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Abstract
Ethanol consumption causes fatty liver, which can lead to inflammation, fibrosis, cirrhosis and even liver cancer. The

molecular mechanisms by which ethanol exerts its damaging effects are extensively studied, but not fully understood. It is

now evident that nuclear receptors (NRs), including retinoid x receptor a and peroxisome proliferator-activated receptors,

play key roles in the regulation of lipid homeostasis and inflammation during the pathogenesis of alcoholic liver disease

(ALD). Given their pivotal roles in physiological processes, NRs represent potential therapeutic targets for the treatment

and prevention of numerous metabolic and lipid-related diseases including ALD. This review summarizes the factors that

contribute to ALD and the molecular mechanisms of ALD with a focus on the role of NRs.
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Introduction

Alcoholic liver disease (ALD) is damage to the liver and its
function due to alcohol abuse and usually occurs after years
of excessive drinking. Changes in the liver include fatty
liver, inflammation and cirrhosis.1 – 3 Moreover, chronic
alcohol consumption is an established risk factor for the
development of hepatocellular carcinoma in patients with
liver cirrhosis.4,5 ALD may occur in patients who consume
excessive amounts of alcohol. Reports indicate that the
risk of developing liver damage depends on the amount
of alcohol consumed.6 – 8 Evidence suggests that daily
ethanol consumption exceeding 40–80 g/d for men and
20–40 g/d for women for 10–12 y may lead to ALD.1,9,10

Alcohol use remains the most common cause of liver-related
mortality and a major cause of death and disability world-
wide.11 Since the 1970s, there has been a gradual decline
in ALD mortality in many countries.9 However, current
reports indicate that the incidence of ALD and subsequent
deaths is on the rise.9 In the United States, the mortality
rate for ALD in 1993 was 7.9 per 100,000, while in 2000 it
had risen to 9.6 per 100,000.12,13

Although a clear correlation exists between cumulative
alcohol intake and liver disease, only some alcohol drinkers
develop signs of ethanol-induced liver damage. It is now

clear that individuals differ in their susceptibility to ALD.
The susceptibility of individuals to the toxic effects of alcohol
consumption may involve complex interactions between
genes and the environment. To date, genes encoding the prin-
cipal alcohol-metabolizing enzymes, alcohol dehydrogenase
(ADH) and aldehyde dehydrogenase (ALDH), are the only
genes that have been firmly linked to vulnerability to alcohol-
ism and possible risk for ALD.14–18 Other factors that affect
susceptibility to ALD include the amount of alcohol ingested
over time, ethnicity, female gender, adolescent age, drinking
multiple varieties of alcohol, drinking alcohol in-between
meals, poor nutrition, obesity, hepatitis C virus infection and
polymorphisms in genes (cytochrome P450 2E1 [CYP2E1],
glutathione S transferases [GSTs] and tumor necrosis
factor-a [TNF-a]).6,9,14,19 – 26 Epidemiological data indicate
that some minority groups suffer more severe adverse
effects from alcohol consumption.27 It has been suggested
that some of these consequences may be due to special
characteristics of these minority populations, including
nutrition, socioeconomic status, hygiene, health-care
delivery or other environmental conditions.28 In addition,
reports indicate that polymorphisms in several genes,
including ADH and ALDH observed among Asians,
African-Americans and Caucasians, may be an important
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biological factor contributing to differences in cell and tissue
damage, intolerance to alcohol or both observed in these
groups.14,29 – 31 Among the various ethnic groups, Hispanic
and African-American men have the highest risk of alcohol-
ism.15 – 17,32

Ethanol produces a wide spectrum of hepatic injuries in
humans and experimental animals, the most characteristic
being interference in lipid metabolism. Hepatic lipid
homeostasis is maintained by balanced lipid synthesis, cat-
abolism (b-oxidation) and secretion. Alcohol metabolism
changes the redox state of the liver, which leads to altera-
tions in hepatic lipid, carbohydrate, protein, lactate and
uric acid metabolism. The molecular mechanisms, which
account for these alterations, are not completely understood.
A large body of evidence implicates the involvement of
ligand-activated transcription factors called nuclear recep-
tors (NRs) in alcohol-induced liver injury. These NRs play
diverse roles in cellular processes and are receptors for
fatty acids, cholesterol, oxysterols and xenobiotics generated
after ethanol ingestion. This review, however, will mainly
focus on those NRs that are central to the pathogenesis of
ALD and their role in orchestrating the complex transcrip-
tional programs that govern lipid and inflammatory homeo-
stasis in ALD.

Ethanol metabolism

Ethanol is metabolized predominantly in the liver via two
well-characterized pathways.18,33,34 The first involves
ADH, an NADþ-dependent enzyme located in the hepatic
cytosol, which catalyzes the conversion of ethanol to acet-
aldehyde, a potent toxicant that accounts for the most
toxic effects of ethanol.33 Acetaldehyde produced from
ethanol is further converted to the non-toxic acetate by a
mitochondrial ALDH.34 Both steps are coupled with the
reduction of NADþ to NADH. The increased NADH/
NADþ ratio affects the metabolism of carbohydrates and
lipids in cytoplasm and mitochondria. This leads to impaired
gluconeogenesis and diminished substrate flow through the
citric acid cycle, with acetyl CoA diverted to fatty acid
synthesis. The NADH-induced inhibition of mitochondrial
fatty acid b-oxidation, combined with increased fatty acid
synthesis, contributes to the pathogenesis of fatty liver, the
initial stage of ALD.35–38

