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Abstract
The world is now experiencing an epidemic of obesity. Although the effects of obesity on the development of metabolic and

cardiovascular problems are well studied, much less is known about the impact of obesity on immune function and infectious

disease. Studies in obese humans and with obese animal models have repeatedly demonstrated impaired immune function,

including decreased cytokine production, decreased response to antigen/mitogen stimulation, reduced macrophage and

dendritic cell function, and natural killer cell impairment. Recent studies have demonstrated that the impaired immune

response in the obese host leads to increased susceptibility to infection with a number of different pathogens such as

community-acquired tuberculosis, influenza, Mycobacterium tuberculosis, coxsackievirus, Helicobacter pylori and

encephalomyocarditis virus. While no specific mechanism has been defined for the decreased immune response to

infectious disease in the obese host, several obesity-associated changes such as excessive inflammation, altered

adipokine signaling, metabolic changes and even epigenetic regulation could affect the immune response. This review will

discuss what is currently known about the relationship between obesity and infectious disease.
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Introduction

Humans, as a species, are poorly adapted to overnutrition.
Having evolved in times of frequent famine, the human
body is not developed for constant exposure to a calorie-rich
and sedentary environment.1,2 The obese state can lead to
serious health consequences and subsequently, increases
in health-care requirements and economic burden. Caused
by a change in energy balance of increased caloric intake
versus expenditure,3 obesity has been linked to numerous
health problems and chronic diseases.4 – 6 These
co-morbidities associated with obesity have been attributed
to hormonal and metabolic changes related to increased
adipose tissue mass.7 – 9 Although obesity is well established
as a risk factor for increased morbidity and mortality, its
effects on susceptibility to infection are just beginning to
be understood.

Nutrition and the function of the immune system are inti-
mately linked. Immunocompetence is dependent on nutri-
tional status and can be easily dysregulated in states of
imbalanced nutrition such as obesity. Lymphoid tissues
have an extremely rapid turnover and appear to be particu-
larly sensitive to nutrient imbalances, particularly those
which affect metabolic pathways and functions necessary
for adequate immune defense.10 Although there is no

‘smoking gun’ directly implicating obesity in immune
system impairment, many pathways that have an important
role in the immune response are altered in the obese
subject.10,11 Any impairment in the immune response in
the obesigenic state may leave the obese individual more
vulnerable to infection. This review will focus on what is
known about the effects of obesity on infectious disease
and speculate on possible mechanisms for increased suscep-
tibility of the obese host.

The epidemiological perspective

Epidemiological data support the hypothesis that obesity
can affect immune function in humans. Findings from hos-
pitalized, obese patients have been reviewed by several
groups.12 – 15 Briefly, in the hospital setting, obese patients
are more likely to develop secondary infections and compli-
cations such as sepsis, pneumonia, bacteremia, and wound
and catheter-related infections. Patients with increased body
mass index (BMI) and adiposity also present a higher inci-
dence of surgical site infections, which have been associated
with increased risk of other wound complications, increased
length of stay and increased risk of death.16 – 18 Obesity
negatively affects pulmonary function, and hospitalized
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obese patients have been shown to be at increased risk for
pulmonary aspiration and community-related respiratory
tract infections.19,20 In the Health Professionals Follow-up
Study and the Nurses Health Study II, increased BMI (kg/m2)
and weight gain (versus weight maintenance) were directly
associated with increased risk for community-acquired
pneumonia in women.21,22 Increased susceptibility to
acute respiratory tract infection has also been shown to be
associated with BMI in overweight children.23

Recent studies have further confirmed these findings.
Obesity has been associated with increased risk of wound
complications and surgical site infections both in and out
of the hospital setting.24 – 28 Obesity has also been confirmed
to increase risk of infection apart from surgical outcomes.
Increased BMI is associated with increased risk of infection
in institutionalized, geriatric patients.29 Obese individuals
are at increased risk for Helicobacter pylori infection,30 and
children with increased BMI were found to be at three
times greater risk of being asymptomatic carriers of
Neisseria meningitides.31 Perhaps most notably, for the first
time, morbid obesity has been considered an independent
risk factor for increased severity of infection and death
from the novel H1N1 pandemic influenza strain.32

Studies of obesity and immunity in humans

Studies of the immune system in obese humans are primar-
ily focused on ex vivo cellular functionality (Table 1). Obese
subjects have altered the overall number of circulating
T-cells and obesity has been associated with decreased
thymic output of naı̈ve T-cells in middle-aged subjects.33,34

