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Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) caused the coronavirus disease 2019 (COVID-19) 
pandemic and continues to pose a threat to global public 
health.1 According to the World Health Organization (WHO), 
as of August 14, 2023, there have been over 769 million con-
firmed cases of COVID-19 worldwide, including more than 
287,000 on 14 August 2023, and more than 6.9 million deaths 

(https://covid19.who.int). Although COVID-19 vaccines 
have played a crucial role in reducing virus transmission 
and providing protection, the emergence of new variants, 
such as alpha, beta, gamma, delta, epsilon, omicron, arc-
turus, and eris, necessitates the development of updated vac-
cines to address vaccine-escape mutations.2 There is a need 
for the scientific community and pharmaceutical companies 
to develop new drugs against SARS-CoV-2, especially for 
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Abstract
The coronavirus disease 2019 (COVID-19) global pandemic resulted in millions 
of people becoming infected with the severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) virus and close to seven million deaths worldwide. 
It is essential to further explore and design effective COVID-19 treatment drugs 
that target the main protease of SARS-CoV-2, a major target for COVID-19 drugs. 
In this study, machine learning was applied for predicting the SARS-CoV-2 main 
protease binding of Food and Drug Administration (FDA)-approved drugs to assist 
in the identification of potential repurposing candidates for COVID-19 treatment. 
Ligands bound to the SARS-CoV-2 main protease in the Protein Data Bank and 
compounds experimentally tested in SARS-CoV-2 main protease binding assays 
in the literature were curated. These chemicals were divided into training (516 
chemicals) and testing (360 chemicals) data sets. To identify SARS-CoV-2 main 
protease binders as potential candidates for repurposing to treat COVID-19, 1188 
FDA-approved drugs from the Liver Toxicity Knowledge Base were obtained. A 
random forest algorithm was used for constructing predictive models based on 
molecular descriptors calculated using Mold2 software. Model performance was 
evaluated using 100 iterations of fivefold cross-validations which resulted in 78.8% 
balanced accuracy. The random forest model that was constructed from the whole 
training dataset was used to predict SARS-CoV-2 main protease binding on the 
testing set and the FDA-approved drugs. Model applicability domain and prediction 
confidence on drugs predicted as the main protease binders discovered 10 FDA-
approved drugs as potential candidates for repurposing to treat COVID-19. Our 

results demonstrate that machine learning is an efficient method for drug repurposing and, thus, may accelerate drug development 
targeting SARS-CoV-2.
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Impact statement

Although the World Health Organization (WHO) 
declared “with great hope” an end to COVID-19 as 
a global health emergency, SARS-CoV-2 infection 
continues around worldwide as evidenced by more 
than 287,000 confirmed cases reported to WHO 
on 14 August 2023. Therefore, effective drugs are 
needed for treating COVID-19 patients. New drug 
development is not only costly but also time-con-
suming; therefore, it is not ideal for emerging dis-
eases, such as COVID-19. Repurposing approved 
drugs for treating COVID-19 is important to combat 
the COVID-19 pandemic. The most used repurpos-
ing strategy is based on human expertise. This is 
the first machine learning model that was developed 
for repurposing FDA-approved drugs for COVID-19 
treatment through targeting the SARS-CoV-2 main 
protease. The discovered FDA-approved drugs in 
this study provide potential repurposing candidates 
for clinical consideration, thus the findings of this 
study are expected to advance the development of 
COVID-19 treatment.
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infected patients who do not respond to the currently avail-
able COVID-19 drugs.

To fight against COVID-19, several target proteins of 
SARS-CoV-2 have been identified, including the main pro-
tease, the papain-like protein, the spike protein, and the 
RNA-dependent RNA polymerase.3–5 The main protease 
has been shown to be essential for viral replication and thus 
has been recognized as a potent drug target.6,7 In particular, 
Paxlovid (nirmatrelvir and ritonavir) is the first oral anti-
viral pill approved by the Food and Drug Administration 
(FDA) to treat COVID-19 in adults.8 In Paxlovid, nir-
matrelvir acts as the main protease inhibitor and ritonavir 
inhibits the P450 3A-mediated metabolism of nirmatrel-
vir.8 Currently, more than 400 three-dimensional (3D) 
structures of the ligand-bound main protease have been 
determined and deposited in the Protein Data Bank (PDB) 
(http://www.rcsb.org/). These structures provide valuable 
sources for insights into the binding mechanisms of diverse 
inhibitors. The relationships between the structures of main 
protease inhibitors and their inhibition activity have been 
widely discussed in many reviews.9–13 However, combin-
ing this structural information with other approaches for 
the development of new main protease inhibitors has not 
been reported.

