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Introduction

Joint motion or body weight can be endured by articular 
cartilage (AC) on the joint surface, which is usually exposed 
to various dynamic mechanical cues. These include com-
pressive and tensile strain, fluid shear stress, osmotic stress, 
and biomechanical properties of the extracellular matrix 
(ECM).1,2 Mechanical signals from the matrix microenvi-
ronment regulate intracellular signaling pathways and 
significantly affect chondrocyte function (Figure 1).3 The 
mechanical stimulation of AC affects cell metabolism, matrix 
synthesis, and cartilage integrity,4,5 which, therefore, has 
been used for the development of tissue engineering in many 
studies.6,7 Osteoarthritis (OA) is a progressive joint disorder 

worldwide. OA is complex and multifactorial with biologi-
cal and biomechanical components.8 Abnormal mechanical 
stress disrupts the balance between catabolism and anabo-
lism, ultimately causing the development of OA.9 However, 
the mechanical stress–mediated mechanotransduction path-
way in OA remains poorly understood.

The AC serves as an important weight-bearing structure. 
Chondrocytes, as the only cell type within AC, carry out 
essential cellular metabolism and secrete both synthetic and 
degradative enzymes. However, the turnover of chondrocytes 
is limited, thus leading to poor tissue repair.10 Collagen fib-
ers, non-collagen glycoproteins, and proteoglycans comprise 
the fundamental ECM framework, which provides mechani-
cal integrity to chondrocytes.11 The mechanical properties 
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Abstract
Osteoarthritis (OA) is one of the most prevalent joint disorders associated with the 
degradation of articular cartilage and an abnormal mechanical microenvironment. 
Mechanical stimuli, including compression, shear stress, stretching strain, osmotic 
challenge, and the physical properties of the matrix microenvironment, play pivotal 
roles in the tissue homeostasis of articular cartilage. The primary cilium, as a 
mechanosensory and chemosensory organelle, is important for detecting and 
transmitting both mechanical and biochemical signals in chondrocytes within the 
matrix microenvironment. Growing evidence indicates that primary cilia are critical 
for chondrocytes signaling transduction and the matrix homeostasis of articular 
cartilage. Furthermore, the ability of primary cilium to regulate cellular signaling 
is dynamic and dependent on the cellular matrix microenvironment. In the current 
review, we aim to elucidate the key mechanisms by which primary cilia mediate 
chondrocytes sensing and responding to the matrix mechanical microenvironment. 
This might have potential therapeutic applications in injuries and OA-associated 
degeneration of articular cartilage.
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Minireview

Impact statement

The cellular mechanical environment contributes 
to both healthy and osteoarthritic articular carti-
lage. Mechanical stimuli, including compression, 
dynamic strain, and shear stress, are crucial in 
determining cell function, fate, and death. The pri-
mary cilium in chondrocytes functions as a sign-
aling hub mediating cartilage mechanobiological 
processes. However, the molecular mechanisms 
by which how primary cilia mediate mechanotrans-
duction in chondrocytes, particularly in sensing the 
mechanical cues in the matrix microenvironment, 
are still not fully understood. Recent progress in the 
understanding of mechanosensing mechanisms 
mediated by primary cilia may shed light on targeted 
precision therapeutics for injured and osteoarthritic 
cartilage. Moreover, they contribute to developing 
cell-instructive biomaterials for the future design of 
functional cartilage tissue engineering.
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of ECM have recently been recognized as important regula-
tors of the mechanobiological behavior of chondrocytes. In 
vivo, chondrocytes experience various types of mechanical 
loading in the matrix microenvironment. Consequently, the 
matrix microenvironment plays a vital role in translating 
extracellular mechanical signals to various mechanical sen-
sors and/or receptors within the cell membrane.12,13 These 
sensors and receptors include integrins, ion channels, and 
primary cilia.14 They help transduce extracellular mechanical 
signals into cellular signals in chondrocytes.