Evidence indicates that, rather than being an epipheno-
menon of excessive alcohol intake, steatosis could play a
direct role in progression to more advanced disease.39 It is
now clear that the severity and pattern of steatosis in ALD
predicts the subsequent risk of fibrosis and cirrhosis. The
current model of pathogenesis from healthy liver to
alcohol-induced liver injury suggests a two-hit progression
with steatosis being considered as the ‘first hit’. Cellular
insults such as oxidative stress, lipid peroxidation, direct
lipid toxicity, mitochondrial dysfunction and/or infection
causing hepatic inflammation can be the second hit, which
lead to alcoholic steatohepatitis.3 Besides ADH, another
enzyme that affects ethanol action is CYP2E1, a microsomal
enzyme that metabolizes ethanol at high concentrations and
also metabolizes vitamin A, acetaminophen and protease

inhibitors.18,40,41 CYP2E1 activity is induced 2–10-fold
after chronic ethanol exposure and has been implicated as
the source of oxidative stress.42

Oxidative and inflammatory factors
influencing ALD

Several pathways or factors, which are known to be
involved in the pathogenesis of ALD, are summarized
below. Ethanol consumption predominantly results in a
decrease in the hepatocyte level of S-adenosylmethionine
(SAMe) and increases in two toxic metabolites, homocysteine
and S-adenosylhomocysteine (SAH).43 – 50 Furthermore,
alcohol causes a shift in the expression of methionine adeno-
syltransferase (MAT) genes in the liver from MAT1A to
MAT2A, which correlates with decreased SAMe levels.49,50

Chronic ethanol consumption markedly inhibits methionine
synthase activity resulting in the depletion of SAMe.51

Ethanol-induced upregulation of betaine-homocysteine
methyltransferase (BHMT) or betaine supplementation can
transiently cause elevations in SAMe levels.51,52 Decreased
SAMe levels are associated with decreased antioxidant
defense, fibrogenesis, induction of TNF-a and increased
DNA strand breaks, all of which lead to liver injury.50 An
association of ethanol-induced hyperhomocysteinemia and
endoplasmic reticulum (ER) stress has also been proposed
to be important in the observed alcoholic fatty liver,
necroinflammation and apoptosis seen after alcohol
exposure.53,54 Recent studies have shown that osteopontin,
a matricellular protein, also plays a significant role in
ALD.55 Elevated osteopontin levels correlated with neutro-
phil infiltration and liver injury.56 The gender difference in
the susceptibility of mice to alcohol-induced liver injury
may be due to higher hepatobiliary expression of osteopon-
tin in females than males.56 Plasminogen activator
inhibitor-1 (PAI-1), which inhibits fibrin degradation and
mediates inflammatory signaling, is also implicated in
alcohol-induced liver injury.57 – 59 PAI-1 levels were
increased in response to acute and chronic ethanol intake
in mice.59 Additionally, ethanol-induced steatosis and
lipid peroxidation is blocked when PAI-1 is absent or
low.59 Reports indicate that PAI-1 mRNA and protein are
significantly increased in osteopontin 2/2 mice, suggesting
that osteopontin can suppress PAI-1 expression.60,61

The complement pathway, an important component of
the innate and adaptive immune response, is involved
in the pathogenesis of ALD.62 The proteins and glyco-
proteins, which constitute the complement system, are syn-
thesized by the liver hepatocytes, macrophages and other
types of cells. The expression of C1, C2, C3, C8 and C9,
which are involved in the activation of classical and alterna-
tive complement pathways, is induced in alcohol-induced
fatty liver.63 – 67 Reports indicate that C3 and C5 differen-
tially contribute to the pathogenesis of ethanol-induced
liver injury.67 Ethanol-fed C3-deficient mice did not
develop hepatic steatosis, but still had liver injury, as well
as increased expression of inflammatory cytokines in the
liver.67 In contrast, ethanol-fed C5-deficient mice developed
hepatic steatosis, but were completely protected from
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ethanol-induced liver injury and increases in inflammatory
cytokines.67 Interleukins (ILs) have also been shown to
play a role in ethanol-induced liver injury. IL-6-deficient
mice are more prone to ethanol-induced apoptosis and
liver injury.68 IL-6 exerts its protective effect via an increase
in hepatocyte proliferation, induction of antiapoptotic
factors, peroxisome proliferator-activated receptors a

(PPARa) activity and a reduction in steatosis.68,69 Reports
indicate that nuclear factor eythroid 2-related factor 2
(Nrf2) is induced in ethanol-fed mouse liver, suggesting a
protective role of Nrf2 against alcohol-induced liver
damage.70 Nrf2-null mice exhibit impaired detoxification
of acetaldehyde and increased sensitivity to alcohol-induced
liver injury.71

The above pathways involving oxidative stress, antioxi-
dant molecular synthesis, ER stress and inflammation illus-
trate the complexity of ethanol-induced tissue injury.