Although there are now significant efforts aimed at devel-
oping drugs that can inhibit the main protease, drug repur-
posing offers a cost-effective and time-efficient approach to 
address unmet medical needs.14–16 Different from de novo 
drug design, drug repurposing uses existing drugs that were 
originally developed for different indications to screen drugs 
for new diseases. Because of the knowledge and understand-
ing of an existing drug’s safety, mechanisms of action, and 
pharmacokinetics, drug repurposing reduces the risks asso-
ciated with drug development, and has shown promising 
results for the discovery of the main protease inhibitors,17–19 
especially when combined with the power of artificial intel-
ligence approaches.20

Machine learning is the approach to learn from the pro-
vided data, identify the patterns within the provided data, 
and make predictions on new data using what it has learned. 
Machine learning methods have been widely used for toxic-
ity prediction, novel drug discovery, and drug repurpos-
ing.21–29 With the large amount of data from existing studies 
on the main protease binding activity, machine learning is a 
valuable way to identify the potential main protease binders 
from FDA-approved drugs.

The purpose of this study was to apply a machine learn-
ing approach for repurposing FDA-approved drugs that 
could bind the main protease of SARS-CoV-2 as potential 
candidates for the treatment of COVID-19. To achieve this 
goal, we curated the main protease binding activity data 
from public databases and the literature, constructed and 
validated the random forest model using cross-validations 
and external validation, and predicted the potential main 
protease binding activity of FDA-approved drugs. Our 
results demonstrate that machine learning can be used to 
assist in drug repurposing, and thus accelerate drug devel-
opment targeting the SARS-CoV-2 main protease.

Materials and methods

Study design

The study design of this research is illustrated in Figure 1. 
The chemicals and their SARS-CoV-2 binding data curated 
from the PDB and scientific literature were divided into 
training and testing sets. To evaluate the modeling process, 
fivefold cross-validations were conducted on the training 
set. More specifically, the training set was randomly split 
into fivefolds. Fourfolds were then used to develop a ran-
dom forest model and the remaining fold was used to test 
the developed model. Because the dataset is very imbal-
anced, downsampling the majority (binders) was used to 
make a balanced dataset to train a random forest model, so 
that the imbalance impact on the performance of the con-
structed model is alleviated. This process was iterated five 
times until each of the fivefolds was used only once as the 
test set. All predictions were used to calculate the perfor-
mance metrics. The fivefold cross-validations were repeated 
100 times to reach a robust statistical estimation of model 
performance. Then, the whole training set was used to con-
struct a random forest model with the same downsampling 
strategy. The model was evaluated using the testing set and 
was applied to predict the potential binding activity of FDA-
approved drugs curated from the Liver Toxicity Knowledge 
Base (LTKB, https://www.fda.gov/science-research/liver-
toxicity-knowledge-base-ltkb/drug-induced-liver-injury-
severity-and-toxicity-dilist-dataset).30

Data curation

We first searched the PDB database (https://www.rcsb.
org/) using the keyword “SARS-CoV-2 main protease.” 
Then, we manually checked the hits and downloaded the 
structure files. Thereafter, we separated the ligands from the 
complexes and removed redundant ligands. Due to enzyme 
reactions, compounds in the complex structures in the PDB 
may be different from their parent compounds. In this study, 
parent compound structures of the bound ligand were used. 
Molecular weights of these compounds have a wide dis-
tribution, varying from 95 to 710 daltons (Da), with two 
normal distribution curves that have a mean value of 250 
and 500 Da, respectively. In addition, the SARS-CoV-2 main 
protease binding activity data of compounds not reported 
in the PDB were curated from the scientific literature. The 
curated main protease binding activity data were experi-
mentally tested in a transgenic mouse model,31 identified 
by virtual screening of ultra-large databases and tested in 
binding and enzymatic assays,32 tested using the fluores-
cence resonance energy transfer assay,32 and obtained from a 
simplified cell-based assay.33 We used the ligands in the PDB 
as binders for the training set and the binders determined by 
binding assays in the literature for the testing set. Finally, we 
proportionately divided the 245 non-binders into training 
and testing sets, resulting in the same ratio of binders/non-
binders in the training (372 binders and 144 non-binders, 
Supplementary Table S1) and testing (259 binders and 101 
non-binders, Supplementary Table S2) sets. A list of 1442 