Primary cilium–mediated 
mechanosensitive signaling pathway

The primary cilium is a multifunctional antenna that detects 
alterations in the matrix microenvironment.15–17 Primary 
cilia are located in the cell membrane facing the surround-
ing ECM18–20 and are sensory receptors for transducing dif-
ferent biological and mechanical signals intracellularly.21–23 
Clinically, chondrocyte cilia of osteoarthritic cartilage differ 
from those of healthy cartilage. For example, the lengths 
of the cilia and the percentage of ciliated cells are bigger in 
osteoarthritic cartilage than in normal tissue.24 Recently, the 
precise process of governing the ciliary length and ciliary 
resorption has aroused much attention. Some studies have 
focused on the primary cilia in detecting different mechani-
cal cues by observing the orientation and projection of cilia in 
the cartilage matrix.19,20,25–27 For example, primary cilia regu-
late the matrix environment of the AC.27–29 In addition, the 
mechanical loading in vitro alters the lengths of the primary 
cilia.30 The absence of primary cilia significantly attenuates 
loading-induced matrix deposition in chondrocytes.12 These 
indicate that primary cilia mediate mechanotransduction 

of chondrocytes, therefore regulating AC health. Here we 
discuss different mechanotransduction processes involved 
in primary cilia. These findings shed light on the mecha-
notransduction mechanism of primary cilia in chondrocytes.

Hedgehog signaling pathway

The activation of primary cilia regulates the Hedgehog (Hh) 
signaling pathway, which was found first in the Drosophila 
melanogaster. Three mammalian paralogues of the Drosophila 
Hh gene have been identified, including Desert hedgehog 
(Dhh), Indian hedgehog (Ihh), and Sonic hedgehog (Shh). 
These paralogues may result from ancient genome duplica-
tion events in vertebrates.31–33 According to a previous study, 
the expression level of Hh was higher when Ihh/Shh was co-
transfected, compared to when Ihh or Shh was transfected 
alone. No significant difference was observed between Ihh 
transfection and Shh transfection.34 In conclusion, Ihh and 
Shh work together to activate the Hh signaling pathway.

Smoothened (Smo) and Patched (Ptc) are both cilia mem-
brane receptors that mediate the activation of the Hh path-
way. Here we present a model for the Hh signaling pathway 
(Figure 2).17 In this dynamic model, the binding of Hh mor-
phogenetic protein to Ptc activates the Hh signaling path-
way. GLI transcription factors GLI2 and GLI3 together form 
a complex with a suppressor of fused (SUFU). When Hh 
signaling is not activated, kinesin family member 7 (KIF7) 
suppresses GLI’s activity. When Hh signaling is activated 
by the binding of Hh ligands to Ptc, which releases Smo and 
relocates KIF7. SUFU/Gli complex then moves to the cilium 
and enhances the Hh-dependent gene transcription.35

The Hh signaling depends on primary cilia and regulates 
the development and maintenance of the AC. For example, 
Smo ablation accelerates chondrocyte hypertrophy while 
SUFU ablation inhibits it. Interestingly, ablations of both Smo 
and SUFU decrease the growth, proliferation, differentiation, 
and survival of the cell.36 In addition, OA is associated with 
abnormal Hh signaling or chondrocyte hypertrophy.37 A pre-
vious study has shown that mechanical cues promote the Hh 
signaling and ADAMTS-5 expression in OA and exercise-
induced muscle hypertrophy in satellite cells.38,39

The Hh signaling is involved in primary cilia–mediated 
mechanotransduction. Cyclic adenosine 3′,5′-monophos-
phate (cAMP) could be activated by mechanical stress.40 
Meanwhile, cAMP is a regulator of Hh signaling.41 The 
activation of cAMP promotes Smo activity in the Hh sign-
aling,42,43 which suggests that Hh signaling mediates the 
mechanotransduction. On the other hand, Ihh signaling is 
not mechanically activated in chondrocytes without pri-
mary cilia present. For example, hydrostatic compression 
enhances the Ihh signaling in chondrocytes in the presence 
of primary cilia; however, this enhancement is abolished in 
chondrocytes in the absence of primary cilia.44