Endocrine and metabolic factors
influencing ALD

Reports indicate that low levels of adiponectin, an impor-
tant antisteatotic and anti-inflammatory cytokine produced
by adipocytes, may also contribute to steatosis and inflam-
mation in ALD.72 – 76 Chronic ethanol administration
decreases plasma adiponectin levels as well as hepatic
adiponectin receptor-1 (AdipoR1) mRNA levels, leading
to steatosis.75,77 Adiponectin attenuates alcoholic fatty liver
by up-regulating PPARa, PPARg coactivator-1a (PGC-1a)
and carnitine palmitoyl transferase-1. In addition, adiponec-
tin down-regulates acetyl-CoA carboxylase (ACC)19 and
fatty acid synthase (FAS), key enzymes involved in fat bio-
synthesis.75,78 – 82 Adiponectin also has anti-inflammatory
effects. The administration of adiponectin reduces TNF-a
levels in ethanol-fed mice.75 The action of adiponectin is
mediated in part by increase in AMP-activated protein
kinase (AMPK) activity.79,82 It has been proposed that
AMPK acts as a metabolic master switch and its activation
leads to a concomitant inhibition of energy-consuming bio-
synthetic pathways, such as FAS.83 AMPK activation inhi-
bits ACC activity directly by phosphorylation, and inhibits
ACC expression indirectly via the suppression of sterol
regulatory element-binding protein-1c (SREBP-1c), a key
lipogenic transcription factor.84,85 SREBP-1 activity is regu-
lated by reversible acetylation at specific lysine residues.86

Findings have demonstrated that sirtuin 1 (SIRT-1), a
NADþ-dependent class III protein deacetylase that regulates
lipid metabolism, is involved in ALD.87 SIRT-1 is known to
bind to SREBP-1, resulting in its inactivation via deace-
tylation. Ethanol exposure reduced the level of SIRT-1
content blocking the SIRT-1-induced deacetylation of
SREBP-1.87 In addition, ethanol-induced transcription of
SREBP-1-regulated genes was suppressed by an SIRT-1
agonist, resveratrol.88 Hepatic SIRT-1 knock down in mice
induces the expression of SREBP-1c and its target genes encod-
ing lipid-synthesizing enzymes.89 Adipose tissues in
ethanol-fed rats also express more leptin, a TNF-a-inducible
mRNA.90 Thus, these targeted effects of ethanol on the

adipose tissue play important roles in the development of
steatosis and inflammation.

Animal models of ALD

Animal models are valuable in elucidating the molecular
mechanisms involved in ALD. Two frequently used
animal models are the Lieber–DeCarli liquid diet and the
Tsukamoto-French intragastric tubing feeding model.91 – 94

The Lieber–DeCarli liquid diet model provides an excellent
means to reproduce the early stages of ALD, including liver
injury, steatosis and oxidative stress as well as studying the
relative roles of alcohol, lipids and therapeutic agents.
Rodents fed the Lieber–Decarli diet reduce their overall
food intake; therefore, pair-fed control animals are manda-
tory to interpret the experimental results. After determining
the caloric intake of the ethanol-treated animal, the exact
amount of calories is given to the pair-fed control animal
on the next day. Tsukamoto and French developed con-
tinuous enteral–ethanol administration via intragastric
infusion.94 – 96 After laparotomy, a catheter is implanted
intragastrically facilitating a continuous infusion of ethanol
up to 16.5 g/kg/d. Thus, very high blood-alcohol levels
can be achieved. The Tsukamoto–French model produces
pathological changes, which resemble human ALD, includ-
ing microvesicular and macrovesicular fat, megamitochon-
dria, apoptosis, central lobular and pericellular fibrosis,
portal fibrosis, bridging fibrosis, central necrosis and infil-
trating inflammatory leukocytes as well as lymphocytes.91,97

The dietary fat content and composition are principal
determinants of the degree of fatty infiltration in animals
and humans ingesting alcohol.98 – 100 In ethanol-fed rats,
robust levels of hepatic triglycerides accumulate when fat
content increases above 25% of the calories in the diet.98

Ethanol with low fat diet (5% of the calories) does not
produce fatty liver or evidence of lipid peroxidation unless
a high blood-alcohol level is achieved by the intragastric
infusion model.95,101 Studies using the Lieber–DeCarli
liquid diet or the intragastric ethanol-fed animal model
have demonstrated that diets enriched in saturated fatty
acids or medium-chain triglycerides protect against
alcohol-induced liver injury. However, diets containing
polyunsaturated fatty acids promote liver injury.82,100,102–105

The administration of saturated fat reversed alcohol-induced
liver injury in rats and improved liver pathological changes
despite continued ethanol administration.106,107 Another
model that has been used to study the acute ethanol effects
on the liver is gastric intubation or intraperitoneal injection
in rodents. The binge model originally described by Carson
and Pruett was designed to achieve blood-alcohol levels,
behavioral effects and physiological changes comparable to
those seen in human binge drinking.108 The dose of alcohol
used to mimic human binge drinking in rodents is 4–6 g/kg
body weight.109 – 111 Binge drinking is the most common
pattern of alcohol consumption in school-age youth. The
probability of becoming a chronic drinker at an adult age
was higher in male and female adolescent binge drinkers
than in non-bingers.112,113 While binge animal models may
not completely mimic liver injury in humans, reports
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indicate a significant contribution of binge drinking to the
incidence of cirrhosis seen in patients with ALD.114 – 116

By taking advantage of genetically manipulated animals,
the role of specific genes in the development of ALD has
been elucidated. Examples of mouse gene knockouts (KO)
include: PPARa, retinoid x receptor (RXRa), SREBP-1c,
BHMT-transgenic, CYP2E1, CYP2E1-transgenic, tumor
necrosis receptor I (TNF-RI), TNF-RII, NADPH oxidase,
cell surface receptor CD14, toll-like receptor 4, intracellular
adhesion molecule-1, PAI-1, IL-6, Nrf2 and osteopontin
mice.44,47,71,117–121 The reader is referred to the following refer-
ences for a discussion of gene-altered mouse models and their
impact on the pathophysiology of ALD.44,46,47,59,117,120–124 This
review focuses on the role of NRs on the pathophysiology
of ALD.