http://www.rcsb.org/
https://www.fda.gov/science-research/liver-toxicity-knowledge-base-ltkb/drug-induced-liver-injury-severity-and-toxicity-dilist-dataset
https://www.fda.gov/science-research/liver-toxicity-knowledge-base-ltkb/drug-induced-liver-injury-severity-and-toxicity-dilist-dataset
https://www.fda.gov/science-research/liver-toxicity-knowledge-base-ltkb/drug-induced-liver-injury-severity-and-toxicity-dilist-dataset
https://www.rcsb.org/
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FDA-approved drugs was acquired from the LTKB. After 
removing mixtures, inorganics, and duplicates, 1188 FDA-
approved drugs remained for the main protease binding 
activity prediction (Supplementary Table S3). The curated 
data sets are summarized in Table 1.

Data preprocessing

Simplified molecular-input line-entry system (SMILES) 
codes of the compounds were obtained from PubChem 
(https://pubchem.ncbi.nlm.nih.gov/) and were used to 
generate two-dimensional (2D) chemical structures using 
the Online SMILES Translator and Structure File Generator 
(https://cactus.nci.nih.gov/translate/). The 777 molecular 
descriptors were calculated by Mold234,35 for each chemical 
from its 2D structure. The molecular descriptors with little 
information or low variance were discarded. First, molecular 
descriptors with zeros for more than 90% of the compounds 
were removed. Next, Shannon entropy analysis34,36,37 was 
conducted to identify molecular descriptors with high vari-
ance. For each molecular descriptor, compounds in the train-
ing set were put into 20 groups with even bins of descriptor 

values. A Shannon entropy value was then calculated for the 
molecular descriptor according to equation (1)
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where pi is the probability of chemicals in group i. The 297 
molecular descriptors with Shannon entropy values greater 
than 3.0 were kept for model development. The 297 molecu-
lar descriptors are listed in Supplementary Table S4. Finally, 
the values of each molecular descriptor in all datasets (train-
ing set, testing set, and FDA-approved drugs) were normal-
ized using equation (2)

 V
V Min

Max Min
o train

train train

=
−
−

 (2)

where V is the normalized value, Vo is the original value, 
Mintrain is the minimum value of the descriptor in the train-
ing set, and Maxtrain is the maximum value in the training set.

Model development and validation

The machine learning model was built using a random forest 
algorithm which is an ensemble learning algorithm combin-
ing all predictions from individual decision trees.38 Due to 
the imbalance in classes in the training set (72.1% binders 
and 27.9% non-binders), we conducted downsampling of 
the binders to get balanced training data for model devel-
opment. The downsampling process was performed by 
random selection of the binders (majority class) to balance 

Figure 1. Study design. Data curated from the PDB and scientific literature were separated into training and testing sets. For cross-validation, the training set was 
randomly split into fivefolds. Downsampling binders were applied on fourfolds to get a balanced dataset for training a random forest model. The downsampling process 
was repeated five times using different random seeds. Next, the five random forest models were used to test the remaining fold and the predictions were combined 
to generate consensus predictions. The whole process was iterated five times until each of the fivefolds was used only once as a test for complete fivefold cross-
validations. The fivefold cross-validations were repeated 100 times. Then, the whole training dataset was downsampled to get a balanced dataset (repeated five 
times) to construct random forest models. The models were evaluated using the testing set and applied to predict the potential binding activity of FDA-approved drugs 
curated from the LTKB.

Table 1. Datasets for model development and prediction.

Datasets Main protease 
binder

Main protease 
non-binder

Total

Training set 372 144 516
Testing set 259 101 360
FDA-approved drugs 1188

https://pubchem.ncbi.nlm.nih.gov/
https://cactus.nci.nih.gov/translate/
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with the non-binders. Five models were generated from the 
same imbalanced training set by downsampling the bind-
ers. Predictions from the five models for a compound were 
combined using majority voting strategy to make the final 
prediction for the compound.