Calcium signaling

Cytosolic calcium concentration plays a critical role in the 
physiology and pathology of OA. Mechanic stimulations 
activate calcium signaling pathways in primary cilia. The 
maintenance of Ca2+ homeostasis is vital for cells because 
increased Ca2+ concentration affects many different kinds of 

Figure 1.  Chondrocyte matrix microenvironment. A single chondrocyte is 
encapsulated by the pericellular matrix (PCM) and the extracellular matrix 
(ECM). Collagen VI is widely distributed in the PCM and ECM, providing good 
properties for chondrocytes. When a chondrocyte is stimulated mechanically 
(upon shear stress, osmotic stress, dynamic strain, and so on), the primary 
cilium, ion channels (like TRPV4 and PIEZOs), and integrins all immediately 
respond to the mechanical microenvironment by changes in calcium signal and 
F-actin.
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cellular signaling pathways, which leads to the dysfunction 
or death of cells.45 The cell detects changes in Ca2+ concentra-
tion and responds by regulating actin and myosin.46 Calcium 
levels regulate actin and myosin in several different ways. 
For example, intracellular calcium regulates actin arrange-
ment and alters the mechanical properties and migration of 
cells.47,48 It also changes the ECM properties and the adhe-
sion between ECM and chondrocytes, thereby affecting 
chondrocyte migration.49

In chondrocytes, cytosolic Ca2+ is dramatically increased 
by the compressive loading.50 In a hypotonic environment, 
the cytosolic Ca2+ in adult cells oscillates almost threefold 
more frequently than usual, whereas the duration and mag-
nitude of each cytosolic Ca2+ peak are increased in juvenile 
cells cytosolic Ca2+. However, in a hypertonic condition, 
both adult and juvenile chondrocytes show slower cytosolic 
Ca2+ oscillations with longer rising and recovery time.51 
Our recent study has shown that the mechanical behavior 
and calcium signaling of chondrocytes can be modulated by 
microniche geometry. For example, compared to spheroidal 
microniches, ellipsoidal microniches promoted the mechani-
cal properties of cells. Ellipsoidal microniches also enhanced 
the amplitude of cytosolic Ca2+ oscillation in chondrocytes 
while reducing the frequency.52 However, understanding the 

role of primary cilia in modulating the calcium signaling of 
chondrocytes during mechanosensation is needed.

Calcium signaling responds to mechanical loading by 
instantaneous changes in intracellular and extracellular 
Ca2+.53 Cyclic strain suppresses the protein degradation lev-
els of chondrocytes; however, the elimination of primary 
cilia or inhibition of calcium signaling reverses this effect, 
leaving cells in an unfavorable environment.54 Calcium 
influx mediated by cilia is indicative of chondrocyte mecha-
notransduction.55 Under the compressive strain, primary 
cilia send calcium signals to cells, which triggers a series of 
intracellular events to maintain and strengthen the AC.56 
More evidence has shown that fluid shear stress bends the 
primary cilia, which activates Ca2+ channels and mechano-
sensitive receptors on the cilia.57–59 Wann et al.60 reported 
that the cilia also regulate adenosine triphosphate (ATP)-
induced Ca2+ signaling in chondrocytes under compres-
sion forces. One study has shown that fluid flow increases 
Ca2+ concentration dependent on Ca2+ in the primary cilia 
in osteocytes.61 However, some researchers have suggested 
that primary cilia mediate mechanotransduction through a 
Ca2+-independent mechanism.62 In kidney epithelial cells, 
fluid flow bends primary cilia and increases both ciliary and 
cytosolic Ca2+ levels.63,64 Despite limited reports on the inter-
action between cilia and Ca2+ levels in chondrocytes, there 
might be diverse crosstalk.

