
ISSN 1535-3702 Experimental Biology and Medicine 2023; 248: 1414–1424

Copyright © 2023 by the Society for Experimental Biology and Medicine

Introduction

Recent studies have shown that cirrhosis, which kills about 
1 million people each year worldwide, is characterized by 
extensive fibrosis and a lack of effective treatments1,2. An 
early manifestation of cirrhosis development is liver fibrosis, 
which is primarily caused by a chronic liver injury that pro-
duces inflammatory processes and complex fibrosis.3

Liver fibrosis arises from interactions between mesenchy-
mal cells, endothelial cells, and immune cells that reside in 
areas of scarring called fibrotic niches.2 During development, 
stellate cells originate in the septal mesenchyme. Mesothelial 
and submesenchymal cells migrate inward from the embry-
onic liver surface, eventually differentiating into HSCs and 
other perivascular mesenchymal cells.4,5 During liver injury, 
HSCs are activated from a quiescent state in chronic liver 

injury and differentiate into proliferating, motile myofibro-
blasts that secrete extracellular matrix.6 Chronic liver injury 
can continue to activate HSCs, resulting in the continued 
release of extracellular matrix proteins from HSCs, disrupt-
ing liver tissue structure and damaging the metabolic func-
tion of the liver.7,8

The application of single-cell transcriptomic approaches 
to characterize HSCs continues to expand, providing a 
detailed insight into their heterogeneity.9 Single-cell RNA 
sequencing has thus identified subpopulations of HSCs 
distributed in healthy livers, including portal and central 
vein-associated HSCs.9 During liver injury, HSCs are acti-
vated into proliferating, fibrotic MFBs that have a range of 
fibrotic features that together lead to liver injury and fibrosis. 
Activated HSCs require high amounts of energy to support 
their proliferation, secretion of extracellular matrix (ECM), 
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When the liver is damaged, HSCs are activated 
and transdifferentiated into proliferative, fibrotic 
myofibroblasts. There are no effective antifibrotic 
treatment options available. We have explored the 
activation process of HSCs and their core driver 
genes from the single-cell level with the latest ana-
lytical tools. We found that receptor-ligand genes 
such as NTF3, NTRK3, JAG1, NOTCH3, CD46, 
NTF3, and NTRK2 play an important regulatory role 
in the activation process of HSCs. The top2 hub 
genes of activated HSCs are CRIP1 and ACTA2. In 
addition, it was shown that C3, CCDC80, COL1A1, 
COL3A1, DCN, FBLN1, IGFBP3, MXRA5, 
SERPINE1, and MYH11 genes are key genes for 
the transformation of activated HSCs into myofibro-
blasts. This study increased the understanding of 
the activation process of HSCs and uncovered key 
regulators of the transformation of activated HSCs 
into myofibroblasts, providing important information 
for precision and targeted therapies.
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cytokines and proteases, and migration to areas of cellular 
damage. In order to obtain sufficient energy, activated HSCs 
utilize many metabolic pathways which are similar to those 
of cancer cells.10 It is worth noting that the more severe the 
degree of liver fibrosis, the worse the prognosis of patients.1 
Therefore, effective antifibrotic therapy for patients with 
chronic liver disease is urgent.

The existing treatment strategy for liver fibrosis focuses 
on eliminating the associated factors of injury, inhibit-
ing the activation of HSCs, resisting the inflammatory 
response, and promoting ECM degradation.11,12 However, 
for patients with liver fibrosis and early cirrhosis, there is 
no systematic treatment plan clinically, and only conven-
tional drugs can be used. These conventional treatments 
can have toxic effects on the body’s tissues and organs, and 
there are few options for delivering effective concentrations 
of therapeutic drugs to the liver.13 It has been suggested that 
targeted drugs may have better efficacy in the treatment of 
liver fibrosis.