Cross-validation was applied to the training set to evalu-
ate the performance of the random forest model. In fivefold 
cross-validations, the training set was first randomly split 
into five even folds. Fourfolds were used to train the model 
and the remaining fold was used to test the model. This pro-
cess was iterated five times until each of the fivefolds was 
used only once as the test set. The fivefold cross-validations 
were repeated 100 times to get a statistically robust estima-
tion of model performance. The fivefold cross-validations 
and the results analysis were implemented using Python 
(3.8.5) scikit-learn packages (0.23.2), and the default param-
eters were applied for random forest model development.

To assess generalization of the constructed random forest 
model, the model that was built using the whole training set 
was applied to predict the potential main protease binding 
activity of compounds in the test set. First, the binders in 
the whole training set were randomly downsampled to get 
a balanced dataset for constructing a random forest model. 
The random downsampling was repeated five times, so that 
five models were constructed from the same training data-
set. Finally, the majority voting was conducted to make final 
predictions using the five models.

Model performance measurement

Accuracy, sensitivity, specificity, balanced accuracy, and 
Matthew’s correlation coefficient (MCC) were calculated 
by comparing the predictions from the testing or from each 
iteration of fivefold cross-validations with the actual binding 
activity data to measure the performance of the random for-
est models. These metrics were calculated using equations 
(3)–(7)
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+
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where TP, TN, FP, and FN represent true positives, true nega-
tives, false positives, and false negatives, respectively.

Prediction confidence analysis

A prediction from the random forest model is a probability 
that indicates how likely a compound is a SARS-CoV-2 main 
protease binder. This probability is used to not only clas-
sify the compound as binder or non-binder but also meas-
ure the confidence of the prediction. In addition to overall 

model performance, the confidence of the prediction results 
from the random forest model can be analyzed to inform 
better utilization of predictions in applications. The predic-
tion confidence value of prediction was calculated from its 
prediction probability from the random forest model using 
equation (8) as in our previous studies35,37,39

 Prediction confidence
prob

=
− 0 5

0 5

.

.
 (8)

where prob is the probability, the compound predicted is a 
main protease binder from the random forest model. The 
prediction confidence values range between 0 and 1. In our 
prediction confidence analysis, all predictions were first 
grouped into 10 sets according to their prediction confidence 
values, with 10 even bins of confidence values from 0 to 0.1 
with an equal interval of 0.1. Next, the performance met-
rics were calculated for the 10 sets of predictions separately. 
Finally, the relationship between the prediction performance 
and prediction confidence level was analyzed.

Informative descriptors identification

Different molecular descriptors convey different structural 
information and contribute differently to the random for-
est models. The descriptors that were frequently used in 
the random forest models are informative descriptors to 
the model and should be important for a compound to 
interact with the main protease. To identify such informa-
tive descriptors, we first calculated an importance value 
for each descriptor using sum of the importance values 
of the descriptor output from the 500 random forest mod-
els constructed in the 100 times fivefold cross-validations. 
Molecular descriptors were then ranked by their impor-
tance values. The top-ranked descriptors were identified 
as the informative descriptors.

Applicability domain analysis

Applicability domain (AD) of a model is the structural space 
of chemicals that are used to train the model. Chemicals 
within the AD of a model are structurally similar as the train-
ing chemicals of the model and should be more accurately 
predicted. Therefore, AD analysis is important for assessing 
predictions of predictive models.40–42 To conduct AD analy-
sis on the developed random forest model, we first ranked 
descriptors using their importance values in the random for-
est model. Then, the top-ranked descriptors that count for 
90% of the total importance values were used to define AD 
of the model, that is the hyperbox with boundary from the 
minimum to maximum for each of the selected descriptors. 
When all descriptors of a chemical are within the boundary, 
the chemical is inside the model’s AD. However, if one or 
more of these descriptors of a chemical are out of the bound-
ary, the chemical is outside the model’s AD and the distance 
of the chemical to the AD is calculated. We calculated the 
distance of a compound to the AD of the random forest model 
using equation (9)

 Distance d d dn= + +…+1
2

2
2 2  (9)
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where di (i = 1, 2, . . ., n) is the distance of molecular descrip-
tor i to the ith dimension of the AD. The distance was set to 
zero when a chemical is on the boundary of or inside the AD.

After defining AD for a random forest model, we first 
calculated distances to the AD of the random forest for all 
chemicals predicted by the model. We then examined the 
performance difference between the predictions inside and 
outside the AD. For predictions outside the AD, we further 
examined the relationship between the prediction perfor-
mance and distances to the AD.