Interestingly, obese subjects appear to have altered
numbers, either increased or decreased, of total lympho-
cytes in peripheral blood populations.35 – 38 When analyzed
by flow cytometry, obese subjects appear to have decreased
CD8þ T-cell populations and increased or decreased
numbers of CD4þ T-cells compared with lean controls.37,38

The differences in these studies could come from a
number of factors as discussed below. Aside from altered
frequency of circulating T lymphocytes, studies do demon-
strate a lowered capacity of lymphocytes from obese indi-
viduals to respond to mitogen stimulation.39 Nieman et al.
(1999) reported obesity was related to elevated leukocyte
and lymphocyte subsets with lowered T- and B-cell prolifer-
ation in response to mitogen stimulation.35,36 In addition,
these alterations in T-cell subsets have been suggested to
be linked to increases in proinflammatory cytokines, such
as tumor necrosis factor-a (TNF-a), and dysregulated
expression of other cytokines.35,36,38,40 Obese individuals
have been shown to have decreased circulating natural
killer (NK) cell populations with diminished activity.33,41

Several studies have assessed immune functionality in
obese individuals following weight loss or dietary restric-
tion. The majority of these studies show increased
immune responsiveness and improvement. For example, a
study by Tanaka et al.38 showed increased T-cell responsive-
ness to mitogen following a weight reduction program. It
must be noted that these improvements have not been
assessed in the long term after subjects have achieved and
maintained ‘healthy’ weight. Further research in this area
would greatly increase our understanding of the impact of
obesity, and the potential positive effect of weight loss, on
immunity. Overall, it does appear that obesity can impact
the number and functionality of immune cells; however, a
number of factors could influence these results. The
majority of the studies conducted on obese subjects utilize
relatively small subject groups with wide age ranges. In
addition, subjects are excluded based on a number of
obesity-associated co-morbidities, such as diabetic status,
which could also impact the immune response. Future
studies need to be conducted using large populations strati-
fied by age, gender and co-morbidities. It must also be con-
sidered that tissue-specific populations of immune cells at
the site of infection, such as the lungs, may be altered;
however, accessing populations of lymphocytes from sites
other than blood would be very difficult to test in a large
number of subjects.

Studies of obesity and immunity in animal
models

The use of animal models of obesity has further defined the
impact of obesity on immune functionality ex vivo (Table 2).
Numerous studies using genetically obese rodents, mainly
arising from the single-gene, loss-of-function mutations in
the leptin gene (ob/ob) or leptin receptor (db/db), demon-
strate a global impairment in ex vivo immune function.
Genetically obese animals exhibit marked thymic atrophy
as well as diminished splenic and circulating T-cell popu-
lations. The majority of these studies demonstrate that

Table 1 Studies of immune cell prevalence and functionality in
obese humans

Immune cell

type Impact of obesity References

T-cell Total

lymphocytes

Increased or

decreased

35–38

Naı̈ve Increased

Decreased thymic

output

Preactivation

34

CD8 Decreased

Lowered

proliferation in

response to

mitogen

35–38

CD4 Increased or

decreased

Th1 polarizaton

35,37,38,182

NK Decreased number

and functional

capacity

41,183

B-cell Lowered prolifertion in

response to

mitogen

35,36

Macrophage Increased monocyte

and granulocyte

phagocytosis and

oxidative burst

activity

35

DC, dendritic cell; NK, natural killer cell
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T-cells isolated from the spleen of genetically obese animals
have markedly reduced capacity to respond to mitogen
stimulation.42 – 50 In addition, T-cells isolated from these
animals have shown reduced cell-mediated cytotoxicity.47,51

In addition to alterations in adaptive immune responses,
genetically obese animals also display significant alterations
in innate immune defenses. Dendritic cell (DC) steady-state
number and functionality is reduced in genetically obese
mice52 as well as diminished and decreased functional NK
cell populations.53

Genetically obese animals provide an excellent model for
observing the effects of extreme obesity; however, leptin
and leptin receptor mutations that cause obesity in these
models are an extremely rare phenotype in humans.
Therefore, the use of diet-induced obesity more closely
models the effects of chronic overnutrition on the immune
response. In diet-induced obese animals, similar, though
usually less pronounced, impairment of the immune
system has been found.39 Yang et al.34 have shown that
diet-induced obese mice had significantly reduced thymo-
cyte counts and significantly increased apoptosis of devel-
oping T-cell populations, resulting in acceleration of the
age-related reduction of the output of naı̈ve T-cells from
the thymus. Similar to the genetic models, diet-induced
obesity in mice and rats has been found to reduce splenic
T-cell proliferation in response to mitogen.39,49,54 Sato-Mito
et al.54 found that feeding high-fat diets to mice resulted in
significantly reduced splenocyte proliferation when stimu-
lated by three different T-cell mitogens (PHA, ConA and
anti-CD3 antibody). High-fat dietary intake and
diet-induced obesity in mice and rats results in decreased