Single-cell transcriptome sequencing technology 
(scRNA-seq) has brought transcriptional analysis to the 
cellular level, allowing us to probe the pathogenesis of 
disease with greater depth and precision.2 It has already 
been reported that mesenchymal stromal cells restrict the 
transformation of CD14 + monocytes to HLA-DRhi mac-
rophages and that mesenchymal stromal cells can inhibit 
macrophage transdifferentiation into CD9 + cirrhosis mac-
rophages by secreting IL-6.1 Here, we used scRNA-seq to 
study the activation process and core driver genes regulat-
ing human HSCs, providing some important information 
for gene targeting therapy.

Materials and methods

Selection of data sets

To study the activation process of human HSCs and their 
core driver genes, we selected the gene expression matrix 
of 13 non-cirrhotic liver tissue samples and 10 cirrhotic liver 
tissue samples from the GSE168933 dataset. The human liver 
tissues were dissected in line with the extraction specifica-
tion of 10× Genomics Single-cell 3’ gene expression V2, and 
the Illumina NextSeq500 sequencing platform was selected 
for sequencing.1

Data integration

We used Seurat (R package V 4.1.1) to integrate single-cell 
gene expression matrices from 23 liver tissue samples.14 In 
this integration process, in order to remove the influence of 
low-quality cells on cell clustering, we filtered cells, selecting 
those with a nFeature_RNA value in each cell not less than 
200 and a proportion of mitochondrial gene expression in 
each cell less than 50%.15,16 We found that the GSE168933 cell 
expression matrix containing 38079 cells had been filtered 
with the umi filter, doublet removal, and mitochondrial gene 
removal (< 20%). Given that harmony (v1.0) is recognized 
as an effective tool for removing batch effects, we used it 
to remove batch effects between samples in order to obtain 
more accurate cell clustering.17,18

Cell clustering and annotation

First, the SCTransform function in Seurat (v4.1.1) was called 
to normalize the data.19 Second, the normalized cell expres-
sion matrix was analyzed by the RunPCA function in Seurat 
for dimensionality reduction.20 Third, removing the batch 
effect between samples was performed by the RunHarmony 
function in harmony (v1.0). Fourth, cell clustering was ana-
lyzed by the FindNeighbors function and FindClusters func-
tion for the top 30 harmony components. In this process, 
k.para was set to 20, and the knn algorithm was used to 
classify the cells. Finally, the cell clusters were annotated by 
using the already recognized classical cell markers.1,2,21

Differential gene expression and enrichment

After cell clustering and annotation of all samples, mesen-
chymal cells were extracted from the samples for re-clus-
tering and subpopulation annotation. The FindMarkers 
function in Seurat was called to obtain the differential genes 
for each cell population with default parameters. To ensure 
the accuracy of subpopulation annotation, we used cluster-
Profiler (R package v 4.4.4) to perform gene ontology (GO) 
enrichment analysis of upward and downward-regulated 
genes for each mesenchymal cell subpopulation separately, 
and the top 10 items with adjusted P values not higher than 
0.05 were shown.22

Pseudo-time analysis

Pseudo-time study was analyzed to simulate the differen-
tiation trajectory of cells based on the gene expression of 
cells in different cell subpopulations. We called monocle3 (R 
package v1.0) to achieve pseudo-time analysis to infer the 
differentiation trajectories of each subpopulation of mesen-
chymal cells.23 Then, we identified the root cells by setting 
the label_principal_points parameter in the plot_cells func-
tion in order to predict the differentiation time of all cells.