Nuclear receptors

NRs are transcription factors that regulate diverse processes,
including reproduction, embryonic development, cell differ-
entiation and cellular homeostasis.125,126 NRs are expressed
differentially among tissues, and are comprised of at least 49
members, some of which in a circadian manner.127 Most
NRs are composed of four independent but interacting
functional modules.125,128 At the amino-terminus, there is
a poorly conserved region called activation function 1,
which is responsible for ligand-independent transcriptional
activation and is involved in the coordinated interaction of
co-activators and co-repressors. Immediately adjacent to acti-
vation function 1, there is a highly conserved DNA-binding
domain, which contains two zinc-finger motifs, responsible
for high-affinity recognition and binding to the canonical
DNA hexamer sequences comprising the specific response
elements. A small hinge region facilitates the three-
dimensional functional organization of the multiple
domains. The ligand-binding domain serves the greatest
differentiating and identifying function among NRs family
members, determining the affinity of receptors for various
potential ligands, and is responsible for the species specificity
of ligand responsiveness. The C-terminus region, activation
function 2, provides ligand-dependent activation, via a
complex three-dimensional conformational switch to coordi-
nate interactions with co-regulators.125,129 However, there are
exceptions, for example, a small heterodimer partner lacks a
DNA-binding domain and yet heterodimerizes with other
NRs often in a ligand-dependent manner.42,130,131

The NR family is classified into three groups:125 steroid
hormone receptors, adopted orphan NRs and orphan
NRs.1 NRs that generally bind DNA as homodimers and
are activated with high-affinity by steroid hormones are
the steroid hormone receptors. Members of this group
include the receptor for glucocorticoids, mineralocorticoid,
estrogen, androgen and progesterone.2 The adopted
orphan NRs function as heterodimers with RXRs. These
orphan receptors are considered adopted, as studies show
that they can bind physiological ligands and display physio-
logical effects. Members of this group include the receptors
for fatty acids (PPARs), bile acids (farnesoid x receptor
[FXR)], oxysterols (liver x receptor [LXR]), xenobiotics

(pregnane x receptor [PXR] and constitutive androstane
receptor [CAR]) and retinoic acids (retinoic acid receptor).3

The orphan NRs refer to transcription factors speculated
to be NRs based on gene/protein structure, for which no
specific ligands have yet been identified, or which appear
to lack a functional ligand-binding domain based on struc-
tural analysis. Members of this group include nerve
growth factor-induced clone B, NR related 1, neuron-
derived orphan receptor 1, small heterodimer partner, liver-
related homologue 1 and hepatocyte nuclear factor 4a
(HNF4a).125 Different NRs bind to their response elements
as homodimers, as heterodimers with RXRs, or as mono-
mers. Binding of ligand to the ligand-binding domain
elicits a series of sequential reactions, including confor-
mational changes in the receptors, release of the
co-repressor complex and recruitment of co-activators.128,132

Consequently, the activated NR induces target gene
expression. In this way, NRs mediate chemical signals into
transcriptional activation of a network of target genes.

NRs and ALD

A number of NRs are important in the pathogenesis of ALD
because they act as intracellular sensors of free fatty acids
and cholesterol metabolites as well as being involved in
inflammatory and xenobiotic signaling. Among them, the
role of RXRa and PPARs in ALD has been studied most
extensively.

RXR

RXRs (a, b and g) utilize 9-cis retinoic acid as a high-affinity
ligand.133,134 RXRs regulate fundamental biological pro-
cesses including reproduction, cell differentiation, bone
development, hematopoiesis and pattern formation during
embryogenesis.128 Gene KO studies have been conducted
on all three RXR genes. Mice missing RXRb or RXRg are
viable.135,136 However, RXRa-KO mice are not viable due
to defects in cardiac development.135,137,138 This phenotype
was also observed in the embryonic vitamin A deficiency
syndrome, suggesting a critical role for RXRa in the
vitamin A signaling pathway. Among the RXR isoforms,
RXRa is the most highly expressed in the liver.134,139 To
address the role of RXRa in the liver physiology of adult
mice, a cre/lox-mediated recombination was used to
mutate selectively the RXRa gene in adult hepatocytes, by
deleting the fourth exon encoding for the majority of the
of the RXRa protein.140 The examined pathways involving
class II NRs, such as fatty acid, cholesterol, carbohydrate
and xenobiotic metabolic pathways mediated by RXRa are
compromised due to hepatocyte RXRa deficiency.140 – 143

RXRa and ethanol metabolism

Ethanol and retinol (vitamin A) share the hydroxyl moiety
and are metabolized by common enzymes, ADHs and
ALDHs.144 – 146 A similar two-step process is involved in
the metabolism of both alcohol and retinol, such that the
two processes are in competitive inhibition with each
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other.144,147 Both alcohol and retinol are first oxidized to the
aldehyde form, and aldehyde is subsequently oxidized to
the acid form.148,149 The hepatic levels of vitamin A, retinoic
acid and RXRa are decreased by alcohol administration.150,151

Reduced serum and hepatic vitamin A concentrations have
been found in chronic alcoholics.152 Thus, reduction in retinoid
signaling is implicated in ALD.144,148,150,153 Although retinoic
acid has been shown to be centrally involved in the pathogen-
esis of ALD, the mechanism and nature of such influences
have remained largely unknown.