Results

Model performance evaluation

For the 100 iterations of fivefold cross-validations, the per-
formance metrics were calculated and plotted (Figure 2). The 
average accuracy, sensitivity, specificity, balanced accuracy, 
and MCC of the random forest models in the 100 iterations 
of fivefold cross-validations were 0.783 ± 0.011, 0.785 ± 0.013, 
0.778 ± 0.021, 0.782 ± 0.012, and 0.523 ± 0.023, respectively. 
Figure 2 illustrates that the constructed models show good 
performance and all performance metrics have small stand-
ard deviations among the 100 iterations of cross-validations, 
indicating the random forest models were not impacted 
much by the random divisions of the dataset into fivefolds.

The random forest was further evaluated using the test-
ing set. The model was built using the whole training set. 
Comparing the actual SARS-CoV-2 main protease binding 
activity with the predictions from the random forest model 
on the testing set showed accuracy, sensitivity, specificity, 
balanced accuracy, and MCC of 0.514, 0.432, 0.723, 0.578, 
and 0.143, respectively, indicating that the developed model 
has good predictive power for predicting the main protease 
binding on unseen compounds.

Prediction confidence analysis

The prediction confidence analysis was conducted on the 
predictions from 100 iterations of fivefold cross-validations 
and predictions on the testing set. The performance met-
rics (accuracy, sensitivity, specificity, balanced accuracy, 
and MCC) and the number of predictions at different pre-
diction confidence levels are plotted in Figure 3(A) for the 
fivefold cross-validations and in Figure 3(B) for predictions 
on the testing set. Clear trends were observed in the predic-
tion confidence analysis results: the performance of predic-
tions (accuracy, sensitivity, specificity, balanced accuracy, 
and MCC) improved when the prediction confidence level 
increased. Interestingly, more predictions are at higher con-
fidence levels, but much less predictions are at very high 
confidence levels. The prediction confidence analysis results 

Figure 2. Performance of the fivefold cross-validations. The x-axis indicates 100 
iterations of the fivefold cross-validations. The y-axis gives performance metrics 
values. Accuracy, balanced accuracy, specificity sensitivity, and MCC values are 
plotted as red circles, green diamonds, blue circles, magenta circles, and cyan 
circles, respectively.

Figure 3. Prediction confidence analysis for the predictions from the 100 
iterations of fivefold cross-validations (A) and for the predictions on the testing 
set (B). The x-axes show the 10 prediction confidence levels. The left y-axes give 
performance metrics values. The right y-axes depict the numbers of predictions. 
Accuracy, balance accuracy, MCC, specificity, and sensitivity are plotted as 
the red, blue, cyan, magenta, and green circles, respectively. The numbers of 
predictions are represented by black triangles.
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demonstrated that the prediction confidence derived from 
the predictions from the random forest model provides an 
additional metric to help more appropriately use predic-
tions from the developed random forest model in practical 
applications.

Informative descriptors identification

Molecular descriptors represented the chemical features 
and are important for the interpretation of the relationship 
between structures of chemicals and their potential main 
protease binding activity. To identify the informative molec-
ular descriptors used in the random forest models, we first 
added up the importance values from the 500 models in 
the 100 times fivefold cross-validations for each molecular 
descriptor as the importance value of the descriptor. Then, 
the 297 molecular descriptors were ranked according to their 
importance values as plotted in Figure 4. Seven molecular 
descriptors with importance values higher than 20 were 
identified as the informative molecular descriptors to the 
random forest models and convey key structural informa-
tion for SARS-CoV-2 main protease binding. These seven 
descriptors are D285 (structural information content order-3 
index), D289 (complementary information content order-2 
index), D290 (complementary information content order-3 
index), D417 (topological structure autocorrelation length-3 
weighted by atomic masses), D418 (topological structure 
autocorrelation length-4 weighted by atomic masses), D430 
(topological structure autocorrelation length-8 weighted by 
atomic van der Waals volumes), and D470 (Geary topologi-
cal structure autocorrelation length-8 weighted by atomic 
Sanderson electronegativities).34 Complementary infor-
mation content indexes measure molecular shape–related 
properties, such as symmetry. Topological structure autocor-
relations weighted by physical–chemical properties measure 
distributions of the properties along the topological struc-
tures. These identified informative molecular descriptors 
indicate that the physical–chemical properties and molecular 
shape and size of a compound are important for the com-
pound to bind the main protease.