Cell–cell communication

CellPhoneDB was equipped with a detailed receptor data-
base, which integrates the previous public database and 
also performs manual correction to obtain a more accurate 
receptor annotation. In addition, annotations were also pro-
vided for cases where the receptor has multiple subunits.24 
Here, we used cellphonedb (python version v2.1.7) for cell–
cell communication of mesenchymal cell subpopulations to 
uncover cytokines that have significant interactions between 
cell subpopulations. Then, the number of interactions 
between cell populations was plotted using the CellChat R 
package (v1.5.0).25

scWGCAN analysis of mesenchymal cell 
subpopulations

WGCNA was originally constructed to investigate bulk 
RNA-seq datasets, and its ability to analyze scRNA-seq data-
sets was constrained due to the sparsity of the scRNA-seq 
data. The high dimensional weighted gene co-expression 
network analysis (hdWGCNA) overcame this limitation.26 
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We derived cellular scRNA-seq data from Seurat object 
in subpopulations of mesenchymal cells with 3000 highly 
variable genes and constructed pseudo-cells with the con-
struct_metacells function in hdWGCNA (v0.1.1.9010) with 
a k value of 50. After pseudo-cell construction, the conven-
tional WGCNA analysis was started.

Mining the activated hepatic stellate cell hub gene

The exportNetworkToCytoscape function was called in 
WGCNA (R package v1.71) to export a network edge and 
node list file that could be imported into Cytoscape (v3.8.2). 
According to the network interworking analysis, the 
Maximal Clique Centrality topology algorithm (MCC) in 
the CytoHubba plugin was called to mine the hub genes.27

Study objects

For this study, three liver cirrhosis specimens were included 
in an experimental group, and three healthy liver specimens 
were included in a control group. Specimens were gath-
ered during the period from the beginning of October 2022 
to the end of November 2022. Liver specimen conditions 
included: Liver specimens (1) must be fresh, and (2) must 
offer rapid pathological examination results for both the 
experimental group and the control group; (3) Liver speci-
mens in the experimental group should exhibit no significant 
liver-related disease other than cirrhosis; (4) Healthy liver 
specimens should exhibit not higher than 5% of the area 
of steatosis; (5) Healthy liver specimens should not exhibit 
fibroplasia in the portal area. The clinical data were complete 
and passed an ethical review.

Real-time quantitative reverse transcription PCR

The top2 hub genes were selected for reverse transcription-
quantitative PCR (RT-qPCR) validation. We used TRIzol 
reagent (Servicebio, Wuhan, China) to extract total RNA 
from liver tissue. The RNA concentration was measured 
by Nanodrop and then reverse transcribed with a cDNA 
Reverse Transcription Kit (Takara, Japan). Gene expression 
level was determined by SYBRGreen (Takara, Japan) on the 
ABI 7500 fast real-time PCR system. The amplification reac-
tion was as follows: 95°C-10 min, followed by 95°C-15 s and 
60°C-1 min with 40 cycles. GAPDH served as the reference 
gene, and three replicates were set up for each group. We 
used the 2−CT method to measure the relative expres-
sion levels of genes. All primer sequences are displayed in 
Table 1 and were designed by Sangon Biotech (Shanghai, 
China). The melting curves can be seen in Supplementary 
Figures 1 and 2.

Statistical analysis

R (v4.1.3) was applied to process data. The softwares used 
for the different analyses are described in detail. For correla-
tion analysis, we used Spearman’s or Pearson’s test (*P-value 
was less than 0.05, **P-value was less than 0.01, ***P-value 
was less than 0.001).

Results

Cell clustering and annotation

After cell filtration, the final 37,992 cells were used for down-
stream analysis. The results showed that cells from different 
samples were not evenly distributed in the cell population 
when batch effect removal was not performed (Figure 1(A)). 
After batch effect removal, the cells from each sample were 
evenly distributed in the cell population (Figure 1(B)). Finally, 
cells were eventually distributed into 28 cell populations 
through cell clustering (Figure 1(C)).

