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Abstract

In vitro models have been invaluable in determining the mechanisms involved in adipocyte proliferation, differentiation,
adipokine secretion and gene/protein expression. The cells presently available for research purposes all have unique
advantages and disadvantages that one should be aware of when selecting cells. Established cell lines, such as 3T3-L1
cells, are easier and less costly to use than freshly isolated cells, even though freshly isolated cells allow for various
comparisons such as the in vitro evaluation of different in vivo conditions that may not be possible using cell lines.
Moreover, stem cells, transdifferentiated cells or dedifferentiated cells are relatively new cell models being evaluated for
the study of adipocyte regulation and physiology. The focus of this brief review is to highlight similarities and differences
in adipocyte models to aid in appropriate model selection and data interpretation for successful advancement of our

understanding of adipocyte biology.
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Introduction

Adipocyte biology is intensely studied, due to a global rise
in obesity-associated health issues. Technologies such as
microarrays, protein arrays and genetic manipulation
allow for rapid identification of genes, proteins and path-
ways essential for understanding adipocyte regulation.!
However, these techniques are of limited value if the most
appropriate model is not used in research efforts. This
review will highlight similarities and differences in adipo-
cyte models to aid in appropriate model selection and
data interpretation for successful advancement of our
understanding of adipocyte biology. As advances in cell iso-
lation and identification, stem cell technology, and transdif-
ferentiation allow for the adipogenic evaluation of unique
systems, this review provides a recent comparison of com-
monly used cell lines and builds on previous reports by
including recent advances in technologies for adipocyte
study.”™*

Adipogenic cells - freshly isolated cells,
primary cell lines, established cell lines

White (mature) adipocytes contain single, large lipid drop-
lets that appear to comprise the majority of cell volume,

while the cytoplasm and nucleus are found at the cell peri-
phery. The lipid droplet increases adipocyte buoyancy,
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making cell culture methods used for other cell types
fairly ineffective as they rely on cells attaching to a culture
plate whereas lipid-containing adipocytes float. Recent
reports have documented methods to utilize floating adipo-
cytes for the study of adipogenesis,” and short-term main-
tenance of these cells for several hours has been achieved
for the assessment of metabolic parameters. For example,
the acute effects of insulin exposure on intracellular
glucose transporter 4 cycling and regulation® and hexose
uptake7 have been evaluated in freshly isolated, mature adi-
pocytes. More frequently, preadipocytes that do not yet
contain a significant amount of lipid and resemble fibro-
blasts are cultured and after differentiation is induced, the
cell cultures may be used for metabolic studies. Brown adi-
pocytes, which are characterized by multilocular lipid drop-
lets and high mitochondrial content, are derived from
distinct adipose tissue depots that are highly vascular and
innervated, and several cell lines and methods to isolate
and study these cells have been developed but will not be
reviewed here.®

Adipogenesis, lipid metabolism and apoptosis

Of mesenchymal origin, adipocytes are generated through
the process of adipogenesis.>* Adipogenesis is both a prena-
tal and a postnatal physiological event. However, after adi-
pocytes begin to fill with lipid, they may/may not be

Experimental Biology and Medicine 2010; 235: 1185-1193



considered to be fully differentiated.” Main research areas of
adipogenesis have been in altering rates of adipogenic cell
proliferation and/or reducing differentiation of cells com-
mitted to the adipose lineage. Adipocytes possess the
capacity to store a large volume of lipid for subsequent
release for use by higher priority tissues, and much of the
research on adipocytes has stemmed from interest in regu-
lating lipid metabolism (especially deposition). Although
less information about apoptosis is known, adipose depots
appear, at times, to become afflicted with autoimmune dys-
functions that, in part, may result in apoptosis (Dodson
et al., in preparation).

Accessory cells of adipose tissue

It is well-established that adipose tissue is also comprised of
various other cell types including mesenchymal stem cells,
T regulatory cells, endothelial precursor cells, preadipocytes
and macrophages. Although the full complement of cell
types found in adipose tissue has not been confirmed,
these various cells present in adipose tissue can be isolated
and cultured from freshly isolated adipose tissue. Methods
to isolate the various fractions of cells from adipose tissue
have been reported.”” For example, maturation of preadipo-
cytes to adipocytes can be evaluated using stromal-vascu-
lar (SV) cell fractions freshly isolated from adipose tissue
and cultured as compared with studies using mature adipo-
cytes. In addition, these cultures offer the ability to culture
various cell types present in adipose tissue as compared
with culturing a single cell type. While single cell types
may offer advantages in identifying novel pathways and
players, cultures with multiple cell types may be more pre-
dictive of in vivo conditions more closely for those whose
long-term goal is to evaluate adipose tissue and adipogen-
esis in vivo.