Mechanosensitive ion channel

In chondrocytes, transient receptor potential vanilloid (TRP) 
channels, PIEZOs, and voltage-gated calcium channels 
within the membrane are involved in mechanosensation. 
Mechanical stimuli activate these ion channels, which rap-
idly increases cytosolic Ca2+ concentration. A previous study 
has shown that physiologic levels of strain activate TRPV4 
channels, while injurious levels of strain activate PIEZO2 
channels.65

Changes in the Ca2+ influx, mechanical stimuli, chemical 
cues, and temperature can activate non-selective cation TRP 
channels.66 The expression of TRPV4 channels was upregu-
lated in osteoarthritic AC. TRPV4-mediated Ca2+ influx is 
shown to cause cell death under excessive stress stimula-
tion.67 It is also mediated in the regulation of the metabo-
lism of chondrocytes responding to mechanical stress.68 
These studies suggest that TRPV4 channels are promis-
ing targets for OA treatment. As a ciliary mechanosensory 
channel, mechanical loading increases TRPV4 cilium locali-
zation and alters cilium length in a histone deacetylase 6 
(HDAC6)-dependent manner.69 TRPV4 knockout animals 
elevate intraocular pressure and shorten cilia.70 In mesen-
chymal stem cells, TRPV4 mediates oscillatory fluid shear 
mechanotransduction via the primary cilium.71 In conclu-
sion, TRPV4 mediates mechanotransduction in primary cilia 
in many cells.

Activated by mechanical forces, PIEZO channels pass cal-
cium ions in various cell types from different species. PIEZO 
channels are responsible for the Ca2+ influx when experienc-
ing a level of strain in chondrocytes.72 In odontoblasts, the 
PIEZO1 channel mediates the differentiation by regulating 
Wnt expression and assembly and disassembly of the cilia.73 

Figure 2.  The structure and mechanosensitive signals of the primary cilia. The 
primary cilium is an independent organelle, acting as a “cell antenna.” The ciliary 
axoneme is composed of microtubules and coated by the ciliary membrane. 
The IFT system maintains the activity of primary cilia. The IFT-B complex, 
driven by kinesin-II, carries the desired cargo from the basal body to the tip. In 
contrast, the IFT-A complex, driven by dynein-II, carries cargo back from the 
tip to the basal body. Mechanical stimuli, such as shear stress, dynamic strain, 
or matrix mechanics, can be sensed and transduced by primary cilia. Some 
force-sensitive ion channels within the ciliary membrane (like TRPV4 and PIEZO 
channels) transform mechanical signals into calcium signals and participate in 
mechanical signal transduction. Smo and Ptc receptors in primary cilia mediate 
the Hh signaling pathway in chondrocytes. When the Hh ligand binds to the Ptc 
receptor, the Gli complex (SUFU/GLI) is released by Smo and moves toward 
the ciliary tip; Hh signaling is activated (called “ON”). However, in the absence 
of the Hh ligand, KIF7 resides at the base of the primary cilium, preventing Gli 
accumulation in the cilium (called “OFF”).
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However, the relationship between PIEZO channels and pri-
mary cilia in mechanotransduction in chondrocytes has not 
been reported.

Primary cilia mediated the 
mechanotransduction of chondrocytes

During proliferation, cilia appear on the cell surface in G1.74 
Chondrocyte cilia shorten and recover to adapt to differ-
ent stimuli.30 Chlamydomonas flagella also reduce their fla-
gella length under unfavorable physiological conditions, 
including low pH and restrictive temperatures. However, 
this length reduction is reversible and the flagella regain 
their original steady-state length upon removal of the stim-
ulus.75 Ciliary axonemes have been found to interdigitate 
between collagen fibrils and condensed proteoglycans by 
transmission electron microscopy (TEM) and double-tilt 
electron tomography.26 IFT proteins are transported in an 
advanced anterograde manner toward the ciliary tip. These 
proteins play a crucial role as they carry all the necessary 
cargo required for the assembly of axonemes.76,77 TEM and 
electron tomography studies have revealed that electron-
opaque particles are more located at the tip of the cilia in the 
distal axoneme, although they are found alongside both the 
proximal and distal axonemes of the primary cilia. Therefore, 
the tip region of cilia not only plays a significant role in cili-
ogenesis but also acts as a crucial transit station for the trans-
port of cargo in both retrograde and anterograde directions.26