Using classical marker genes for cell annotation,1,2,21 we 
obtained a total of 15 cell types (Figure 1(D)). Two cell popu-
lations (C13 and C20) both expressed B cells marker genes, 
such as CD79A and MS4A1. Four populations (C8, C14, 
C16, and C25) expressed endothelial marker genes, such 
as ID1, RAMP2, and ENG. Two cell populations (C17 and 
C23) expressed Hepatocyte marker genes, such as ALB and 
KRT8. 2 populations (C3 and C4) expressed ILCs marker 
genes, such as KLRF1, KLRC1, PRF1, and FGFBP2. Two cell 
populations (C19 and C21) both expressed mesenchyme 
marker genes such as CLU, DCN, and COL6A2.1 Two cell 
populations (C6 and C11) both expressed NK cell marker 
genes such as NKG7, KLRB1, and KLRF1. Two cell popula-
tions (C5 and C10) both expressed Monocyte marker genes 
such as LYZ, S100A9, and S100A8. Five cell populations (C1, 
C2, C9, C15, and C28) expressed IL7R, CD3G, CD3D, and 
ITM2A. C7 expressed macrophage marker genes, such as 
C1QA, C1QB, and WFDC2. C12 expressed myeloid dendritic 
cell (mDC) marker genes, such as CLEC10A and CD1C. 
C18 expressed epithelial cell marker genes, such as VWF, 
PLVAP, RAMP2, KRT7, and KRT8. C22 expressed Plasma 
marker genes, such as IGHG1 and IGHG3. C24 expressed 
liver buds hepatic cell marker genes, such as MT1E, MT1X, 
and MT2A.28 C25 expressed epithelial marker genes, such 
as LILRA4, LRRC26, PTCRA, and CLEC4C. C26 expressed 
plasmacytoid dendritic cell (pDC) marker genes IRF7 and 
MZB1. C27 expressed Erythroid marker genes such as HBB 
and HBD. Marker genes used in cell annotation were shown 
by heat map (Figure 1(E)). In addition, we counted the per-
centage distribution of cells in cell types for each sample. The 
results showed that the proportion of mesenchymal cells in 
the samples of the cirrhotic group was higher than that of the 
non-cirrhotic group (Figure 1(F)).

Mesenchymal cell subpopulation and expression 
characteristics

To investigate the activation process of HSCs during cir-
rhosis, we extracted mesenchymal cells and re-clustered the 
cells to obtain a total of 4 mesenchymal cell subpopulations 
(Figure 2(A)).

Table 1. The Primer Sequences Used in the RT-qPCR.

Gene Forward primer (5’–3’) Reverse primer (5’–3’)

GAPDH TGCCATCAATGACCCCTT CGCTCCTGGAGATGGTG
CRIP1 CAAGTGTCCCAAGTGCAAC TTTGCCTTCGTGCTCAGC
ACTA2 TGRGRGACAATGGCTCTGG TCGTCACCCCACGTAGCTG

