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Abstract
Neuropeptides such as neuropeptide Y (NPY) and corticotropin-releasing hormone (CRH) have been implicated not only in

acute regulation of stress/anxiety-related behaviors, but adaptations and changes in these neuropeptide systems may also

participate in the regulation of behavior and endocrine responses during chronic stress. NPY is an endogenous anxiolytic

neuropeptide, while CRH has anxiogenic properties upon central administration. Changes in these neuropeptide systems

may contribute to disease states and give us indications for putative treatment targets for stress/anxiety disorders as well

as alcohol/drug dependence. In this review, we briefly present these two systems and review their involvement in

mediating the responses to acute and chronic stressors, as well as their possible roles in the development and

progression of stress/anxiety disorders. We suggest that neuropeptides may be attractive in treatment development for

stress/anxiety disorders, as well as for alcohol/drug dependence, based on their specificity and activity following

exposure to external challenges, i.e. stressors, and their differential adaptations during transition from an acute to a

chronic stress exposure state.
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Background

Under acute conditions, stress invokes a response that may
be beneficial for survival. However, when activated chroni-
cally, stress responses can cause damage and be the basis
for, as well as accelerate, disease conditions.1 – 4 Stress as a
term refers to processes involving perception, appraisal
and response to threatening, challenging and/or possibly
harmful stimuli. There exists a division of stressful stimuli
into emotional, or psychological, stimuli and physiological
stimuli. Examples of stimuli that are considered emotion-
al/psychological include social interactions/conflicts, in-
escapable situations, death of a loved one and so forth.
Physiological stimuli can be hypo/hyperthermia, an
immune challenge, starvation and also drug withdrawal.

The internal stress response can be related by the term
allostasis and refers to the process of re-establishing homeo-
stasis in response to a challenge.5,6 Homeostasis refers to
consistency of internal parameters within a normal range,
while allostasis describes the body’s way to keep stable
outside the normal range by changing internal systems to
match external demands.5,6 Allostasis links the brain with
the endocrine system as well as our immune system to coor-
dinate appropriate responses to an (external) stressor.7

In addition to being intrinsically harmful, (chronic) stress has
also been shown to increase vulnerability to addiction. Drug
intake and withdrawal impose a stress on internal systems
leading to a disruption of the homeostatic state. Furthermore,
repeated exposure to and withdrawal from drug use leads to
increased sensitivity to stress and an increased behavioral
stress response.8 In addition, stress-induced relapse is a
model frequently used in preclinical settings and involves
exposure to a stressor (foot-shock for example), which then
leads to the reinstatement of a previously extinguished behav-
ior, drug use (for example, see reference9).

The terms stress, fear and anxiety are at times used inter-
changeably; however, they are considered different in the
area of anxiety research. As stated above, stress refers to a
real or inferred threat affecting numerous systems in the
body leading to a response, and may be defined as a force
changing a (previously) static condition. Fear may be the
result of the stress response itself and is associated with
a specific event or stressor. Anxiety cannot be related to a
specific event, but may be due to chronic stress or fear. It is
a more general response and may be indicative of changes
on both neuronal and system-wide levels. Anxious individ-
uals emotionally anticipate an aversive situation.
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Approximately one in four individuals will experience
an anxiety-related disorder during their lifetime.10 This
together with well-known issues such as side-effects
and limited efficacy for existing anxiolytics makes the need
for new treatments urgent. Neuropeptide systems may
offer opportunities for such treatment development.
Neuropeptides have been suggested to only be released if
the firing of a neuron exceeds a certain level, i.e. frequency-
dependent release.11 Furthermore, neuropeptides, when
compared with classical neurotransmitters, can act over
longer distances and may thus be used to recruit large neur-
onal populations to produce a concerted physiological
effect.12 Additionally, the accessibility of neuropeptides is
higher due to limited reuptake mechanisms as compared
with classical neurotransmitters.

In this brief review, we discuss the involvement of two
neuropeptide systems: corticotropin-releasing hormone
(CRH) and neuropeptide Y NPY) in stress-related behavior
and anxiety, and the putative opposing roles of these
peptides in the behavioral responses to stress.

