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Abstract
Influenza pandemics have occurred throughout history and were associated with substantial excess mortality and morbidity.

Mathematical models of infectious diseases permit quantitative description of epidemic processes based on the underlying

biological mechanisms. Mathematical models have been widely used in the past decade to aid pandemic planning by allowing

detailed predictions of the speed of spread of an influenza pandemic and the likely effectiveness of alternative control

strategies. During the initial waves of the 2009 influenza pandemic, mathematical models were used to track the spread of

the virus, predict the time course of the pandemic and assess the likely impact of large-scale vaccination. While

mathematical modeling has made substantial contributions to influenza pandemic preparedness, its use as a realtime tool

for pandemic control is currently limited by the lack of essential surveillance information such as serological data.

Mathematical modeling provided a useful framework for analyzing and interpreting surveillance data during the 2009

influenza pandemic, for highlighting limitations in existing pandemic surveillance systems, and for guiding how these

systems should be strengthened in order to cope with future epidemics of influenza or other emerging infectious diseases.
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Introduction

Influenza pandemics have occurred throughout history.
Three influenza pandemics in the 20th century were associ-
ated with substantial excess mortality and morbidity.1 The
emergence of a highly pathogenic strain of avian influenza
A/H5N1 in 19972 led to increasing concerns about the
next pandemic. With limited empirical experience to guide
planning decisions, mathematical modeling has been a key
tool to facilitate planning for pandemic mitigation strategies.
These simulation approaches, which explicitly take into
account the ways in which the infection spreads between
people,3 were widely used in the ‘peace-time’ between pan-
demics to characterize influenza dynamics and to explore
the potential impact of alternative intervention strategies,
and contribute to pandemic planning.

Through the first decade of the 21st century, there was
growing anticipation that a new pandemic would emerge
from an avian virus in South-East Asia.4 It was somewhat
unexpected when in early 2009 a pandemic virus emerged
from a swine influenza virus lineage in North America.5

Mathematical modeling techniques were used in the
‘war-time’ as the 2009 influenza pandemic was unfolding

to provide information on disease transmissibility and
severity, and aid planning for vaccine allocation.

In this short review, we provide a general background on
mathematical modeling, and highlight some of the contri-
butions and limitations of mathematical modeling in the
planning of influenza pandemic preparedness and
response. We then proceed to discuss the predictive value
of mathematical modeling in the context of the 2009 influ-
enza pandemic. Our aim here is to give a broad overview
of the various applications of mathematical modeling in
pandemic planning rather than to review in detail every
modeling study conducted on this topic.

Mathematical models

The application of mathematical models to describe infec-
tious disease dynamics is a systematic way of translating
assumptions and data regarding disease transmission into
quantitative estimates of how an epidemic evolves through
time and space. Similar approaches are used in classical
physics to predict the movement of an object by translating
inertia and gravity (assumptions regarding the laws of
physics) and the force and angle at which an object is
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thrown (the data) into the trajectory of the object (the predic-
tion). Epidemics of infectious diseases among humans are
driven by transmission of the infectious agent among
humans either directly, via fomites in the environment or
via animal vectors. Disease transmission can also depend
on biological characteristics of both the pathogen and the
host, as well as social, behavioral and environmental
factors. It is possible to express these dynamics in terms of
mathematical equations.3 While the dynamics of infectious
diseases can be extremely complex, in many cases, relatively
parsimonious models can be used to describe the essential
properties of epidemic dynamics.6

In the simplest epidemic model, a closed large population
of size N is partitioned into three classes of individuals:
Susceptible, Infectious and Recovered (Figure 1). All individ-
uals are assumed to be identical in terms of their susceptibility
to infection, infectiousness if infected, as well as mixing be-
havior associated with disease transmission (the so-called
homogenous mixing assumption). The assumption that all
individuals are identical in terms of disease dynamics
permits the grouping of individuals into aggregate ‘com-
partments’. The resulting SIR (Susceptible–Infectious–
Recovered) model can be used to describe the number of indi-
viduals in each class at time t (S(t), I(t) and R(t)) based on two
further assumptions. Firstly, the rate at which susceptible
individuals become infected during any small time interval
Dt is assumed to be proportional to the prevalence of infec-
tious individuals. Secondly, infected individuals recover
with long-lasting immunity after an average infectious dur-
ation of 1/a. These assumptions can be translated into the fol-
lowing equations describing the epidemic dynamics:

Sðt þ4tÞ ¼ SðtÞ � bIðtÞSðtÞ4t

Iðt þ4tÞ ¼ IðtÞ þ bIðtÞSðtÞ4t � aIðtÞ4t

The epidemic curve generated by this simple model cap-
tures the hallmarks of typical epidemics: (i) the number of
infections increases exponentially during the early phase of
a growing epidemic; and (ii) the epidemic curve is unimodal
and peaks when the susceptible pool has been sufficiently
depleted (Figure 1). Despite the apparent simplicity of the

SIR model, many recent studies of pandemic influenza have
been built from this basic model structure. The model can
be extended to include variation in transmission dynamics
by factors such as age and spatial location. The equations
above describe a deterministic process, although it is straight-
forward to allow stochasticity (random variability) in the
dynamics, and this can be particularly important when
describing the early stages of an epidemic.6

Three epidemiological parameters form the cornerstones of
mathematical epidemiology: (i) the basic reproductive
number R0, which is defined as the average number of sec-
ondary cases generated by an index case when an epidemic
begins in a completely susceptible population (the reproduc-
tive number R has the same definition but without requiring a
completely susceptible population); (ii) the mean generation
time Tg, which is defined as the average time it takes an
index case to infect other individuals after he becomes
infected; (iii) the growth rate of an epidemic r. The importance
of these parameters stems from their intuitive implications on
disease spread: If R0 , 1, then an outbreak will die out
without causing widespread infections. For a given R0 . 1,
the outbreak could lead to an epidemic and a shorter gener-
ation time would be associated with higher growth rate.
The same results hold for the reproductive number R when
considering a partially susceptible population. While the defi-
nitions of R0, Tg and r are not model-dependent, model-based
statistical inference of these parameters from epidemic data
could be sensitive to the assumed structure of the model.7

In the SIR model, the basic reproductive number is R0 ¼

bN/a, the mean generation time is Tg ¼ 1/a and the epidemic
growth rate is r ¼ (R0 2 1)/Tg.

In addition to indicating the epidemic potential of an
emerging pathogen, the basic reproductive number R0 is
an important parameter for estimating the proportion of a
population infected throughout an epidemic (the final
attack rate) and the degree to which interventions might
be able to control or mitigate an epidemic. For example,
the final attack rate typically increases sharply as R0

increases beyond 1 (Figure 2). An important corollary of
this relation is that it is not necessary to vaccinate the
whole population in order to halt a growing epidemic. For
example, under the SIR model, vaccinating a proportion
1 2 1/R0 (known as the critical coverage) of the population
is sufficient to push the reproductive number below 1
(Figure 2) and ensure that an epidemic will not take off.3,6

Furthermore, even if the critical coverage is not reached,
vaccination could still substantially reduce the attack rate
if R0 is only moderately larger than 1 (Figure 2) because of
increased herd immunity. Timely and accurate estimate of
R0 therefore allows a quick assessment of the potential
impact and controllability of an emerging epidemic.

Use of models to guide pandemic
preparedness

Estimation of epidemiological parameters

Combining historical epidemic data (e.g. pneumonia and
influenza mortality) with mathematical modeling, several
research groups have consistently estimated that R0 was

Figure 1 Schematic of the Susceptible–Infectious–Recovered model (left)

and the typical epidemic curve that it generates (right)

................................................................................................................................................
956 Experimental Biology and Medicine Volume 236 August 2011



mostly in the range of 1.2–3 during the 1918, 1957 and 1968
pandemics.8 – 10 Similarly, the mean generation time of pan-
demic influenza was estimated to be around 2–4 days.11 – 14

These epidemiological parameters provided a reference
frame for planning influenza pandemic preparedness and
response. Epidemic models parameterized with these esti-
mates were built and used to assess the potential effective-
ness of different pandemic mitigation strategies.15

Predicting the speed of global spread and the
effectiveness of travel restrictions

Mathematical models have been used to study the global
spread of infectious agents as early as the 1980s. Longini
et al.16 pioneered this method in which each population was
represented as an SIR system and epidemic dynamics of
different populations were linked together by international
travel. Recent modeling studies of global spread of infectious
agents used essentially the same model structure but with
more populations simulated in order to increase the realism
of the models.17 – 19 These modeling studies concluded that
for plausible ranges of R0 and Tg for pandemic influenza,
the novel virus would spread around the world within a
few months of emergence in the origin population.
Furthermore, travel restrictions would have almost no effect
in slowing international spread of pandemic influenza
because only a small number of imported cases would be suf-
ficient to spark an epidemic in seeded populations. Because
the number of infections would grow exponentially in the
origin population and non-symptomatic infected individuals
could transmit the disease, the only way to stop international
seeding would be to completely prohibit travel from and to
the origin population, which is infeasible.