AD analysis

The AD of the constructed random forest represents the 
chemical space of the compounds that were used to train 
the model. Therefore, compounds outside the AD are less 
similar to the training chemicals and should be less accu-
rately predicted by the model compared to the compounds 
inside the AD. The distances to the AD for the compounds 
predicted by the constructed random forest models in the 
fivefold cross-validations and testing set predictions were 
calculated. Prediction performance on compounds inside the 
AD and at different distance ranges from the AD was calcu-
lated and summarized in Figure 5. For both the cross-vali-
dations (Figure 5[A]) and the testing set predictions (Figure 
5[B]), the compounds inside the AD had better prediction 
performance (greater balanced accuracy and MCC) than the 
compounds outside the AD, demonstrating AD analysis is 
useful to assess prediction reliability of the developed ran-
dom forest model. Surprisingly, compounds with different 
distances to the AD did not show much difference in predic-
tion performance. This observation may be explained by 
the algorithmic characteristic of random forest which is a 
decision tree–based machine learning algorithm. In a deci-
sion tree, a node is split using a cut-off value on a selected 

Figure 4. Importance of molecular descriptors. The x-axis shows the rank of the 
297 molecular descriptors and the y-axis depicts importance value. Each red 
circle represents a descriptor. The dashed line indicates importance value 20.

Figure 5. Prediction performance on compounds with different distances to the 
AD of the models in the cross-validations (A) and testing set prediction (B). The 
x-axes indicate distance to the AD. The y-axes give performance metrics values. 
Balanced accuracy and MCC are plotted as blue and red bars, respectively.
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molecular descriptor and the magnitude of values of the 
select descriptor does not impact the split.

FDA-approved drugs

To identify potential candidates targeting the SARS-CoV-2 
main protease for repurposing for COVID-19 treatment 
from FDA-approved drugs, the random forest model con-
structed using the whole training set was applied to predict 
the potential main protease binding activity of the 1188 FDA-
approved drugs. Of the 1188 drugs, 472 were predicted as 
potential main protease binders by the random forest model. 
To identify repurposing candidates, we first calculated the 
prediction confidence values using the prediction probabil-
ity values from the model and the distances to the AD of the 
model using the important descriptors determined in the 
model for the 472 drugs. The prediction confidence values 
and distances to the AD were plotted in Figure 6. As it can be 
seen in Figure 6, most of the 472 drugs are outside the AD of 
the model or have low prediction confidence (less than 0.5). 
Overall, 10 drugs were predicted to be SARS-CoV-2 bind-
ers with high prediction confidence (greater or equal to 0.5) 
and are inside the AD of the random forest model that were 
identified as potential candidates to repurpose for COVID-19 
treatment targeting the main protease. Table 2 lists these 10 
FDA-approved drugs as potential candidates for repurpos-
ing to COVID-19 treatment through binding the SARS-CoV-2 
main protease.

Discussion

During the COVID-19 pandemic, many people were 
infected by SARS-CoV-2. Although several drugs have been 
approved by the FDA to treat COVID-19 patients, more effec-
tive drugs are needed. However, new drug development is a 
long and expensive process.43–45 Hence, repurposing an exist-
ing drug to a new usage is a speedy and efficient approach. 

Previous studies have identified several targets on SARS-
CoV-2 and the main protease has been extensively studied 
because there is no homology in humans and because of its 
conservative structure.46–49 In this study, we explored the 
utilization of machine learning for identifying SARS-CoV-2 
main protease binders as potential candidates for repurpos-
ing FDA-approved drugs for COVID-19 treatment. The com-
pounds with SARS-CoV-2 main protease binding activity 
data were curated from the PDB and scientific literature for 
developing and evaluating machine learning models using 
a random forest algorithm for predicting SARS-CoV-2 main 
protease binding activity of compounds. Using the devel-
oped random forest model, we identified 10 drugs from 1188 
FDA-approved drugs that were retrieved from the LTKB as 
potential candidates to repurpose for COVID-19 treatment.