Stromal-vascular cells

The pellet of cells that can be isolated following the enzy-
matic digestion and centrifugation of adipose tissue,
termed SV cells, can be used for a multitude of in vitro
experiments. Interestingly, the proportion of SV cells that
can be induced to differentiate into adipocytes appears to
vary by species, age of donor and depot (Table 1). This
may be due, in part, to the exposure of various hormones
and growth factors in vivo. Alternatively, because SV cell
cultures contain various cell types, the in vitro conditions
may mimic in vivo conditions of adipose tissue complexity
more closely than cultures of a single cell type. Another
potential advantage of SV cells is that they can be obtained
following in vivo treatments and from various species, ages
and depots allowing for various layers of evaluation. As
such, one consideration is the increased time and financial
cost often incurred on behalf of the tissue donor.

Commercially available adipogenic cells

An alternative is now available due to recent advances in
cell harvesting and storage. Primary human preadipocytes
can now be purchased from several companies. Similar to

established rodent cell lines, human preadipocyte cells
may be subcultured several times, although their ability to
differentiate declines with each passage.

Cell lines

Classic cell types to study adipogenesis are established cells
lines, such as the 3T3-L1 cell line, which were developed
through clonal expansion of rodent-derived cells and only
contain a single cell type.> Although often thought to be
immortalized, it is known that the capacity of 3T3-L1 cells
to differentiate into adipocytes declines with increasing
number of passages. These cell lines have been quite
useful in identifying key molecular markers, transcription
factors and various interactions that are required for preadi-
pocyte differentiation, and are thus frequently used to
rapidly screen and assess the adipogenic potential of
various agents or cellular perturbations.

Unique cell models

Cell lines established from knockout mice can be invaluable
in determining the role of specific genes in adipogenesis.'**!

Mature adipocytes as a source of cells for
adipogenesis

Mature adipocytes isolated after the enzymatic digestion of
adipose tissue are less frequently used but have the poten-
tial for providin§ valuable information. Mature adipocytes
lose their lipid'* and return to a proliferative competent
cell, in vitro.>>"3 Proliferative-competent progeny cells are
presently being evaluated for the ability to re-differentiate
into lipid-assimilating adipocytes,'* ability to produce adi-
pogenic regulatory factors,'>'® and ability to transdifferenti-
ate into other types of cells.'”'®

Differentiation potential

The patterns and models of adipogenesis derived from
established cell lines can dramatically differ from those
seen with primary cells and many adipogenic changes
observed in these cells are not observed with further in
vivo evaluation (Table 2). For example, primary cells that
have been isolated from an adipose tissue depot have differ-
ent developmental patterns than those observed in differen-
tiation of established cell lines."* Both in vivo and in vitro
studies have clearly shown the complexity of adipose
biology that may account for some of these differences.
Numerous studies have shown that endocrine and meta-
bolic perturbations have long-lasting influences on preadi-
pocyte development in in vitro systems and have been
hypothesized to ‘imprint’ disease risk in later life.*
Interestingly, the proportion of SV cells that differentiate
into adipocytes can be altered by modifying media cocktails
and extra-cellular matrix components,” which may mimic
the various factors that adipocytes are exposed to in vivo.
Common adipogenic cocktails have emerged with some
components known to induce adipogenesis in vivo
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Table 2 Adipogenic cell models vary in their expression of transcription factors associated with adipogenesis

Clonally
expanded
unipotent
;I';:gcnptwn :;:,l::ne cell Primary S-V cells
3T3-L1 Rat Pig Bovine Chicken Human
C/EBPa
Initial 2-3d after By 1d after seeding  11% immunoreactive Fatty acids increased Up-regulated within
expression confluency with 75% of cells cells 1 d after gene expression 4 h of INS and MIX
being seeding compared with exposure
immunoreactive basal media by 4 d
2 d after seeding
Maximal 5-6d after 4 d after seeding By 2 d after seeding if 6d of culture 12 d after culture Protein levels are
expression confluence treated with DEX then maximal at 4 d after
decreased seeding while
through mRNA levels
12d increase
Maintenance of  DEX, indirect, INS-dependent DEX-dependent
maximal relayed
expression
C/EBPB
Initial mRNA present Within 4 h. Transient
expression after plating. increase with DEX
Protein treatment
present after
plating and
increases by
2d
Maximal
expression
Maintenance of  Gradual decline Slight and gradual
maximal with ~0% of increase in gene
expression maximal level expression over
expression by 48 h
8d
C/EBP&
Initial mRNA present
expression after plating.
Protein
present after
plating and
increases by
2d.
Maximal Expression
expression decreases
over 48 h after
removal of
MIX and DEX