To understand the role of RXRa in alcohol detoxification
and ALD, the effect of hepatocyte RXRa deficiency on the
expression of alcohol-metabolizing enzymes was analyzed
in hepatocyte RXRa-deficient (hepatocyte RXRa-KO)
mice.123 Hepatocyte RXRa deficiency resulted in a signifi-
cant increase in hepatic ADH activity and ADH1 protein,
but not ADH2 and ADH3 enzyme activities.123 Moreover,
the levels of ADH1, ADH2, ADH3 and ADH4 mRNAs in
the livers were not different between the mutant and wild-
type mice.123 In human liver, mitochondrial (low Km)
ALDH2 oxidizes most of the ethanol-derived acetaldehyde;
however, in rodents both mitochondrial and cytosolic
ALDH isozymes are important in acetaldehyde oxi-
dation.154 The activities of mitochondrial ALDH2 and cyto-
solic ALDH are reduced when hepatocyte RXRa is knocked
out.123 Kinetic analysis revealed that the cytosolic high-
affinity ALDH1 with high acetaldehyde-oxidizing capacity
is more impacted than other ALDH isoforms with RXRa
deficiency. Consistent with the decreased cytosolic
ALDH1 activity, both ALDH1A1 protein and mRNA
levels were significantly reduced in hepatocyte RXRa-KO
mouse livers. Accordingly, after a single dose of intragastric
administration of ethanol, the blood ethanol levels in the

hepatocyte RXRa-KO mice were significantly lower in
comparison with that in wild-type mice. Furthermore,
hepatic acetaldehyde clearance was slower in hepatocyte
RXRa-KO mice than in wild-type mice.123 These findings
provide in vivo evidence that the level of ADH1 expression
regulated by RXRa is an important factor in determining
the rate of ethanol elimination and influences the risk for
alcohol-induced liver injury. The effect of hepatocyte
RXRa on ethanol metabolism is summarized in Figure 1.

Both the Tsukamoto–French intragastric tubing alcohol
feeding and the Lieber–DeCarli ethanol models were used
to study the impact of hepatocyte RXRa on ALD.44,46 The
histological score (fat/necrosis/inflammation/fibrosis) was
significantly higher in alcohol-fed hepatocyte RXRa-KO
than in wild-type mice. Furthermore, compared with wild-
type mice, hepatocyte RXRa-KO mice had significantly
lower levels of SAMe and glutathione, which were further
reduced after alcohol treatment.44 Glutamate-cysteine
ligase catalytic subunit, glutathione S-transferase-m and glu-
tathione peroxidase (Gpx) 1 gene and protein expression
or enzyme activities are down-regulated in the livers of
hepatocyte RXRa-KO mice.155,156

RXRa and lipid homeostasis

To dissect the role of RXRa in lipid homeostasis during
ethanol-induced liver injury, wild-type and hepatocyte
RXRa-KO mice were fed ethanol-containing diets or pair-fed
control diets for six weeks using the Lieber–DeCarli ethanol
model.46 Liver injury was found in hepatocyte RXRa-KO
mice, but not in the wild-type mice.46 Steatosis induced by
ethanol was more pronounced in hepatocyte RXRa-KO mice
than in wild-type mice in the intragastric ethanol infusion

Figure 1 Hepatocyte RXRa modulates ethanol metabolism. ADH catalyzes the conversion of ethanol to acetaldehyde, a potent toxicant that accounts for most

of the toxic effects of ethanol. Acetaldehyde produced from ethanol is further converted to the non-toxic acetate by a mitochondrial ALDH2. Both steps are

coupled with the reduction of NADþ to NADH. Both ethanol and acetaldehyde can be metabolized by CYP2E1. CYP2E1 has been implicated as the source of

free radicals generated by ethanol metabolism. Hepatocyte RXRa deficiency results in a significant increase in hepatic ADH activity. In addition, mitochondrial

ALDH2 and cytosolic ALDH activity is reduced when hepatocyte RXRa is not expressed. Accordingly, hepatic acetaldehyde clearance is reduced due to the lack

of hepatocyte RXRa. Furthermore, SAMe and glutathione levels as well as the expression of GCLC, GST and GPx genes are significantly reduced due to the lack

of hepatocyte RXRa. ADH, alcohol dehydrogenase; ALDH, aldehyde dehydrogenase; CYP2E1, cytochrome P450 2E1; GST, glutathione S transferase; GCLC, glu-

tamate–cysteine ligase catalytic subunit; GPx-1, glutathione peroxidase 1; GNMT, glycine N-methyl transferase; MAT, methionine adenosyl transferase; AHCY,

adenosylhomocysteinase; SAMe, S-adenosylmethionine; SAH, S-adenosylhomocysteine
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model.44 Furthermore, ethanol-induced hepatic free fatty acids
and cholesterol levels were higher in hepatocyte RXRa-KO
than wild-type mice.46 Basal hepatic liver fatty acid-binding
protein (L-FABP) level was reduced with RXRa
deficiency.46,140,157 Ethanol induces L-FABP to provide protec-
tion against hepatic free fatty acid toxicity in wild-type mice;
however, this protective effect is absent with RXRa
deficiency.46 Furthermore, hepatocyte RXRa-KO mice are
more sensitive to the development of steatohepatitis when
fed a methionine-choline-deficient (MCD) diet.157 MCD diet
ingestion induces the expression of the SREBP-regulated
genes (FAS, ACC-1a and HMG CoA reductase), which in
turn increases hepatic lipids and bile acid synthesis.157 In hepa-
tocyte RXRa-KO mice, the PPARa-mediated fatty acid
b-oxidation is compromised, which leads to hepatic fatty
acid overload.157