NK cell numbers and function.55,56 Impairment of DC func-
tion and altered T-cell responsiveness to antigen presen-
tation also occurs in high-fat-fed mice.57

Cytokines are also altered in diet-induced obese mouse
models. Obese mice had lower levels of mitogen-induced
interleukin (IL)-2, although interferon (IFN)-g and IL-4 pro-
duction was increased.56 Takahashi et al.58 found that
diet-induced obese mice had increased levels of adipocyte-
derived mRNA for monocyte chemoattractant protein-1
(MCP-1) as well as higher protein levels of MCP-1 in the
plasma. CD11bþ macrophage/monocyte population was
also increased in the obese mice.58

Obese host–pathogen interaction and
infectious disease challenge models

An intact and functioning immune response is critical for
protection against infectious disease. Impairment of the
immune response of the obese host would be expected to
have an impact on the response to infectious diseases.
Indeed, genetically obese animals have been shown to
exhibit decreased resistance to bacterial and viral infections.
Ob/ob mice have been shown to have increased suscepti-
bility to a number of different bacterial infections including
Mycobacterium abscessus,59 Klebsiella pneumoniae,60

Streptococcus pneumoniae61 and Mycobacterium tuberculosis.62

However, a separate group (Weiland et al.) found no differ-
ences in bacterial growth in ob/ob mice challenged with the
K. pneumoniae and S. pneumoniae strains.63 The differences
between the Weiland et al. and Mancuso et al. studies may
be due to age-related susceptibility. Indeed, Weiland et al.
suggested that susceptibility may have been decreased in
the Mancuso model because they were using older mice,
which are inherently less susceptible. Db/db mice have
been shown to have increased susceptibility to
Staphylococcus aureus64 and H. pylori.65 Both ob/ob and db/
db mice have been shown to have increased susceptibility
to Listeria monocytogenes.66 Obese Zucker rats ( fa/fa) have
been shown to have increased susceptibility to Candida
albicans.67 In regards to viral infection, ob/ob mice have
been found to have increased susceptibility to viral myocar-
ditis induced by coxsackievirus B468 as well as encephalo-
myocarditis virus.69 Even fewer studies have observed the
effects of diet-induced obesity on infection. Similar to
genetically obese models, diet-induced obese mice are
more susceptible to bacterial infection, including infection
with Porphyromonas gingivalis and Staphylococcus
aureus-induced sepsis.70,71 To date, very few studies have
been conducted observing the influence of obesity on the
immune response to viral infection. Previous studies in
our lab have demonstrated that mice with diet-induced
obesity have a dysregulated primary immune response to
influenza infection. Influenza-infected, diet-induced obese
mice had seven times greater mortality, and increased
lung pathology compared with infected lean controls. In
the lungs of influenza-infected, diet-induced obese mice, a
significant decrease in the expression of mRNA for
IFN-a/-b and an increase and delay in the expression of
proinflammatory cytokines and chemokines was noted.72

Table 2 Studies of immune cell prevalence and functionality in
obese rodents

Immune cell
type Impact of obesity

Model of
obesity References

T-cell Diminished circulating

T-cells

Reduced T-cell

responses

Lymphoid atrophy

Decreased memory

T-cell function

Decreased memory

T-cell maintenance

Genetic,

DIO

109,110,184

NK Impaired activation

Impaired cytotoxicity

Genetic,

DIO

72,185,186

B-cell Decrease in pre-B and

immature B-cells

Genetic 83

DC Impaired antigen

presentation

Decreased

stimulation of T-cells

Decreased

steady-state number

Genetic,

DIO

52,73

Macrophage Reduced phagocytic

activity

Defective clearance

of apoptotic cells

Increased

inflammatory

properties

Genetic,

DIO

184,187–189

DC, dendritic cell; DIO, diet-induced obesity; NK, natural killer cell
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In addition, DCs from obese mice failed to efficiently
present influenza antigen to T-cells (Figure 1).73 Overall, it
appears that diet-induced obesity can increase susceptibility
to bacterial and viral infections; however, our understand-
ing of which types of infections and to what extent suscep-
tibility is increased must be further investigated.