Structural basis of primary ciliary 
mechanotransduction

Primary cilia bend in response to mechanical forces. The 
interactions between the cilia bending pattern and the ECM 
can be visualized by TEM, electron tomography, and confo-
cal microscopy. Tomography and TEM have shown that the 
ciliary axoneme interdigitates between collagen fibers and 
condensed proteoglycans. The transmission of mechanical 
forces through the matrix macromolecules causes the bend-
ing of the primary cilia, indicating their role as mechanosen-
sors.26 Acetylated and detyrosinated tubulins in the primary 
cilia contribute to the formation of functional microtubule 
subsets.19 In addition, the microtubules within the chon-
drocyte ciliary axoneme feature a periodic structure of EB1 
densities along the axoneme, indicating their high stability. 
This structure gives the cilia the necessary stiffness to act as 
biomechanical sensors of the ECM. Moreover, the primary 
cilium functions as a “cellular cybernetic probe,” enabling 
the transmission of extracellular signals to the centrosome. 
This, in turn, regulates the stabilization of extracellular mac-
romolecules and facilitates the mechanotransduction pro-
cesses.20 However, primary cilia are straight without ECM 
present, suggesting that the bending pattern in the primary 
cilia of chondrocytes is a passive response to the mechanical 
cues in the presence of ECM.26

Basics of primary cilium assembly and 
maintenance: intraflagellar transport (IFT)

Microtubules are the main structure of primary cilia. 
Since the primary cilium is the sole organelle and cannot 

synthesize proteins by itself, its formation and maintenance 
depend on the intraflagellar transport (IFT) system. The IFT 
system allows proteins to be transported in the microtubules 
(Figure 2). This system is bidirectional, which means the 
IFT-A complex can move from the basal body to the distal 
tip and vice versa with the help of molecular motor proteins. 
For example, kinesin-II binds to the IFT-B to move the cargo 
to the distal tip, while dynein-II binds to the IFT-A complex 
to transport the cargo back to the basal body.78 Therefore, 
the IFT system is important for the structure and function 
of primary cilia. Mutations of the IFT system are associated 
with the dysfunction of cilia and ciliopathies.79

IFT80 and IFT88 both are core components of the IFT-B 
complex. IFT80 knockout mice have significantly reduced 
bone density and mechanical strength in fracture-healing 
tissues.80 In addition, IFT80-depleted mice showed dys-
functional mechanotransduction due to shorter cilia. IFT88 
impacts the deformability and stiffness of cellular cortex 
actin. IFT88 mutation alters actin-myosin stress fiber assem-
bly and response dynamics of chondrocytes following the 
cytochalasin D treatment.81 The upregulation of IFT88 expres-
sion enhances the IFT system in chondrocytes by amplify-
ing mechanical stimulation and sensory perception of the 
extracellular microenvironment.21–23 However, damage to 
the IFT88 complex causes abnormal cartilage formation and 
reduces mechanical retention.82 In summary, the IFT system 
is important for primary cilia to transduce mechanical stress.

Primary cilia are involved in mechanotransduction 
processes

In AC, the orientation of primary cilia has been widely inves-
tigated. Based on the interaction of cilia with the matrix, it 
has been suggested that primary cilia on chondrocytes are 
important for play mechanotransduction. Current evidence 
suggests that primary cilia, as an important mechanosensory, 
are involved in various mechanical signals from the matrix 
microenvironment.