RXRa and inflammation

RXRa and other NRs play important roles in the inflammatory
process.158 For example, TNFa and IL-1 can decrease the
expression of RXRa, PPARa, PPARg, LXRa and their co-factors
in human hepatoma Hep3B cells.159 The LPS-induced acute
phase response is associated with decreased hepatic proteins
involved in lipid metabolism concomitant with the reduction
of hepatic RXRa level in mouse and hamster.160–162 The down-
regulation of RXRa in inflamed liver is due to nuclear export
and degradation.160,162 The RXRa-mediated pathways could
also be inhibited due to direct interaction between nuclear
factor-kB (NF-kB) p65 and the RXRa DNA-binding domain
and thus may prevent the binding of RXRa to consensus
DNA sequences.163 These findings clearly demonstrate a
down-regulation of RXRa signaling during the inflammatory
process. Furthermore, RA inhibits hepatic macrophage TNF-a
expression and is known to have anti-inflammatory effects.151

LG268, which is an RXR-specific ligand, inhibits TNF-a
mRNA expression.151 Although the anti-inflammatory action
of RA was found to involve destabilization of the TNF-a
mRNA, it also could possibly involve RXRa.151

The anti-inflammatory role of RXRa has been demonstrated
using ethanol-fed wild-type and hepatocyte RXRa-KO mice.46

NF-kB regulates the expression of a variety of genes involved
in alcohol-induced liver injury.164–167 Ethanol increases NF-kB
p65-binding activity in hepatocyte RXRa-KO mouse liver, but
not in wild-type mouse liver.46 The activation of NF-kB should
increase the expression of NF-kB-regulated cytokines and che-
mokines in hepatocyte RXRa-KO mice.46 Accordingly, TNF-a,
IL-6 and IL-1b mRNA levels are much higher in ethanol-fed
hepatocyte RXRa-KO mice than in ethanol-fed wild-type
mice.46

In response to cytokines or growth factors, the signal
transducer and activator of transduction 3 (STAT3) is acti-
vated. Activated STAT3 regulates the expression of genes
that play key roles in proliferation and inhibition of apopto-
sis.168,169 IL-6 is readily detected in patients with ALD, and
its concentration correlates positively with the extent of the
disease.170 Furthermore, IL-6-deficient mice are more prone
to ethanol-induced apoptosis in the liver.68 The activation of
STAT3 is decreased in ALD patients with cirrhosis.171

Although IL-6 mRNA and protein levels were induced in

ethanol-fed hepatocyte RXRa-KO mice, elevated IL-6 did
not result in STAT3 activation.46 Consistent with this obser-
vation, although ethanol induced the expression of anti-
apoptotic protein Bcl-xL, a direct STAT3 target gene, in
wild-type mice, no increase was found in ethanol-fed hep-
atocyte RXRa-KO mice.46 Furthermore, ethanol-mediated
reduction of Bcl-2 was greater in hepatocyte RXRa-KO
than wild-type mice.46 Further investigation is needed to
explain the different effects of ethanol on Bcl-xL and Bcl-2
expression.46 Similar to our report, the differential effect of
ethanol on Bcl-xL and Bcl-2 expression has also been
found.172 In agreement, apoptotic cells were found in
ethanol-fed hepatocyte RXRa-KO mice, but were not
noted in ethanol-fed wild-type mice.46 Similarly, MCD
diet-induced proinflammatory gene expressions are higher
in hepatocyte RXRa-KO mice than in wild-type mice.157

PPARa

PPARa is responsible for peroxisome proliferation. It also
regulates lipid metabolism and transport, fatty acid oxidation
and glucose homeostasis.173 PPARa is predominantly
expressed in cells or tissues capable of oxidizing fatty acids,
such as hepatocytes, heart, muscle, brown adipose tissue
and the kidney. PPARa can be activated by natural lipophilic
ligands, such as fatty acids and their derivatives, certain
leukotriene products and drugs such as non-steroidal
anti-inflammatory drugs and fibrates.174,175 The absence of
PPARa expression in KO mice prevents the induction
of several hepatic PPARa target genes including acyl-CoA
oxidase (ACOX) by peroxisome proliferators.174,175 There is
significant species difference in PPARa expression; human
livers express less than 1/10th the level of PPARa mRNA
and functional DNA-binding capacity compared with
mouse livers.176 This difference might explain why rodents
are more susceptible to the toxic and carcinogenic effects of
peroxisome proliferators.176 PPARa target genes are those
that encode fatty acid transporters, proteins involved in
export (apolipoprotein [Apo] B), the microsomal triglyceride
transfer protein, L-FABP and acyl-CoA dehydrogenase.173

The activation of these genes results in increased uptake
and oxidation of free fatty acids, increased triglyceride
hydrolysis and up-regulation of ApoA-I and -II. The net
effect is increased fatty acid oxidation, decreased serum tri-
glycerides, a rise in high-density lipoprotein and an increase
in cholesterol efflux. The relationship between PPARa and
fatty liver became evident when steatosis was observed in
aged PPARa KO mice.177 Starvation activates PPARa.178,179

PPARa KO mice exhibit steatosis, myocardial lipid accumu-
lation and hypoglycemia during short-term starvation or
after high fat diet administration.178,179

PPARa is a circadian gene.180,181 The diurnal variation of
lipogenic and cholesterogenic gene expression was attenu-
ated or abolished in PPARa KO mice suggesting the impor-
tance of PPARa as a mediator for the circadian regulation
of lipid metabolism.182,183 Both acute and chronic alcohol
intake can affect many aspects of circadian rhythms, includ-
ing physiological, endocrine and behavioral functions.
However, the effect of central and peripheral circadian
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rhythms involved in alcohol-induced liver injury remains to
be addressed.