Obesity and response to vaccination

Traditional methods of protection against viral infection
focus on the induction of virus-neutralizing antibodies
using vaccination strategies. Painfully little is known about
the impact of obesity on the response to vaccination. The
first study to describe a relationship between vaccine
response and obesity was conducted by Weber et al.74. His
group found that higher BMI was the single best predictor
of failure to develop detectable antibody to serum-derived
hepatitis B vaccine in health-care workers.74 A follow-up
study demonstrated that non-response to vaccine was
strongly associated with BMI in health-care workers.
Non-responders had a weight–height index of 36.4 com-
pared with 30.0 for responders. In those with a BMI
higher than the 75th percentile of the US population (in
1986), vaccine response rate was only 36%, compared with
66% in those with lower BMI.75 In addition to the studies
by Weber et al., a number of other studies have shown an
association between obesity and poor antibody response

to hepatitis B vaccines.76 – 80 Simò Miñana et al.76 reported
an inverse relationship between BMI and antibody level
achieved through a three-dose regimen of recombinant
hepatitis vaccine in adolescents. In addition, a randomized
controlled trial was conducted to compare a triple-antigen
recombinant hepatitis B vaccine to a standard single
antigen vaccine delivered in standard three injections over
six months. The standard vaccine had a 71% protection
rate in obese (BMI . 30) adults compared with 91% in the
healthy, young non-smoking control group. The
triple-antigen vaccine also showed a difference between
lean and obese subjects with 99% protection in the lean
group and 95% protection in the obese group.79

Aside from responses to hepatitis B vaccines, vaccine effi-
cacy has not been well studied in the obese host. Eliakim
et al.81 reported that antibody response to standard
tetanus immunization was lower in overweight 13-year-olds
(BMI .85th percentile) than in age-matched controls with
lower BMIs. In addition, the authors point out the need
for the study of vaccine response in obese individuals for
diseases more common than tetanus. Currently, there are
no published studies of BMI in relation to influenza vacci-
nation. The effectiveness of the flu vaccine in protecting
individuals against illness or serious complications of flu
depends primarily on the immunocompetence of the
person receiving the vaccine, previous exposure to influenza
and flu vaccine, and the similarity between the virus strains
in the vaccine and those infecting the population.82 If obese

Figure 1 Immune response to influenza infection is impaired in the obese host. The response to infection with influenza virus results in influenza-specific effector

T-cells killing infected cells and B-cells producing neutralizing antibody to protect against further infection. Altered responses known to be a result of the obesi-

genic state are shown in red. IL, interleukin; MCP, monocyte chemoattractant protein; TNF-a, tumor necrosis factor alpha; IFN-g, interferon; NK, natural killer cell
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individuals are immunocompromised and display similarly
decreased antibody responses to influenza vaccination as
they do with hepatitis B vaccines then they may not be as
protected from influenza infection, a major cause of morbid-
ity and mortality worldwide.

What mechanism(s) is responsible for the impact of obesity
on reducing the antibody response to vaccination? Claycombe
et al.83 described a 21% and 12% decrease in pre-B and imma-
ture B-cells, respectively, in ob/ob mice compared with wild-
type C57BL/6 mice. These differences were normalized with
the treatment of ob/ob mice with leptin indicating a role for
the adipokine in B-cell generation.83 There is also the question
of how weight reduction could help to improve vaccine
responsiveness. An interesting case report from Dinelli and
Moraes-Pinto84 showed that an obese female remained non-
responsive even following six doses of hepatitis B vaccine.
Following gastric bypass and weight loss, a three-dose
vaccine scheme resulted in seroconversion.84 It appears that
vaccine responses in obese individuals may be very different
from vaccine responses in lean individuals. This suggests
that obese adults/children may not be receiving the full
benefits of our current immunization protocols.

Obesity and cellular immune memory

Apart from traditional vaccination approaches, studies of
the generation of long-term immunity and efficacious vacci-
nation against viral agents have begun to focus on the gen-
eration of large numbers of long-lived, antigen-specific
CD8þ memory T-cells. The generation, function and main-
tenance of these memory T-cells has been well
reviewed.85 – 103 Following an infectious challenge, antigen-
specific T-cells are activated and go through a period of pro-
lific expansion. This expansion results in a large population
of effector T-cells containing both short-lived effector cells
(SLEC) and memory precursor effector cells (MPEC)
needed to clear the infection. Following pathogen clearance,
SLEC, composing 90–95% of the effector population, go
through activation-induced cell death during the sub-
sequent contraction phase of the response, leaving the
smaller MPEC subset to form a long-lived, antigen-specific
memory cell pool. These memory T-cells can then act to
mount larger, faster and stronger responses to subsequent
encounters with the same pathogen.90,102,104,105