Compressive and tensile strain.  A cartilage growth force 
response curve indicates that growth remains at the basal 
rate in the absence of mechanical stimulation. However, 
mild tension and compression favor growth, and larger 
compressive stresses rapidly impair growth.83 Cyclic com-
pressive loading of 1 Hz and 0–15% strain stimulates pro-
teoglycan synthesis in wild type cells, which is completely 
abrogated in chondrocytes without cilia. This emphasizes 
the importance of the primary cilia for mechanotransduc-
tion in chondrocytes.60 One study has shown that mechani-
cal loading was found to upregulate the number of primary 
cilia in the growth plate of chickens and alter the chondro-
genesis.84 In addition, the compressive strain in a three-
dimensional (3D) agarose culture model shortens primary 
cilia, which recover at the uncompressed free-swelling con-
dition.30 Note that changes in cilia length and incidence may 
adapt their responses to repeated or prolonged mechanical 
stimulation during joint activity.53

ATP-induced Ca2+ signaling has also been shown to be 
involved in the mechanotransduction of chondrocytes.60 
Under compressive loading (15 kPa), the ATP release rate 
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increases by almost 10-fold in the chondrocytes.85 ATP acti-
vates the cytosolic Ca2+ signaling cascade. It is also docu-
mented that the primary cilia act as “mechano-dampeners” 
in the cartilage,86 which means primary cilia are more of 
buffer mediators to protect AC.

Cilia frequency and length are modulated by compres-
sive forces. Mechanical loading significantly reduces the 
length of cilia as cilia progressively shorten with increasing 
strain magnitude. In addition, high-stress levels decrease 
the incidence and length of primary cilia.87 Cyclic mechani-
cal loading using 0.33 Hz and 0–10% peak strain activates 
HDAC6 to induce the elongation of primary cilia and the 
release of nitric oxide (NO) and prostaglandin E2 (PGE2).88 
In a high-stress environment, HDAC6 causes primary cilia 
to disassemble and blocks the activation of Hh signaling, 
while the inhibition of HDAC6 prevents cilia from disas-
sembly and restores mechanosensitive Hh signaling at 20% 
cyclic tensile strain.38 Cellular strain depends on the depth 
of the AC, with the highest strain intensity on the articular 
surface.89 Previous studies have demonstrated that 10% ten-
sile strain at 0.33 Hz regulates chondrocyte depolarization 
and its gene expression.90 A recent report shows that the 
application of LiCl can restore the mechanosensitivity of 
passaged chondrocytes through primary cilia.91

Fluid shear stress.  The AC contains a big amount of 
water. Under mechanical loading, AC expels water out to 
keep the fluid shear stress close to the membrane. In the 
absence of mechanical stress, AC intracellularly drives the 
water back.92–94 Cartilage responds to various mechanical 
stimuli, including shear stress, for homeostasis mainte-
nance. Physiologically, the shear stress that ECM and the 
chondrocytes surrounded by ECM face is 55 kPa and 
0.065 Pa, respectively.95

Primary cilia are critical for receiving extracellular cues 
from fluid shear stress. The primary cilia in kidney epithelial 
cells can transduce urine flow into cellular calcium signaling 
in mechanotransduction. In different cell types, the calcium 
signaling caused by fluid shear stress is abolished by chloral 
hydrate that induces the loss of cilia.96,97 In addition, fluid 
shear forces have been shown to activate the mechanical gate 
complex in primary cilia.98 The fluid-flow signal also causes 
NO release and modification of related proteins in chondro-
cytes.103 In cartilage tissue, shear stress is associated with 
matrix degradation, whereas in chondrocytes, it enhances 
pro-inflammatory factors and pro-apoptosis.92,100 Another 
study has suggested that fluid shear activates cAMP signal-
ing and downstream osteogenesis dependent on primary 
cilia in bone marrow stem/stromal cells (BMSCs).40

Osmotic stress.  AC compression and relaxation dramati-
cally change water content and osmotic fluctuations. The 
primary cilia of chondrocytes respond to changes in osmo-
larity within minutes in a length-altering manner.101 A previ-
ous study found that lower osmotic pressure and IL-1 
together increase the length of the primary cilia.102 However, 
it is shortened in living cells on intact murine femora ex 
vivo.101 A recent study indicates that hypo-osmotic challenge 
blocks the primary cilia elongation mediated by IL-1β.69 