Forward Primer (5’-3’), Reverse Primer (5’-3’): Primers sequence.
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Figure 1. Clustering of 37,992 cells from non-cirrhotic (n = 13) and cirrhotic (n = 10) human liver tissue samples. (A) Cell distribution profiles of 23 samples. (B) Cell 
distribution profiles after removing batch effects by harmony (R package). (C) Cell clusters, colors represent cell clusters. (D) Cell annotation, colors represent cell 
types. (E) The expression level of cell marker is presented in the heatmap. Colors at the top and left of the diagram represent cell types. Colors in the legend represent 
the expression level of the marker. (F) The percentage of cells in the cell type for each sample, and the percentage of cells in the cell type for the two groups after 
integration. Colors in the bar chart represent the different cell types. Colors below the horizontal axis represent the different groups of samples. (A color version of this 
figure is available in the online journal.)
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Figure 2. The subpopulations and expression profile of mesenchymal cells. (A) Mesenchymal cells are re-clustered into four cell populations. Each color represents 
a cell subpopulation. (B) UMAP plot, showing cell groups. (C) the proportion of cells in cell clusters for the two groups of mesenchymal cells. (D) GO enrichment 
of upregulated differential genes in activated HSCs. BP is short for biological process, CC is short for cellular component, MF is short for molecular function. (E) 
Expression of marker genes in different mesenchymal cell subpopulations as illustrated by dot plot. Colors above the graphs represent the different cell types. The size 
of the circles in the legend represents the proportion of cells expressing the gene in the corresponding cell population. Colors in the legend represent the expression 
of the gene. (A color version of this figure is available in the online journal.)
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Combining classical markers of mesenchymal cells,28 we 
annotated the mesenchymal cell subpopulations. We found 
that the activated HSCs marker genes, such as MYH11, 
ADIRF, ACTA2, and PDGFRB, were highly expressed in mes-
enchymal cell subpopulations 1 (C1). The fibroblast marker 
genes, such as IGFBP3, ASPN, RBP1, and DCN, were highly 
expressed in mesenchymal cell subpopulations 2 (C2). The 
HSCs marker genes, such as RGS5, COX4I2, FABP4, and 
NDUFA4L2, were highly expressed in mesenchymal cell 
subpopulations 3 (C3). The myofibroblast marker genes, 
such as FBLN1, COL3A1, COL6A3, and COL1A1, were 
highly expressed in mesenchymal cell subpopulations 4 (C4) 
(Figure 2(E)). Then, we counted the percentage of cells in 
mesenchymal cell subpopulations for the two groups. The 
results showed that myofibroblasts were almost exclusively 
present in cirrhotic samples (Figure 2(B)), and that a higher 
proportion of activated HSCs were present in cirrhotic sam-
ples compared to that in HSCs (Figure 2(C)).

In addition, based on the differential genes in each 
subpopulation, the genes upregulated in each of our cell 
populations were analyzed for GO enrichment. The results 
suggested that the significant term of BP in C1 was mainly 
muscle system process, muscle contraction, and myofibril 
assembly, consistent with the activated hepatic stellate cell 
properties (Figure 2(D)).

Differentiation trajectory of activated HSCs

In order to investigate the key genes involved in the transfor-
mation of activated HSCs into myofibroblasts, we performed 

a pseudo-time study of mesenchymal cell subpopulations 
(Figure 3(A)). The results indicated that activated HSCs have 
the potential to differentiate into myofibroblasts (Figure 3(B)). 
Furthermore, we also found that C3, CCDC80, COL1A1, 
COL3A1, DCN, FBLN1, IGFBP3, MXRA5, SERPINE1, and 
MYH11 play key roles in the transformation of HSCs into 
myofibroblasts (Figure 3(C))

Cellular communication between subpopulations 
of mesenchymal cells   

To reveal the interactions between mesenchymal cell sub-
populations, a receptor-ligand-based cell interaction was 
analyzed via cellphonedb. We demonstrated the strength of 
interactions between subpopulations of mesenchymal cells 
(Figure 4(A)). The number of interactions between C1 and 
C2, C3, and C4 cell populations was 21, 9, and 26, respec-
tively (Figure 4(B)). The results showed that the interactions 
between C1 (activated HSCs) and C4 (myofibroblasts) were 
stronger than the other two subpopulations. The receptor 
ligands between C1 and C2 are mainly COL4A2, COL4A1, 
COL14A1, CD44, FGFR2, etc. (Figure 4(C)). The receptor 
ligands between C1 and C3 were mainly NTF3, NTRK3, 
NTRK2, JAG1, NOTCH3, ESAM, CD46, etc. (Figure 4(C)). 
The receptor ligands between C1 and C4 were mainly AXL, 
GAS6, TNFSF12, TNFRSF12A, FGFR1, FGF7, PDGFA, etc. 
(Figure 4(D)). Experimental studies indicated that as HSCs 
transformed into myofibroblasts, γ-carboxylated Gas6 
was strongly expressed in the hepatic stellate cell line and 
activated the Axl/PI3-kinase/Akt pathway to induce the 