A number of studies have attempted to determine how
SLEC versus memory T-cell fate is determined during a
primary encounter with a pathogen. From these studies,
reviewed by Jameson and Masopust90, it has become appar-
ent that generation and function of CD8þ memory T-cells
requires a balancing act between MPEC potential and term-
inal differentiation into SLEC. Both inherent programming
during initial contact with an antigen-presenting cell and
environmental factors such as inflammation can affect the
balance between effector and memory potential.90 This
balance can be considered using the ‘Goldilocks model’ of
generation.96 Memory T-cell generation is best when
things are ‘just right’ with the first infection. If the response
becomes ‘too hot’ or ‘too cold’ then memory T-cell gener-
ation, function and maintenance will be impaired.96

How can obesity potentially impact memory T-cell gener-
ation, function and maintenance? Obesity could potentially
impact both the inherent programming of T-cells during a
primary infection as well as affect the environmental
aspects of the primary immune response. As stated above,
diet-induced obesity in mice has been shown to alter DC
steady-state number and function and antigen presentation
by DC is impaired in obese animals.52,57,73 As exposure to
antigen is so important for memory cell generation,
decreased DC function or numbers could lead to altered
CD8þ T-cell priming. In terms of environmental effects,
obesity has also been associated with a low-grade inflam-
matory state, which has been implicated in the development
of several obesity-associated disease states such as type 2
diabetes mellitus and atherosclerosis.106 Current research
of adipose tissue as an endocrine organ has also added to
this theory, demonstrating the ability of adipocyte and
immune cells within the adipose tissue to secrete inflamma-
tory mediators such as TNF-a and IL-6.107,108 As noted pre-
viously, studies in our laboratory have shown that
inflammatory signals are delayed and increased during
primary influenza infection in diet-induced obese mice.72

Taken together, altered antigen presentation as well as the
chronic inflammatory state and greater expression of inflam-
matory mediators during infection could tip the balance of
memory cell generation toward the ‘too hot’ end of the
memory T-cell generational spectrum, resulting in a
greater number of SLEC and diminished MPEC during a
primary infection in the obese host (Figure 2).

Studies in our laboratory have focused on the impact of
diet-induced obesity on the memory T-cell response to

Figure 2 Impact of obesity on memory T-cell formation during a primary

influenza infection. Following viral challenge, naı̈ve T-cells are subjected to

intrinsic and environmental cues that determine their effector versus

memory potential. In addition, these cues can then influence susceptibility

to activation-induced cell death (AICD) or the ability to be maintained for

long periods of time as a antigen-specific memory T-cell. The obese state

alters these intrinsic and environmental cues, resulting in increased

numbers of primary short-lived effector cells (SLEC) and decreased memory

precursors (MPEC). In addition, maintenance of antigen-specific memory

T-cells is also decreased in the obese state
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influenza infection. Obese mice primed with influenza X-31
(H3N2) and then challenged with a lethal dose of influenza
A/PR/8 (H1N1) had a 25% mortality rate with no loss of
lean controls. Obese mice also had increased lung pathology
and significantly increased lung viral titers and failed to
regain weight postsecondary influenza challenge.
Furthermore, mRNA expression for IFN-g was significantly
decreased in lungs of obese mice. This decrease in IFN-g
production was attributed to a significant decrease in
memory T-cell functionality as flow cytometry revealed
one-third the number of influenza-specific CD8þ T-cells
from the lungs of obese mice producing IFN-g postsecond-
ary infection versus lean controls. In addition, the amount of
IFN-g produced per cell was significantly less than their
lean counterparts. The defect in memory T-cell function
was not due to impairment in DC functionality because
influenza-specific memory CD8þ T-cells from obese mice
had a .50% reduction in IFN-g production when stimu-
lated with influenza-pulsed DCs from lean mice.109

In addition to defects in memory T-cell functionality, our
lab has also observed deficits in memory T-cell generation
and maintenance following a primary influenza challenge.
Expression of Blimp-1 mRNA, an effector T-cell-associated
transcription factor, was significantly increased during
infection. In addition, expression of T-bet, another effector
T-cell-associated transcription factor, was significantly
increased in responding CD8þ T-cells as measured by
flow cytometry. In contrast to the effector-related transcrip-
tion factors, both mRNA and cellular expression of the
memory precursor-associated transcription factor, eomeso-
dermin, was significantly decreased (unpublished data).
Taken together, these data suggest that the balance of effec-
tor versus memory T-cell generation is indeed tipped
towards the generation of effector cells and reduces the
memory T-cell pool. In addition to generation, memory
T-cells were not maintained in the obesigenic lung environ-
ment with significantly decreased numbers of memory
T-cells in the lungs of obese mice 84 days postprimary influ-
enza challenge.110 Thus, our lab has demonstrated that
diet-induced obesity can significantly alter the memory
T-cell response to a pathogen, rendering the obese host sus-
ceptible to re-infection.