Corticotropin-releasing hormone

CRH is a 41-amino-acid neuropeptide that is released by the
hypothalamus upon exposure to a stressful stimulus. It
mediates autonomic,13,14 neuroendocrine14 and behavioral
responses to stress.15,16 CRH activates the hypothalamic-
pituitary-adrenal axis (HPA) by stimulating release of adre-
nocorticotropic hormone (ACTH) from the pituitary, which
in turn stimulates release of cortisol/corticosterone (human/
rodent) from the adrenal cortex. The stress-induced acti-
vation of the HPA axis is dependent on CRH.17 In addition
to HPA axis activation, CRH participates in extrahypothala-
mic behavioral responses to stress.18 The neuroanatomical
substrates for CRH, in addition to the hypothalamus,
include, among others, the amygdala, the bed nucleus of
the stria terminalis and the locus coeruleus.19 – 21

CRH is a member of a peptide family including
Urocortin, Urocortin II and Urocortin III.22,23 The effects of
these peptides are mediated via two G-protein (Gs)-
coupled receptors: CRH-R1 and CRH-R2.24 Agonist
activation of these receptors leads to increased intracellular
concentrations of cyclic AMP (cAMP). CRH-R1 is the
primary receptor for CRH and participates in mediation of
the behavioral stress response.25,26

Central administration of CRH is anxiogenic in several
animal behavioral tests such as the novel open-field,27

acoustic startle28 and operant conflict tests.29 Whether the
centrally mediated, anxiogenic behavioral effects of CRH
are dependent on the HPA axis, or completely independent
thereof requires further discussion. Lesions of the central
nucleus of the amygdala, but not the hypothalamic
paraventricular nucleus (PVN), disrupt CRH-potentiated
fear responses,30 and peripheral blockade of ACTH/
glucocorticoids does not affect the behavioral response.31

Furthermore, central administration of CRH in
dexamethasone-treated rats still elicits an anxiogenic
effect.32 However, adrenalectomy abolishes the locomotor
activity-inducing effects of central CRH administration.33

In preclinical studies, stress increases CRH release in the

amygdala34,35 as well as CRH mRNA expression.26,36

Furthermore, in non-human primate models of early
adverse events chronic elevation of cerebrospinal fluid
(CSF) CRH is seen,37 and patients with post-traumatic
stress disorder (PTSD) have significant elevation of CSF
CRH,38 indicating significant activation of the extrahypotha-
lamic CRH system in these conditions.

Given the above studies, administration of CRH-R1
receptor antagonists may offer an effective treatment for
stress-induced anxiety disorders. Indeed, treatment with
CRH-R1 receptor antagonists does result in decreased
levels of experimental anxiety in rats with a ‘high anxiety’
phenotype,39 in mice following exposure to a chronic mild
stress paradigm,40 as well as in human subjects diagnosed
with major depression or PTSD.41 – 43 Furthermore, a
CRH-R1 antagonist was effective in blocking alcohol
withdrawal-induced anxiety on the elevated plus-maze as
well as stress-induced reinstatement of alcohol seeking.44

Similar to other potent stressors, acute alcohol withdrawal
induces anxiety-like responses that are correlated with
increased CRH levels in the central nucleus of the amygdala
and in the bed nucleus of the stria terminalis,45 sites mediat-
ing the behavioral responses to stress. Accordingly, anxio-
genic effects of alcohol withdrawal are reversed by
CRH-R1 antagonism.44,46 It should be noted that limited
to no effect of CRH-R1 antagonists upon administration to
naı̈ve/unstressed animals was seen, suggesting that the
CRH system may have limited tone under baseline (non-
challenged) conditions.

Neuropeptide Y

NPY is a 36-amino-acid peptide widely expressed in the
mammalian nervous system, with high levels in brain
regions such as the hypothalamus, in particular the
arcuate and the paraventricular nuclei, the hippocampal
formation, the amygdala and septum. Following its
isolation,47,48 NPY has been extensively studied with
particular attention to anxiety/stress-related behavior and
feeding.

To date, all NPY receptors cloned belong to the superfam-
ily of G-protein-coupled receptors, but differ in their ligand
affinity profiles. NPY receptors are coupled via Gi/o proteins
to several downstream signaling pathways, including inhi-
bition of adenylyl cyclase, activation of mitogen-activated
protein kinase, regulation of intracellular calcium (Ca2þ)
concentrations and activation of G-protein-coupled,
inwardly rectifying potassium (Kþ) channels. Currently,
there are four subtypes of NPY receptors known to
mediate biological responses: Y1, Y2, Y4 and Y5. The predo-
minantly postsynaptic Y1 receptor requires the intact NPY
sequence for recognition and activation, and has been pro-
posed as the subtype mediating antianxiety actions of
NPY.49 The presynaptic Y2 receptor subtype is in addition
activated by C-terminal fragments of NPY, such as
NPY13 – 36 and NPY3 – 36.50,51 The Y4 receptor has low affinity
for NPY and is primarily the target for pancreatic polypep-
tide (PP), another member of the PP family of peptides.52

The Y5 receptor was initially thought to be the receptor reg-
ulating NPY’s effect on feeding behavior and Y5 receptor
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antagonists have been evaluated for putative obesity treat-
ment, possibly in combination with compounds aimed at
other NPY receptors such as the Y1.53,54