Figure 3. Differentiation trajectory of activated hepatic stellate cells. (A) Cellular differentiation trajectories of mesenchymal cell subpopulations. Colors represent 
different cell types. (B) pseudo-time changes in cell differentiation, blue represents the time of differentiation onset, and bright yellow represents the time of 
differentiation endpoint. (C) Expression of key genes during differentiation. Colors represent different cell types. (A color version of this figure is available in the online 
journal.)
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Figure 4. Cellular communication between subpopulations of mesenchymal cells. (A) The interactions between mesenchymal cell subpopulations, with thicker lines 
representing more interactions. Colors represent different cell types. (B) The interactions between activated HSCs and the other three subpopulations, respectively. 
Thicker lines representing more interactions. Colors represent different cell types. (C) Significant reciprocal receptor-ligand genes between C1 and C2, C3, 
respectively. Green represents the C2 cell population, dark blue represents the C3 cell population. (D) Significant receptor-ligand genes between C1 and C4. The 
purple color represents the C4 cell population. (E) Distribution of cells significantly expressing the C1 receptor-ligand gene. Colors represent the expression level of 
the gene in each cell; the higher the expression value, the brighter the color. (A color version of this figure is available in the online journal.)
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anti-apoptotic effect of HSCs.29 The results suggested that the 
genes we mined were consistent with the validated receptor-
ligand genes. In addition, we described the distribution of 
cells expressing receptor-ligand genes in the activated HSCs 
(Figure 4(E)).

scWGCNA in mesenchymal cell populations

To mine the critical driver genes of activated HSCs, hdW-
GCNA was used to mine the gene sets related to the charac-
teristics of cell populations.26

The co-expression similarity matrix was transformed into 
an adjacency matrix by setting the soft threshold parameter 
β = 12 (Figure 5(A)). Then, we used the topological overlap 
metric to create a topology matrix (Figure 5(D)). In order to 
divide similarly expressed genes in a gene module, the main 
parameters were as follows: minModuleSize of 50 and deep-
Split of 2. Finally, some modules with correlations higher 
than 0.8 were merged (Figure 5(C)), resulting in a total of 
8 major gene modules (Figure 5(B)). The results indicated 
that there was a highest correlation between the brown gene 
module and activated HSCs, and that there was a highest 
correlation between the turquoise gene module and myofi-
broblasts (Figure 5(E)).

Identification of the hub gene in activated HSCs 
and myofibroblasts

According to the analysis of WGCNA, we imported gene 
nodes in brown gene module into the cytoScope software using 
the exportNetworkToCytoscape function and used the MCC 
algorithm in the CytoHubba plugin to impute the core driver 
genes. Subsequently, we screened the top20 (Figure 6(A)),  
top5 (Figure 6(B)) and top2 hub genes for the brown gene set 
(Figure 6(C)). The results suggested that the hub genes in the 
brown gene set were CRIP1, ACTA2, SPARCL1, ADIRF, DSTN, 
and so on. Subsequently, we displayed the expression levels 
of the top2 hub genes of the brown gene module in single-
cell profiles. The results suggested that these hub genes were 
highly expressed in the activated HSCs (Figure 6(D)).

The validation of hub genes expression

RT-qPCR using liver tissues both from healthy controls and 
from liver cirrhosis patients was performed to further ver-
ify the expression level of the top2 hub genes. The results 
indicated that the expressions of CRIP1 and ACTA2 in the 
cirrhotic tissue we tested were significantly upregulated 
(Figure 7(A) and (B)).