How does obesity affect the immune
response? The leptin connection

Conventionally, obesity can be considered an overaccumula-
tion of white adipose tissue (WAT). Although adipocytes
occupy the bulk of the volume of WAT, adipose tissue also
includes many more cells types, including a diverse popu-
lation of preadipocytes, macrophages, endothelial cells, fibro-
blasts and leukocytes.111 In the past two decades, research
has pushed the concept of WAT as an endocrine organ in its
own right rather than a storage depot for fats. Indeed, WAT
has been found to produce close to 100 cytokines and other
molecules including leptin, adiponectin, resistin, visfatin/
pre-B-cell colony-enhancing factor, nicotinamide phosphori-
bosyltransferase, apelin, vaspin, hepcidin, B-cell activating
factor of the TNF family, TNF-like weak inducer of apoptosis,

a proliferation inducing ligand, TNF-a, omentin and MCP-1.
These ‘adipokines’ participate in a wide variety of physiologi-
cal or physiopathological processes including food intake,
insulin sensitivity and inflammation. As reviewed previously,
many of the adipokines have been found to play an intricate
role in various aspects of the innate and adaptive immune
response (Table 3).112–115 In the obese state, secretion of
these adipokines is altered in correlation to the increased
adipose tissue mass.8,116–118

Based on WAT’s function as an endocrine organ and its
ability to influence inflammatory processes within the
body, it is not surprising that local, obesity-driven changes
in adipokine secretion have a systemic impact on the
immune system. To date, adipokine modulation of
immune function by leptin is the best characterized link
between obesity and immune function; however, the exact
changes caused by an overabundance of leptin in the obesi-
genic state have yet to be elucidated. Leptin levels act as a
general signal of energy reserves and to modulate food
intake and, therefore, concentrations increase proportion-
ately to adipose mass (and BMI) that result in high circulat-
ing leptin levels in obese individuals.119 – 123 Leptin acts to
control food intake by acting on an intricate neuronal
circuit involving hypothalamic and brainstem nuclei
where it integrates a variety of different orexigenic and
anorexigenic signals.124 – 127 In the obese state, leptin concen-
trations are already high as a consequence of increased fat
mass. The persistence of obesity and no significant response
to this increased fat mass with a reduction in food intake in
spite of increased leptin levels suggest that chronically elev-
ated leptin levels can induce a state of central leptin
resistance.128

The effect of leptin on the immune response has been
reviewed previously.11,129 – 135 Leptin’s role in regulating
immunity has been fueled by early observations of thymic
atrophy in db/db mice.42 Indeed, genetically obese ob/ob
mice display an increased thymocyte apoptosis and
reduced thymic cellularity compared with wild-type con-
trols and peripheral administration of leptin reverses these
defects.46,50,136,137 In malnourished infants, which have
low plasma leptin, impairment of the immune response
has been observed.138 The leptin receptor is expressed by
B and T lymphocytes and may directly modulate the T
and B responses.139,140 Leptin seems to exert its effects on
immune cells through the JAK/STAT pathway. In peripheral
blood mononuclear cells, leptin increases JAK2/3 and
STAT3 phosphorylation, which promote proliferation and
activation of T lymphocytes upon mitogen stimulation.141

In terms of infectious disease, the general consensus
seems to be that leptin exerts a proinflammatory role,
while at the same time serving in a protective capacity
against infections.8,142,143 Inflammation is used as a loca-
lized, protective response to infection and fluctuations in
body weight and metabolic state are often associated with
acute or chronic inflammatory processes resulting from
infection. These changes in metabolic state have been associ-
ated with injury/infection-induced anorexia and have been
found to be present in animal models of infection and
inflammation and have been reviewed previously.144,145

Interestingly, leptin may be involved in the acute
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inflammatory response to infectious disease. In experimen-
tal animal models, inflammatory stimuli acutely induce
leptin mRNA and increase serum leptin levels.131,146

Indeed, previous studies in our lab have shown an acute
spike in serum leptin one day post-primary and -secondary
influenza infection in lean mice. This spike was not
observed in obese mice that had significantly increased
serum leptin at all time points postinfection (unpublished
data and ref.109).