The curated data have much more binders than non-bind-
ers, making both the training and testing data sets imbal-
anced. Imbalance in training data sets is a long-standing 
issue in machine learning as models trained on imbalanced 
data sets have bias to the majority class of samples when 
predicting new samples. Several approaches have been 
explored to solve the imbalance issue, but it remains a chal-
lenge in machine learning. In this study, a downsampling 
majority approach was applied to alleviate the impact of 
the imbalanced training data on the constructed random 
forest models. The random forest models constructed with 
downsampling the majority (binders) in the 100 iterations of 
fivefold cross-validations had very similar sensitivity and 
specificity (magenta and blue circles in Figure 2) with aver-
age values 0.785 and 0.778, respectively. Our results suggest 
that downsampling majority is a useful method for reducing 
impact of imbalanced training sets in machine learning.

A good machine learning model not only predicts a sample 
belonging to a class but also quantifies how likely the sample 
should belong to the predicted class, commonly termed as 
prediction confidence. The random forest models developed 
in this study predicted compounds as SARS-CoV-2 binders 
or non-binders using the probability value that measures 
the likelihood of the predicted compound to be a binder. To 
assess the usefulness of the quantified predictions from the 
random forest models, prediction confidence analysis was 
performed on the results from both fivefold cross-validations 
(Figure 3[A]) and testing set prediction (Figure 3[B]). Our 
results showed that prediction performance of predictions 
at a high confidence level is better than predictions at a low 
confidence level. Our findings suggest that prediction confi-
dence from the developed random forest model provides a 
complementary metric to the main protease binding activity 
prediction in using the model in applications.

Different molecular descriptors made different contribu-
tions to the developed random forest model. The descrip-
tors that contributed more to the model are informative to 
the model and should play important roles for a compound 
to bind the main protease. To find the possible relation of 
structural features of a compound and its main protease 
binding activity, we identified seven informative molecu-
lar descriptors and further found the molecular physical–
chemical properties and shape and size of a compound play 
vital roles in the main protease binding of chemicals. These 
structural features may be useful in designing more potent 
SARS-CoV-2 main protease binders.

Figure 6. AD and prediction confidence analysis for FDA-approved drugs 
predicted as potential SARS-CoV-2 main protease binders. The x-axis shows 
the prediction confidence value. The y-axis indicates the log10 values of the 
distance to the AD. The drugs are represented by red circles. The value −5 is 
used to represent drugs inside the AD and the horizontal dashed line indicates 
the separation of drugs inside and outside the AD. The vertical dashed line 
represents the prediction confidence value at 0.5.
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AD is important to evaluate the extrapolation capability 
of a machine learning model to samples that are not similar 
to the training samples. It is expected that samples similar to 
the training samples should be more accurately predicted by 
the machine learning model than samples that are not similar 
to the training samples. There are many methods to define 
AD for a machine learning model. Considering the charac-
teristic of a random forest algorithm, the dissimilarity val-
ues (distances to the AD) of compounds outside the AD can 
be quantified. However, the impact of such quantification 
may not linearly relate to prediction performance. Our AD 
analysis results from the fivefold cross-validations (Figure 
5[A]) and testing set predictions (Figure 5[B]) revealed that 
predictions inside the AD are more accurate than predictions 
outside the AD, but no large difference in performance was 
found for predictions at different distances to the AD. Our 
findings confirmed that the distances to the AD calculated in 
this study linearly correlate with prediction performance. A 
suitable distance calculation method to generate quantifica-
tions linearly related to prediction performance is needed 
and deserves for further investigation.

The goal of this study was to identify FDA-approved 
drugs that are SARS-CoV-2 main protease binders as can-
didates for drug repurposing. We identified 11 drugs that 
were predicted to be main protease binders with high-
prediction confidence values (⩾ 0.5) using the developed 
random forest model and are inside the AD of the model. 
Of these 11 approved drugs, suprofen was discontinued in 
the USA and the rest 10 drugs (Table 2) were suggested as 
potential candidates for repurposing to treat COVID-19. 
Ciclopirox is an antifungal drug that has antibacterial and 
anti-inflammatory properties. Procarbazine is an antineo-
plastic agent. Polystyrene sulfonate is a potassium-binding 
resin and an effective topical microbicide and spermi-
cide. Metyrapone is an inhibitor of endogenous adrenal 
corticosteroid synthesis. Ketamine is a rapid-acting gen-
eral anesthetic. Benzylpenicilloyl polylysine is penicilloyl 
bound to polylysine and the major determinant of peni-
cillin metabolism. Isocarboxazid is a monoamine oxidase 
inhibitor. Suprofen is a non-steroidal anti-inflammatory 
analgesic and antipyretic and is no longer approved for 
use in the USA. Edrophonium is a cholinesterase inhibitor. 
Avanafil is a phosphodiesterase-5 inhibitor. Afatinib is a 
4-anilinoquinazoline tyrosine kinase inhibitor and an anti-
neoplastic agent. Binding free energy calculations showed 

that afatinib can act as a potential inhibitor of the main 
protease.50 Additional experimental testing is required to 
confirm the potential main protease binding activity of 
these identified FDA-approved drugs.