Figure 5. hdWGCNA in mesenchymal cell populations. (A) Selecting the appropriate soft threshold β. (B) Hierarchical clustering diagram between gene modules. (C) 
Merging similar gene modules. (D) Demonstration of gene networks through heatmap. (E) Associated Phenotype Analysis, red means positive correlation, and blue 
means negative correlation. (A color version of this figure is available in the online journal.)
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Figure 6. Identification of the hub gene in activated HSCs and myofibroblasts. (A)–(C) In the brown gene module, the top20, top5, and top2 hub genes. Darker colors 
represent high MCC scores, meaning more nodes are connected to the hub node. Arrows only represent the correlation between genes and do not represent the 
direction of regulation. (D) The expression levels of the top2 hub genes in the brown gene module. Colors represent the expression level of the gene in each cell; the 
higher the expression value, the brighter the color. (A color version of this figure is available in the online journal.)

Figure 7. The validation of the expression levels of hub genes. (A) The relative expression level of ACTA2 in liver tissue from liver cirrhosis patient and healthy control. 
(B) The relative expression level of CRIP1 in liver tissue from liver cirrhosis patient and healthy control.
**Represents P-value less than 0.01.
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Discussion

Here, we apply scRNA-seq to profile the ecological niche 
of fibrosis in human cirrhosis and identify a subpopulation 
of HSCs in mesenchymal cells that can be converted into 
myofibroblasts. Myofibroblasts in the liver have a number 
of characteristics leading to injury and fibrosis.30 We ana-
lyzed the strength of interactions between mesenchymal cell 
subpopulations and identified receptor-ligand genes with 
significant interactions that could be potential drug targets 
in the future.

In addition, we have probed the gene co-expression net-
work of activated HSCs by hdWGCNA and predicted the 
critical driver genes of activated hepatic stellate cells. Perhaps 
the key set of genes predicted by hdWGCNA via single-
cell RNA could be integrated into the set of genes obtained 
by lasso regression via bulk RNA to further improve the 
accuracy of the diagnostic model.31–33 At the advent of preci-
sion medicine, the unbiased multi-lineage method allows 
the mining of additional drug targets, as well as provides 
important information for the development of new targeted 
anti-fibrosis drugs.

To further validate the expression level of the critical 
genes, RT-qPCR was performed in the liver of both a cir-
rhosis patient and a healthy control. As indicated, we found 
that the relative expression levels of CRIP1 and ACTA2 were 
upregulated in the liver cirrhosis tissue. It can interact with 
Fas, the transmembrane protein which belongs to the tumor 
cirrhosis factor superfamily to initiate the apoptotic pro-
cess.34 Similarly, Wang et al. found that CRIP1 was highly 
upregulated in hepatocellular carcinoma, and the patient’s 
prognosis was poor. In clinical manifestation, BBOX1 levels 
were lower in hepatocellular carcinoma (HCC) patients with 
higher levels of CRIP1 protein and nuclear beta-catenin pro-
tein, which suggested that CRIP1 was associated with HCC.35 
However, the mechanism of upregulated CRIP1 in liver cir-
rhosis tissue needs further study. Liver tissue injury can trig-
ger many changes, including hepatic stellate cell activation 
that causes the proliferation and deposition of ECM, leading 
to liver fibrosis. When HSCs are activated to differentiate into 
contractile and proliferative myofibroblasts, several mesen-
chymal markers, including ACTA2, were expressed.36,37 The 
expression level of ACTA2 is mainly restricted to pericytes, 
smooth muscle cells, and myofibroblasts. What is more, the 
ACTA2 has been indicated to be associated with hepatitis C 
virus-induced hepatic fibrosis.38 Here, we also reported an 
upregulated expression level of ACTA2, which is consistent 
with a previous study. However, due to the relatively small 
number of clinical samples available in this study, and the 
complex mechanism of liver cirrhosis, further studies and 
large sample studies, incorporating clinical information, are 
required to validate the functions of these genes in liver cir-
rhosis or HCC progress.

Overall, our study demonstrates the advantages of 
scRNA-seq in decoding the activation of human HSCs into 
myofibroblasts and their core driver genes. It also provides 
an analytical strategy for mining relevant therapeutic target 
genes and some important information for targeted thera-
pies for various fibrotic diseases.
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