Similar to leptin deficiency, severe malnutrition has been
associated with thymic atrophy, reduced T-cell function and
increased susceptibility to infection. These changes are in
correlation with the sharp reduction in leptin levels
observed at extremely low BMIs.147 – 149 While it is unclear
whether leptin expression during an acute infection is a
primary response to infection or secondary to other inflam-
matory stimuli, recent evidence has shown that leptin sig-
naling in the central nervous system (CNS) is critical for a
systemic immune response.150 Taken together, experimental
data indicate that chronic leptin deficiency differentially
affects innate and adaptive immune responses. Innate
responses are altered by inadequate control of the inflam-
matory response while adaptive responses are severely

attenuated. Obesity has been associated with a state of
leptin resistance in the CNS, which may be affecting the
overall immune response. In addition, if peripheral leptin
resistance causes a state similar to that of leptin deficiency
in immune cells themselves, this resistance could account
for the immunodeficiencies observed in obese individuals.

Other potential effects of obesity on the
immune response

Obesity is an extremely multifactorial disease and numer-
ous pathways and processes are altered by obesity, which
could potentially alter the immune response. Aside from
leptin, factors such as altered immune cell metabolism and
even epigenetic alterations could influence the immune
response to infectious disease in the obese host.

Metabolic effects

Another possible factor impacting immune response in the
obese host is metabolism. Recent studies have found that
metabolic state is extremely important for the functionality

Table 3 Adipokine effects on metabolism and immunity and the impact of obesity

Factor Metabolic effect Immune effect During obesity References

Adiponectin � Gluconeogenesis

� Glucose uptake

b-oxidation

Insulin sensitivity

Weight loss

Energy metabolism

Anti-inflammatory

� T-cell responses

� B-cell lymphopoesis

Reduced 111,115,190–

192

Leptin � Lipolysis

� Food intake

Inflammatory

� T-cell proliferation

� Lymphopoesis

� Thymocyte survival

� Th1 response

Increased (signal reduced) 130,141,193–

196

Visfatin/NAMPT/

PBEF

� Insulin sensitivity Inflammatory Increased 8,111,112

Resistin Diabetogenic Inflammatory Increased 197

Chemerin � Lipolysis

Adipocyte

differentiation

Chemoattractant Increased 111,198

Apelin � Insulin sensitivity

� Insulin secretion

Increased 199

Omentin � Glucose uptake Anti-inflammatory Reduced 200–202

Vaspin � Insulin sensitivity Increased 203

Adipsin � TAG production Complement activation Increased 8,204

Hepcidine Iron homeostasis � Iron release from macrophages Increased 205

BAFF � Adipogenesis B-cell survival, metabolic fitness and readiness for

antigen-induced proliferation

T-cell co-stimulation

Decreased in sera, increased

in adipose

206–208

TWEAK � Adipogenesis Inflammatory Increased in severe obesity 209

APRIL � Adipogenesis 208,210

Glucose (High) � Insulin Inflammatory Increased 211,212

Insulin � Glucose uptake

� Food intake

� Lipolysis

Inflammatory Increased (signal reduced) 213

IL-6 � Insulin sensitivity

� Lipolysis

Inflammatory Increased 214

TNF-a � Insulin sensitivity

� Lipolysis

Inflammatory Increased 215

MCP-1 Chemoattractant Increased 58,111

APRIL, a proliferation-inducing ligand; BAFF, B-cell activating factor of the TNF family; IL, interleukin; MCP, monocyte chemoattractant protein; NAMPT,

nicotinamide phosphoribosyl transferase; TAG, triacylglycerol; TNF-a, tumor necrosis factor alpha; TWEAK, tumor necrosis-like weak inducer of apoptosis
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and effectiveness of immune cells, especially T-cells.
Proliferation of mammalian cells, including T-cells, is con-
trolled by external signals which then activate and regulate
internal nutrient utilization.151 Non-proliferating, quiescent
T-cells (naı̈ve and memory T-cells) use catabolic metabolism
to fuel ATP generation.152 Stimulation and co-stimulation
results in a metabolic switch to glycolysis and anabolic
metabolism, which supports proliferation and effector func-
tions.153,154 This switch is achieved by the activation of Akt,
which then promotes the mTOR pathway as well as increas-
ing utilization of glucose and amino acids.155 – 158 Therefore,
this switching between differing metabolic states is required
for effective generation of T-cell fates. Indeed, the fact that
metabolism underlies the functional capacity of a T-cell
either to respond to infection or to remain as a memory
cell suggests that alteration of metabolic parameters could
greatly affect memory T-cell fates.159

Very recently, reduced mTOR activity has also been
associated with increased generation of memory CD8þ