Early indications of anxiolytic/sedative properties of
NPY included synchronization of electroencephalographic
activity,55 the prevention of stress-induced ulcers and sup-
pression of locomotor activity.56,57 Central administration
of exogenous NPY produces an anxiolytic phenotype in
numerous animal models of experimental anxiety.58 – 60

Antianxiety effects of NPY have been shown to rely in part
on the activation of Y1 receptors in the amygdala.61– 63

Intracerebroventricular injections of NPY or Y1 receptor
agonists, but not Y2 receptor agonists, are anxiolytic in be-
havioral models of experimental anxiety.64

In agreement with antistress effects observed following
central administration of NPY, a role for endogenous NPY
in the control of stress- and anxiety-related behaviors is
suggested by several findings. Acute physical restraint,
which promotes experimental anxiety, suppresses NPY
mRNA and peptide levels within the amygdala and
cortex.65 In contrast, repeated exposure to the same stressor
once daily for 10 d leads to a complete behavioral and endo-
crine habituation, accompanied by an upregulation of
amygdala NPY expression.66 Furthermore, chronic overex-
pression of NPY generates a stress-insensitive and ‘anxio-
lytic’ phenotype.67,68 Genetic variations in human NPY
expression affects stress response and emotion.69,70 We
have therefore proposed that an upregulation of NPY
expression may contribute to the behavioral adaptation to
stress. This extends a hypothesis that NPY may act to
‘buffer’ behavioral effects of stress-promoting signals.71

Evidence for interactions between
CRH and NPY systems

Cannon (1927)72 pioneered the concept of a specific site reg-
ulating emotional responses. Later work by Papez (1937)73

and Klüver and Bucy (1937)74,75 confirmed a role for,
among other regions, the amygdala in emotional regulation.
Studies in human subjects76,77 as well as animals78,79 have
since shown that activation of the amygdala is crucial for
the mediation of behavioral and emotional responses associ-
ated with anxiety. Lesioning of the amygdala in turn leads
to decreased levels of experimental anxiety and decreased
sensitivity to stress.80,81 A role has been proposed for the
amygdala to integrate inputs from the varying brain
regions to produce a coherent behavioral response to fear
and anxiety. In part this response is mediated by neuropep-
tides including, but not limited to, NPY and CRH.

NPY and CRH have indeed been demonstrated to have
presence in many brain regions relevant for the behavioral
and emotional response to stressful stimuli and/or fear/
anxiety-producing events. In 1994, Heilig et al.71 proposed
opposing roles for NPY and CRH within the amygdala to
maintain emotional balance following stress exposure.
NPY was suggested to be released subsequently to increases
in amygdalar CRH producing an opposing action on the
stress system, facilitating return to a homeostatic (or allo-
static) balance.

As discussed above, numerous studies have indicated
anxiolytic and anxiogenic effects of NPY and CRH, respect-
ively, upon administration into the CNS. In addition,
studies have revealed overlapping biological substrates,
primarily within the amygdala, for these effects. Both
CRH and NPY receptors have been found within the amyg-
dala.82 – 85 The basolateral nucleus (BLA) is of particular
interest since CRH, as well as Urocortin I, elicit long-term
anxiety-like responses upon administration into the
BLA.86,87 However, the opposite behavioral response is
seen upon BLA administration of NPY.63 Furthermore, pre-
treatment with NPY into the BLA prior to administration of
Urocortin blocks the anxiogenic effect of the CRH-R1/2
receptor activation on anxiety-related behavior.12,88 This
indicates a direct interaction of CRH and NPY systems
within the BLA to modify anxiety-related behavior. The
molecular mechanism for this interaction has been proposed
to be differential regulation of cAMP levels.89 In addition, at
the level of the hypothalamus, dose-dependent increases in
NPY overflow from the PVN were observed following CRH
administration.90 Further investigation into the clinical
implications for these interactions is needed.

Concluding remarks

In conclusion, this review briefly discusses the importance
of two neuropeptide systems, CRH and NPY, with regards
to their individual and overlapping contribution to stress/
anxiety-related behaviors and responses. Neuropeptide
systems may offer more attractive treatment targets than
the classical neurotransmitter systems due to the limited
tonic activity in neuropeptide systems. Lack of tonic activity
may generate treatments that have efficacy only during
times of specific neuronal activity and may thus lead to
state-specific treatments as well as a reduction in the appear-
ance of side-effects.

The opposing roles of CRH and NPY in the regulation of
stress/anxiety-related behaviors and responses may open
the way for putative combination treatments aimed at
targets within these systems.
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