TRPV4 activation mediates the anti-inflammatory response 
under hypo-osmotic stress. Hypo-osmotic force activates 
TRPV4 channels within the primary cilia, increasing cyto-
solic Ca2+ concentration.103 Trpv4-deletion chondrocytes 
could not respond to hypo-osmotic stress, suggesting the 
role of TRPV4 channels in sensing osmotic stress.103–105 In 
renal epithelial cells, primary cilia are also essential for 
osmotic responses. Ciliated cells have a higher survival rate 
than non-ciliated cells under osmotic stress.105

Hydrostatic pressure.  Primary cilia transduce hydrostatic 
pressure in chondrocytes. Using paralyzed-cilia mutants in 
Chlamydomonas, Yagi and Nishiyama106 found that excessive 
hydrostatic pressure restores the beating pattern to wild-
type cilia. Moreover, hydrostatic pressure is involved in 
transducing ECM signals through mechanosensitive ion 
channels, therefore regulating the membrane potentials. 
The primary cilia enhance the Ihh signaling pathway in the 
growth plate chondrocytes upon hydrostatic compression 
loading.46 This enhancement is eliminated by chloral 
hydrate that disrupts the structure of the primary ciliary.46

Substrate stiffness.  The pericellular matrix (PCM) of chon-
drocytes is highly viscoelastic.107 Upon abnormal mechanical 
stress, PCM degrades as its layers thin, which accordingly 
changes the fluid flow surrounding PCM. This structural 
change of PCM then impacts the various sensors or receptors 
within the membrane in the mechanotransduction of chon-
drocytes. The PCM also provides an important matrix micro-
environment where optimal physical properties (matrix 
stiffness, viscoelasticity, and geometry) regulate chondrogen-
esis and maintain homeostasis.

Chondrocytes respond to hydrogel systems with different 
substrate stiffness. The stiff substrate significantly increases 
the length of the primary cilia.108 Substrate stiffness also 
determines centriole positioning. The centrioles position 
toward the basal membrane on stiffer substrates, suggesting 
that substrate stiffness is involved in ciliary localization and 
cellular responses to external forces. Substrate stiffness is 
also a critical driver of mechanical signal–related diseases.112 
On polydimethylsiloxane (PDMS) substrate, stiffer sub-
strate activates YAP nuclear expression, which decreases the 
expression of primary cilia and inhibits inflammatory signal-
ing transduction.109 Thus, substrate stiffness is an important 
physical factor for cellular mechanical microenvironment 
and cells may adapt to the mechanical microenvironment 
via primary cilia.

3D microenvironment.  Primary cilia have a length of 
1–2 μm in situ in chondrocytes of AC. However, they are 
longer in isolated cells cultured in a 2D environment. A lim-
itation can be that conventional (monolayer) expansion 
leads to the dedifferentiation of chondrocytes and therefore 
the reduction of their mechanosensitivity.110 However, some 
techniques for 2D monolayer structures seem highly practi-
cal in sensing mechanical stimuli in chondrocytes. To date, 
some studies have used acrylamide hydrogels to culture 
cells on different substrates. This improves the fundamental 
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understanding of the biological particles involved in mech-
anotransduction. In addition, a 3D microenvironment 
seems an ideal candidate for cell cultures. Dedifferentiated 
chondrocytes can restore some mechanosensitivity back to 
the wild type in a 3D microenvironment. This can be because 
3D culture maintains the structure and function of primary 
cilia. Soave et al. reported that LiCl increases primary cilia 
expression, therefore promoting chondrocyte mechanosen-
sitivity. LiCl application also increases the incidence and 
length of primary cilia.91 In another study, using 3D cul-
tures, McGlashan et  al.30 found that chondrocyte primary 
cilia are mechanosensitive and mediated by the length and 
incidence of cilia under mechanical loads. In addition, 3D 
culture has been shown as an ideal model to culture pri-
mary cilia in urine-derived renal epithelial cells.111