T-cells. Araki et al.160 and Pearce et al.161 have shown that
blocking mTOR function by rapamycin treatment promoted
memory generation during both the expansion and contrac-
tion phases of the T-cell response. Additionally, Pearce et al.
showed that the antidiabetic drug metformin, activated
AMPK and enhanced memory T-cell generation by inhibit-
ing the mTOR pathway.160,161 Interestingly, dietary restric-
tion studies that have been shown to promote lifespan in a
number of organisms are thought to result in reduced
mTOR activity.162 While the exact mechanisms of T-cell
metabolic switching are still under study, it may be interest-
ing to pursue how obesity can alter T-cell metabolism and
subsequent T-cell fate. Obesity has been associated with sig-
nificant alterations in insulin and glucose utilization and is a
significant risk factor for the development of type 2 dia-
betes.106,163,164 Moreover, there have been recent impli-
cations that overnutrition directly inhibits insulin signaling
in muscle at the level of IRS1 through the hyperactivation
of the mTOR pathway.165 Additionally, leptin signaling
also appears to alter AMPK/mTOR activation.166,167 If
obesity hyperactivates mTOR, memory T-cell generation
may be at a significant disadvantage. Future studies are
needed to focus on the alteration of metabolism in T-cells
from diet-induced obese mice and the effects on memory
T-cell generation as well as other cells of the immune
response.

Epigenetic effects

Activation and proper function of many cell types require
that the cell transcribes specific sets of genes while repres-
sing or silencing others. Much of this gene expression is
not controlled by permanent alteration of primary genetic
information but by changes in epigenetic differences in the
genes that are expressed.168 – 170 The production of biologi-
cally active proteins is under regulation at several points,
such as the initiation of transcription. Accessibility to
genetic information by the transcription machinery
depends on the ‘openness’ of the chromatin structure.
Modifications of DNA and DNA-binding histone molecules
result in different chromatin structures. Epigenetic changes

in DNA, such as DNA methylation and histone modifi-
cations, allow for structural alterations in chromatin organ-
ization resulting in permissibility of transcription machinery
to initiate gene transcription.171 Although epigenetic
changes are established early during development and
differentiation, adaptations occur throughout life in
response to intrinsic and environmental stimuli. For
example, DNA demethylation occurs in the IL-2 promoter
of T-cells within 20 min of stimulation.172 Indeed, cell fate
decisions of T-cell lineages are significantly altered in mice
unable to promote the gene-silencing effect of DNA methyl-
ation. These mice have profound changes in the suscepti-
bility and resistance to parasitic infections.173,174 Altered
CD4þ differentiation has also been documented by exper-
iments using an inhibitor of methylation and through
genetic abrogation of the maintenance methyltransferase,
Dnmt1.175,176

Genetic reduction of methylation ability has been found
to decrease memory T-cell precursor formation and the
responsiveness of the resulting memory T-cell pool.177

Interestingly, diet-induced obesity has been found to alter
methylation status in rats, resulting in an increase in methyl-
ation of the leptin promoter in retropertioneal adipocytes;178

however, there appear to be few studies observing the effect
of dietary treatment on the epigenetic modification of
immune cells. Further studies need to be conducted observ-
ing the effects of diet-induced obesity on epigenetic modifi-
cation of T-cell fate decisions as well as other cells of the
immune system and their potential effects on subsequent
function in the context of response to infection.

Conclusions – obesity and infection: a public
health perspective

Obesity has become a worldwide epidemic. Rates of obesity
are increasing worldwide, not only in adult populations but
also in children. The WHO predicts that by the year 2015,
approximately 2.3 billion adults will be overweight with
greater than 700 million of these adults being obese world-
wide. In addition, globally, in 2005, there were more than 20
million overweight children under the age of five and this
number continues to increase.179 Obesity is not only increas-
ing, the prevalence of super obese individuals is also
increasing at an alarming rate.180 Recently, a study by
Flegal et al.181 reported that the prevalence of obesity in
the USA may be leveling off; however, according to 2007–
2008 data, 68.0% of the US population still has a BMI
�25, meaning that two out of every three people are over-
weight or obese. Therefore, even if the prevalence of
obesity is leveling in the USA a significant portion of the
population is still at risk for the co-morbidities associated
with obesity. In addition, the worldwide explosion of
obesity has shown no signs of abating.

Apart from the health problems and chronic diseases
arising from low-grade, chronic inflammation, obesity
results in a state of immunodeficiency including altered
lymphocyte and monocyte functionality. In humans and
animals, both diet-induced and genetic obesity leads to
increased susceptibility to bacterial and viral infection.
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While this increase in susceptibility has been documented
for a small handful of infections, a significant number
remain unexplored. In addition, while several, possible,
individual mechanisms for increased susceptibility have
been suggested, the exact systemic impact of obesity on
infection susceptibility has not been fully investigated.
Future studies should focus on expanding our knowledge
of the weight of obesity on susceptibility to diseases.
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