The role of PPARa in ALD has been demonstrated with
the PPARa KO mice.120 Ethanol-fed PPARa-null mice have
hepatocyte damage, which is not found in wild-type
mice. Down-regulation of PPARa activity and fatty liver
was observed following intragastric ethanol infusion of
rats.184,185 Treatment of ethanol-fed animals with PPARa ago-
nists reduces the toxic effects of ethanol and reverses hepatic
fat accumulation.119,150,184 Fish oil contains n–3 fatty acids,
which are PPARa activators. Feeding mice fish oil prior to
ethanol administration prevents acute ethanol-induced fatty
liver.186 IL-6 treatment ameliorates alcoholic fatty liver,
which is in part attributed to the up-regulation of PPARa
and increased mitochondrial b oxidation of fatty acids.69

These results support the importance of PPARa in preventing
alcohol-induced fatty liver and injury. However, activation of
PPARa using fibrates also causes cholestasis in humans and
mice and other undesired effects such as hepatomegaly in
rodents.187–191 Furthermore, ethanol-fed PPARa KO mice
have lower levels of GPx, superoxide dismutase and catalase,
as well as increased lipid peroxides compared with wild-type
controls.120

The role of PPARa in alcoholic fatty liver has also been
studied in cultured hepatocytes. Ethanol exposure of
H4IIEC3 rat hepatoma cells expressing alcohol-metabolizing
enzymes causes reduced binding by the RXR/PPARa to a
PPARa binding site located on the ACOX promoter.192

This effect of ethanol is enhanced by the ALDH inhibitor
cyanamide and is abolished by the ADH inhibitor,
4-methylpyrazole implicating the involvement of
acetaldehyde.193

PPARa and inflammation

The role of PPARa in inflammation was first observed using
PPARa KO mice.194 In mice lacking the PPARa gene, the
response to topical inflammatory mediator leukotriene
B4 or arachidonic acid, but not phorbol ester
12-O-tetradecanoylphorbol-13-acetate, is prolonged com-
pared with the response in wild-type mice.194

Furthermore, dietary administration of (n–3) polyunsatu-
rated fatty acids results in increased survival of the
animals when they are challenged with bacteria or endo-
toxin.195,196 Fish oil has been found to decrease circulating
levels of proinflammatory cytokines (TNF-a, IL-6, IL-1) in
patients with endotoxemia.195 PPARa is able to inhibit
inflammatory responses by interfering with NF-kB and acti-
vator protein 1 activation through a direct protein–protein
interaction with p65 or c-Jun, respectively.197,198 PPARa is
also able to increase inhibitory kB (IkB)-a leading to the pre-
vention of p50- or p65-NF-kB nuclear translocation.120,199,200

This action leads to the repression of cytokines, cell
adhesion molecules and proinflammatory molecules such
as inducible nitric oxide synthase (iNOS) and C-reactive
protein. The activation of p65-NF-kB was significantly
greater in hepatic nuclear fractions from ethanol-fed
PPARa KO mice compared with ethanol-fed wild-type
mice.120

PPARg

PPARg is highly expressed in adipocytes, hematopoietic
cells and hepatic stellate cells, and to a lesser extent in pan-
creatic b cells, spleen, skeletal muscle, macrophages and
intestinal cells.201 Hepatocytes express very low levels of
PPARg. PPARg is involved in adipocyte differentiation,
glucose metabolism and lipid storage.202 Reports indicate
that PPARg ligands can inhibit inflammatory responses by
decreasing IL-6, TNF-a, IL-1b secretion and iNOS pro-
duction in macrophages and Kupffer cells. PPARgþ/2

mice have increased susceptibility to experimentally
induced arthritis and inflammatory bowel disease.203 The
anti-inflammatory mechanisms mediated by PPARg
involve nuclear export of RelA (p65), thereby preventing
NF-kB-induced proinflammatory gene activation.204,205

The composition of PPAR isoforms might change in fatty
livers. Leptin, which can inhibit appetite, is a peptide
hormone produced predominantly by white fat cells.
Consequently, mice with leptin deficiency are obese.206

PPARg mRNA levels are significantly increased in fatty
livers of leptin deficiency mice.207 The activation of
PPARg causes fatty liver. There are two PPARg isoforms
(g1 and g2), and both forms are detectable in hepatocytes.
Ethanol increases the mRNA levels of both isoforms and
the expression level of downstream target fatty-acid translo-
case (CD36), a membrane receptor responsible for the
uptake of modified forms of low-density lipoproteins and
fatty acids from circulation.186,208 PPARg is also regulated
by chronic alcohol exposure in Kupffer cells and hepato-
cytes.209,210 Treatment with the PPARg agonist pioglitazone
prevents the development of alcohol-induced steatosis and
inflammation.211 PGC-1a, a co-activator of PPARg, is essen-
tial for the induction of many ROS-detoxifying enzymes,
including GPx1 and SOD2.212,213 Thus, the role of PGC-1a
in ALD warrants investigation.