Maintenance of
maximal
expression

PPARYy

Initial
expression

Maximal
expression

Maintenance of
maximal
expression

Slight and gradual
increase in gene
expression over
48 h

4d

Fatty acids increased
expression
compared with
basal medium.
Gene expression
increased from 4 to
8 d of culture and
then declined by
12 d of culture

First detected on 2 d

4 d after plating

DEX included in
differentiation
medium

Continued



Table 2 Continued
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Clonally
expanded
unipotent
Transcription murine cell i
- T Primary S-V cells
3T3-L1 Rat Pig Bovine Chicken Human
aP2
Initial By 2 d with
expression MIX + INS + DEX
treatment
Maximal Cells treated with fatty 4 d after culture and mRNA increased
expression acids shown aP2 reduced to basal linearly through day
transcript levels by 8 d 8
concentration
increased
concomitantly with
PPARYy
Maintenance of Achieved with fatty
maximal acids
expression

aP2, adipocyte fatty acid binding protein; C/EBPa, CCAAT /enhancer binding protein «; C/EBPB, CCAAT /enhancer binding protein B; C/EBPS, CCAAT /enhancer
binding protein &; DEX, dexamethasone; INS, insulin; MIX, 1-methyl-3-isobutylxanthine; PPARY, peroxisome proliferator-activated receptor y, S-V, stromal-vascular

References®0:51:53.54.57-59

(Table 3). It should be noted that both the basal and
maximal proportion of cells whose differentiation can be
induced varies by species.'* Not surprisingly, studies com-
paring the profile of genes expressed during adipogenesis
also show a number of differentially expressed genes
during adipogenesis which are quite different between in
vitro and in vivo samples.?® Differences in the time required
for cell monolayers to become confluent hint that mitotic
regulation may differ (Table 1). In addition, there appear
to be differences in the capacity and regulation of differen-
tiation in various cell models.

Since this has been the focus of more extensive evaluation,
itis now known that several transcription factors are important
regulators of adipocyte differentiation. In particular, the
CCAT/enhancer binding protein family (C/EBP) and the per-
oxisome proliferator-activated receptors (PPARs) family are
known to play important roles in adipose tissue development
in vivo and in adipocyte differentiation in vitro.?' Studies in
established cell lines, including 3T3-L1 cells, suggest adipocyte
differentiation is a result of sequential expression of transcrip-
tion factors. The cascade is initiated by extracellular signals
resulting in a transient increase in C/EBPB and C/EBP&
expression within 24-48h following cell exposure to
medium containing a differentiation cocktail. Recent research
in 3T3-L1 cells suggests C/EBP$é has a role in mitotic clonal
expansion.”” This is thought to be necessary for the stimula-
tion of PPARy expression. Adipocyte determination and
differentiation-dependent factor 1/sterol regulatory element-
binding protein increases PPARYy activity through primary or
secondary stimulation of PPARy ligands which activate
the PPARy-RXRa complex. Studies suggest that C/EBPa
expression is subsequently induced and PPARYy expression is
maintained while C/EBPS and C/EBP$ expression decline.”
In addition, it appears that C/EBP«a and PPARYy reciprocally
regulate one another to ensure that adipocytes are maintained
in a differentiated state. However, numerous studies using
primary SV cells from rats, pigs and humans have shown

dramatically different levels of these transcription factors
than the transcriptional cascade observed with immortalized
cells. For example, mRNA and protein levels of PPARy, C/
EBPpB, C/EBPa and protein levels of C/EBP§ are all present
at the initiation of differentiation of SV cell cultures from
rats, pigs and humans.* PPARy and C/EBPa mRNA
expression in bovine SV cells have been observed without
the induction of adipogenesis.* SV cell cultures and fetal
adipose tissue do not show a temporal expression of C/
EBPa, B and & as reported in numerous studies using the
3T3-L1 cell lines.*

Previously frozen cells isolated from human adipose tissue
are readily available and are now being used for extensive
evaluation of adipogenesis. Although differentiation poten-
tial depends on the age of the donor, up to 70% of human
SV cells can be induced to differentiate into adipocytes
using serum-free medium supplemented with insulin, triio-
dothyronine and glucocorticoids.>* Human SV cells seem to
differentiate in a manner more similar to animal SV cells
than established cell lines. For example, the expression
profile of the transcription factors PPARvy, C/EBPB, C/EBPa
and C/EBP$ is more closely matched to other primary cells
(Table 2). Since cells from established cell lines lack recent
exposure to the hormone and growth factor milieu and
various cell types found in adipose tissue known to impact
adipogenesis, it should come as no surprise that adipogenesis
is regulated differently in primary SV cells as compared with
established cell lines.