Others.  Other physiological-related stimuli, including 
current electricity, pH, and ultrasound, affect the mechano-
transduction of primary cilia in chondrocytes, although 
they are rarely reported. Chondrocyte primary cilia respond 
to low-intensity ultrasound by changing their length and 
incidence.112 Notably, primary cilia play a critical role in 
low-intensity ultrasound-mediated signal transduction 
(such as ERK1/2). The flow of Ca2+ induces microcurrent in 
the primary ciliary membrane, causing primary cilia to 
sense the microenvironment. For example, the cascading 
Ca2+ currents are abolished in the cilia-less beta-cell-specific 
knockout line.113 However, more work is needed to eluci-
date the insights into microcurrent in mediating mechano-
transduction in chondrocytes.

Conclusions

Over the past few decades, significant studies have explored 
a variety of signaling pathways in primary cilia. This review 
has emphasized the essential signaling pathways for pri-
mary cilia–mediated mechanotransduction in chondrocytes. 
However, understanding the correlation between gene dys-
functions in primary cilia and clinical phenotypes of AC 
remains a challenging task in the field. Given the complex-
ity of mechanical loads and the specificity of the cellular 
mechanical microenvironment, primary cilia might mediate 
the mechanotransduction in different ways. Moreover, the 
mechanism by which deficient primary cilia cause osteo-
arthritic AC is not clear. This mechanism could pave the 
way for the development of small molecules to regulate the 
pathologies of cilia. The role of primary cilia in sensing the 
matrix microenvironment of chondrocytes is an emerging 
field of research. However, primary cilia appear to have 
different proteins in various tissues. How these tissue-spe-
cific proteins in cells sense specific mechanical cues in the 
matrix microenvironment, particularly in relation to specific 
diseases, remains a gap in knowledge. Note that multiple 
mechanical cues and biochemical signaling synergistically 
regulate cell biological behavior during tissue growth and 
disease progression. Studying the molecular mechanism 
of primary cilia–mediated chondrocytes sensing multiple 
mechanical cues can be challenging. It can be complex to 

translate in vitro findings into functional tissue engineering 
or clinical treatment.

Researchers have increasingly employed ECM-mimicking 
hydrogels that display physiological and mechanical prop-
erties similar to ECM. Recent studies have utilized two-
dimensional (2D) cell-supporting substrates with varying 
physical properties to elucidate the mechanism underlying 
primary cilium in chondrocyte sensing mechanical stimuli. 
This knowledge derived from cells in 2D cultures can be 
translated to those within 3D environments, where further 
complexity is likely to arise. More importantly, determin-
ing the primary cilia–mediated signaling pathway in the 
3D matrix microenvironment could help to better under-
stand etiology related to ciliopathies. Moreover, by harness-
ing primary cilia–mediated cellular responses to mechanical 
cues in ECM, the bio-instructive hydrogel can be created 
and leveraged for regenerative medicine applications and 
for halting or reversing OA. In addition, the development 
of imaging technologies that can analyze the ultrastructure 
and signaling function of the primary ciliary will be crucial 
for understanding how signaling is initiated from nanoscale 
complexes within cilia.

The premise of functional cartilage tissue engineering is 
accurately recapitulating mechanical signatures (fluid shear, 
hydrostatic pressure, cycling stretching, matrix stiffness, vis-
coelasticity, stress relaxation, and microniche) in 3D matrix 
microenvironment reflects what occurs in vivo. Designing a 
new hydrogel mimicking in vivo 3D matrix microenviron-
ment to meet emerging challenges in mechanobiology be 
an important goal for the future. This urgently requires the 
development of multiple disciplines, including biomateri-
als, biomechanics, and micro and nanotechnology. In sum-
mary, elucidating the regulatory mechanism of primary 
cilia–mediated mechanotransduction will shed light on the 
functional tissue engineering of AC defects as well as for 
developing targeted therapy for AC with ciliopathies.
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