Multiple machine learning models for SARS-CoV-2 main 
protease binding activity prediction have been developed 
and applied in drug design and discovery for COVID-19 
treatment. Combining with other approaches, such as molec-
ular docking and molecular dynamics simulation, regression 
models have been developed using machine learning algo-
rithms for improving potency of candidate compounds.51–53 
Regression models are not able to distinguish between active 
and inactive compounds, and thus are not suitable for assist-
ing in drug repurposing. Gomes et al.54 used a pipeline con-
sisting of molecular docking, metadynamics, and machine 
learning models for screening SARS-CoV-2 main protease 
inhibitors from compounds in DrugBank. Similar to our 
approach, they selected 74 SARS-CoV-2 main protease struc-
tures from PDB and generated 50 decoys as negatives for 
each positive. Compared to our model, their model trained 
on much fewer positives. Moreover, they did not report 
model performance but only reported the enrichment effect 
of their whole pipeline. Classification models for predicting 
SARS-CoV-2 main protease inhibitors have also been devel-
oped using a variety of machine learning algorithms, such as 
random forest, k-nearest neighbors, support vector machine, 
and Naïve Bayes.55–58 Compared to our models, these models 
were developed based on datasets with much fewer SARS-
CoV-2 main protease inhibitors. Moreover, annotations of 
positives and negatives used to generate the training sets are 
not consistent. For example, after collecting compounds with 
IC50 values from literature, Ferdous et al.55 discarded com-
pounds with IC50 of 1–10 µM and assigned compounds with 
IC50 < 0.5 µM as positives and compounds with IC50 > 10 µM 
as negatives, while Mekni et al.56 excluded compounds with 
IC50 > 98 µM as negatives. It is worth noting that the SARS-
CoV-2 main protease has multiple binding sites that can bind 
compounds with distinct structural features.59 The positives 
in our training set are curated from PDB. They bind to Site 159 
and are “seen” binding to the protease. Therefore, the quality 
of the training set is high. Another advantage of our model 
is that it provides prediction confidence and AD that are not 
available from previously published models, but are espe-
cially useful for identifying highly reliable candidates from 
FDA-approved drugs for repurposing to treat COVID-19.

Table 2. Candidates for drug repurposing to treat COVID-19.

Drug ATC code DrugBank ID Use

Ciclopirox D01AE14 DB01188 Treat dermal infections
Procarbazine L01XB01 DB01168 Treat Hodgkin’s disease
Polystyrene sulfonate V03AE01 DB01344 Treat hyperkalemia
Metyrapone V04CD01 DB01011 Test hypothalamic-pituitary 

adrenocorticotropic hormone function
Ketamine N01AX03 DB01221 Anesthetic agent
Benzylpenicilloyl polylysine J01CR50 DB00895 Detect immunoglobulin E antibodies
Isocarboxazid N06AF01 DB01247 Treat symptoms of depression
Edrophonium V04CX07 DB01010 Test myasthenia gravis
Avanafil G04BE10 DB06237 Treat erectile dysfunction
Afatinib L01XE13 DB08916 Treat non–small cell lung cancer

ATC: Anatomical Therapeutic Chemical.
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In conclusion, we developed a random forest model for 
SARS-CoV-2 main protease binding activity prediction. 
The model was evaluated using fivefold cross-validations 
and a testing set. The model achieved good prediction per-
formance. We conducted prediction confidence analysis 
and AD analysis for the model and demonstrated that pre-
diction confidence and inside or outside the AD of a pre-
diction are useful for assessing the quality of the prediction 
from the random forest model. Coupling prediction con-
fidence and AD analysis, we identified 10 FDA-approved 
drugs as potential candidates for drug repurposing to 
COVID-19 treatment. Our results indicated that machine 
learning may be an efficient method for drug repurposing 
and thus accelerate drug development for the treatment 
of COVID-19 through targeting the SARS-CoV-2 main 
protease.
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