Adipogenic response to hormones and
growth factors

It is well established that changes in circulating hormone
concentrations, beginning in fetal life and continuing
throughout adulthood, can result in dramatic differences
in adipose tissue growth.* For example, in vivo thyroxine
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exposure of hypophysectomized fetal pigs and in vitro thyr-
oxine exposure of adipose tissue SV cells enhance adipo-
genesis.”?® Changes in endocrine status throughout life,
such as hypothyroidism, are also known to greatly impact
adipogenesis.”” Similarly, glucocorticoids such as dexa-
methasone are commonly used to stimulate adipocyte
differentiation in multiple culture systems (Table 3) and
are known to impact adipose development in people.”®
While glucocorticoids appear to induce adipogenesis in
various culture systems, the adipogenic effects of insulin,
growth hormone and thyroid hormones appear to vary
greatly depending on the cell model used. It is plausible
that these differences to responses are characteristic of
various cell types but may also represent in vivo differences
in response due to age, species, etc. Regardless, metabolic
response may be relevant to a particular study and needs
to be incorporated into the selection criteria while designing
a research study.

Tissue engineering and transdifferentiation

Emerging research in the study of tissue regeneration, stem
cells and transdifferentiation suggest alternative cell sources
are available. Interest in adipose tissue as a source of various
cell types for tissue regenaration therapies has developed;
partly because it is a tissue of high abundance, a tissue
that is easily accessible, and also because it has a relatively
high abundance of mesenchymal stem cells.'"®*% Tt is
accepted that adipose tissue contains various cell popu-
lations in vivo and more recent studies have shown the in
vitro potential of angiogenic, osteogenic, hematopoietic, car-
diomyocyte and neurogenic progenitor cells of adipose
tissue cells.>' For example, chondrogenesis can be stimu-
lated by altering oxygen exposure,”* while osteogenesis™
and myogenesis™* have been stimulated by modifying sup-
plements in the media. Mesenchymal cell differentiation
into various cell types including adipocytes, myocytes,
chondrocytes or osteoblasts was demonstrated a decade
ago.>>3® The differentiation of adipocytes from mesenchy-
mal stem cells derived from bone marrow requires a
number of signaling pathways, growth factors and tran-
scription factors,” while high levels of adipocytes from
adipose tissue derived stem cells formed in serum-free
media within 14 days.*® Again, this supports the notion
that the in vivo environment from which cells were isolated
can significantly impact in vitro studies.

Studies evaluating adipocytes found within other tissue have
also begun evaluating differences in cell development. For
example, adipogenic cells isolated from skeletal muscle”'>*
and from intramuscular adipose tissue'>*’ have been used to
study adipocytes naturally present within skeletal muscle.
Initial indications suggest differences in adipogenic poten-
tial may exist as has previously been reported when adipo-
cytes from various adipose tissue depots have been
compared.*! These cells are naturally found within skeletal
muscle and do not represent the ectopic fat stored in non-
adipocytes that is observed with several disease states.
However, the physiologic and metabolic role of these adipo-
cytes is poorly understood.
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Lastly, there are reports of adipocyte transdifferentiation,
defined as the function and phenotypic change of a particu-
lar differentiated cell into a different cell type without
undergoing dedifferentiation.*?~**

Conclusion

Recent studies assessing the role of epigenetic regulation in
adipogenesis expand on the research on transcriptional
regulation of adipocyte differentiation.*” While studies,
such as those conducted in 3T3-L1 cells, are invaluable in
identifying new regulatory mechanisms, one should always
be cognizant of both the metabolic and physiologic differ-
ences between various cell types used in experiments. This
review provides an initial comparison of various adipocyte
cell lines in the hope that selection of appropriate cell
models for a given study aim will be considered. Lastly,
while in vitro experiments are invaluable, one must appreci-
ate the limitations when attempting to transfer the infor-
mation from such studies to whole-body physiology,
metabolism and development. The selection and use of an
in vitro system must consider all known levels of regulation
of proliferation, differentiation and function to ensure rele-
vant results.

Author contributions: SPP, MVD and GJH prepared the
manuscript.
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