposed to indoor and outdoor pollution, which could
also have been risks for the development of CAP.

In conclusion, we demonstrated that in the MMA, race/
ethnicity, and insurance, both proxies of SES are significant-
ly associated with residence in a high-risk area for CAP. In
addition, spatial detection of high-risk areas for CAP in
children showed these children reside in areas with
higher PM2.5 concentrations in the MMA. Interestingly,
mean PM2.5 levels of 10.75 lg/m3, but less than the
annual EPA allowable threshold of <12lg/m3 were asso-
ciated with high-risk areas for CAP in children suggesting
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that children may be particularly vulnerable to lower
PM2.5 levels. The observations from this paper inform
future work where the study of disease patterns with envi-
ronmental influences may incorporate spatial analysis to
provide a more comprehensive evaluation. Future studies
could consider using personal PM monitors for children in
high-risk areas to evaluate their individual exposure levels
to help quantify their risk as it relates to CAP and other
respiratory diseases. Lastly, the results of this study may be
used to inform further research aimed at at-risk communi-
ties and vulnerable populations in an effort to reduce CAP
burden.
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