LXR, PXR, CAR and other lipogenic
transcription factors

LXRa and LXRb might play a role in ALD due to their
actions in lipid homeostasis and inflammation.214 – 217 The
effect of LXR on lipogenesis involves both direct and indir-
ect mechanisms. LXR/RXR heterodimers bind lipogenic
gene promoters, such as FAS, or regulate lipogenic gene
expression by controlling levels of SREBP-1c, a transcrip-
tional factor known to regulate the expression of a battery
of lipogenic enzymes.218 The activation of SREBP-1c by
ethanol feeding was associated with increased expression
of lipogenic genes as well as the accumulation of triglycer-
ide in the livers of mice.219 Transcriptional targets of
SREBP-1c include FAS, ACC, stearoyl CoA desaturase
(SCD) and fatty acid elongase (FAE).215,217,220 SREBP-2 is
important for the cholesterol biosynthesis pathway; it regu-
lates HMG-CoA synthase, HMG-CoA reductase, farnesyl
diphosphate synthase and squalene synthase.221

Other NRs that are linked to steatosis are FXR, HNF4a,
CAR and PXR. The activation of FXR by bile acids
reduces triglyceride levels.222 – 225 The triglyceride lowering
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effect of bile acids is likely mediated through FXR-induced
PPARa activation.226 FXR represses lipogenesis by interfer-
ing with the expression of SREBP-1c through SHP, which
inhibits the activity of LXR.225 As expected, FXR-null mice
exhibit massive steatosis when challenged with a high
cholesterol/high fat diet.227 HNF4a functions as a homodi-
mer and is constitutively active through binding of integral
fatty acids.228,229 HNF4a is central to the maintenance of
hepatocyte differentiation and is a major in vivo regulator
of bile acid and lipid homeostasis genes.230 Hepatocyte
HNF4a-deficient mice have hepatic lipid accumulation
and reduced serum cholesterol and triglyceride levels.230

HNF4a is involved in the regulation of gene transcription
mediated by PXR, CAR and LXR.231,232

Recent studies have also linked CAR to both lipid and
glucose metabolism.233,234 Like PPARa, fasting-induced
increases in fatty acids and PPARa agonists induce CAR
expression.233,235,236 The activation of CAR suppresses
lipid metabolism and reduces serum triglyceride by
decreasing the active form of SREBP-1c.237 The xenobiotic
receptor PXR regulates an SREBP-independent lipogenic
pathway by up-regulating the expression of free fatty acid
uptake transporter CD36 and several accessory lipogenic
enzymes, including SCD-1 and long-chain FAE.238 PPARg
and CD36 are direct transcriptional targets of PXR.238 The
activation of PXR in mice could induce hepatic triglyceride
accumulation in an SREBP-1c-independent manner.238

Hepatic PXR mRNA levels are significantly increased in
mice fed MCD diet.239 Furthermore, CAR or PXR ligands
can increase levels of insulin-induced gene-1, a protein
with antilipogenic properties.240 The role of these receptors

in ALD remains to be examined. Figure 2 summarizes the
role of NRs in lipid homeostasis.

Conclusions

In summary, the molecular mechanisms leading to ALD are
complex. Current research on the role of NRs in ALD has
focused mainly on PPARs. Our recent publication shows
the hepatoprotective role of PXR in lipopolysaccharide
and galactosamine-induced liver injury.241 Given the
pivotal roles of LXR, HNF4a, FXR, CAR and PXR in lipid
metabolism, energy homeostasis, bile acid homeostasis
and inflammation, attention should now be devoted to
these NRs. It is likely that new insights into the pathogen-
esis of ALD could be achieved via this endeavor.
Furthermore, variable NR expression levels may determine
target gene expression levels and susceptibility to ALD.
Reports indicate that a single-nucleotide polymorphism in
the PPARg gene is associated with the susceptibility to
non-alcoholic fatty liver disease in Chinese people.242

Genetic polymorphism of NRs in contribution to ALD
should be studied.

Our published data showed that hepatocyte RXRa, a
partner for class II NR superfamily members, plays a signifi-
cant role in lipid homeostasis, inflammatory process and
even alcohol detoxification.44,46,123,140,142,143,158 Thus, the
expression level and functional activity of hepatocyte
RXRa should have a significant impact on the disease
process. It is important to note that the role of NRs in
ALD might be liver cell-type specific. Increased inflamma-
tory responses found in hepatocyte RXRa-KO mice suggests

Figure 2 Interaction among nuclear receptors (NRs), alcohol and lipid homeostasis. Research on the role of nuclear receptors in ALD have focused mainly on

PPARs. The hepatic RXRa levels are decreased by alcohol administration.150,151 Down-regulation of PPARa expression and fatty liver are observed following

ethanol administration.184,185 The activation of SREBP-1c by ethanol feeding is associated with increased expression of lipogenic genes as well as the accumu-

lation of triglycerides.219 The activation of SREBP-1c has been suggested to involve LXR.218 FXR represses lipogenesis by interfering with the expression of

SREBP-1c through SHP, which inhibits the activity of LXR.225 Ethanol increases the mRNA levels of PPARg isoforms and the expression level of down-stream

target fatty-acid translocase (CD36).186 Fatty acids can induce CAR expression.236 The activation of CAR suppresses lipogenesis by decreasing the active

form of SREBP-1c.237 PPARg, CD36, SCD-1 and FAE are direct transcriptional targets of PXR.238 HNF4a is central regulator of bile acid and lipid homeostasis

genes.230 These complex interactions among NRs involved in lipid homeostasis determine fat accumulation in the liver. SREBP-1c, sterol regulatory element-

binding protein-1c; PPARa, peroxisome proliferator-activated receptors a; CPT-1, carnitine palmitoyl transferase-1; ACC, acetyl-CoA carboxylase; FAS, fatty

acid synthase; SCD, stearoyl CoA desaturase; FAE, fatty acid elongase; FXR, farnesoid x receptor, LXR, liver x receptor, PXR, pregnane x receptor; CAR, con-

stitutive androstane receptor; RXR, retinoic x receptor; HNF4a, hepatocyte nuclear factor 4a
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the presence of cross-talk between hepatocyte RXRa and the
inflammatory response generated from Kupffer cells. Thus,
organ- and cell-type-specific KO mice might be necessary
to define the role of each NR in ALD.
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