Assessing the effectiveness of containment and
mitigation strategies

The need for influenza pandemic preparedness in the past
decade has been a strong driving force for the development
of large-scale, agent-based epidemic simulations11,13 – 15,20,21

which represent a substantial advance in infectious disease
modeling. Unlike compartmental models which partition a

population based on demographics, disease status, etc.
and track the number of individuals in these compartments
over time, agent-based simulations model the population as
a network in which each node represents a single person
(‘an agent’) and each edge represents a possible route of
disease transmission between two persons (Figure 3).
Agent-based simulations can easily take into account house-
hold demographics, individually targeted interventions
(e.g. case isolation, antiviral prophylaxis of contacts) and
spatial heterogeneity which are often difficult and cumber-
some to simulate using compartmental models.

Using large-scale, stochastic, agent-based simulations para-
meterized with detailed demographic and spatial data,
Ferguson et al.14 and Longini et al.11 concluded that early detec-
tion together with aggressive containment measures, includ-
ing large-scale antiviral prophylaxis and quarantine, could
in theory contain the pandemic virus at its origin of emergence
(assumed to be a rural area) if R0 is smaller than 1.6–1.8.
However, given the high uncertainty associated with transmis-
sibility of the pandemic virus and the risk of multiple

Figure 3 A schematic of transmission network for agent-based simulations.

In general, a network is consisted of nodes (the circles) and edges (the links

between circles). In agent-based simulations, each node represents a single

person (‘an agent’) and each edge represents a possible route of disease

transmission between two persons. As such, there can be multiple types of

edges and edges can form and disappear over time. In this example, solid

edges represent family membership while dashed edges represent

peer-group membership. In this hypothetical population of 12 individuals,

there are four families (A-B-C-D, E-F-G, H-I and K-L-J) and two peer-groups

(B-G-H and K-E). The transmission network for homogeneous mixing

models (e.g. the basic Susceptible–Infectious–Recovered model) would cor-

respond to a network with one edge between every pair of nodes

Figure 2 The non-linear dependence of the final attack rate and critical coverage on R0. Knowing R0, we can use the Susceptible–Infectious–Recovered model

to estimate the final attack rate as well as the level of vaccination coverage required to prevent an epidemic (left). Similarly, the model can be used to estimate the

potential reduction in attack rate provided by different levels of vaccination coverage (right)
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introductions,22 the probability of sustained containment is
unlikely to be high and mitigation strategies would be necess-
ary for all countries. These modeling studies have played an
important role in advising countries to devise national influ-
enza pandemic preparedness and response plans.23

Agent-based simulations of influenza pandemics have
suggested that the most effective mitigation of an influenza
pandemic would likely require combinations of influenza
antiviral treatment and prophylaxis and non-pharmaceutical
interventions of quarantine, isolation, school closure, com-
munity social distancing and workplace social distancing.15

Indeed, mathematical analyses of historical epidemic data
from the 1918 influenza pandemic suggested that prolonged
non-pharmaceutical interventions had a significant effect in
reducing disease transmission.24,25 Among these interven-
tions, school closure has received most attention and is
present in pandemic influenza preparedness plans of many
countries.26,27 To generate evidence on the effectiveness of
school closure, several modeling studies assessed changes
in transmission dynamics of seasonal influenza during sched-
uled school holidays or reactive school closure.28 – 31

However, their findings were mixed, and even if school
closure is indeed effective, simulations suggested that it
would have to be implemented with high compliance for a
prolonged period in order to have a significant reduction in
attack rate. Consequently, there is still little consensus on
the effectiveness and feasibility of school closure in reducing
community transmission during an influenza pandemic.30

Optimizing antiviral strategies

Maintaining a stockpile of antiviral drugs is a major com-
ponent of many influenza preparedness plans.23 For
example, before the 2009 influenza pandemic, the USA
had stockpiled enough antivirals to treat 25% of its popu-
lation.32 Besides their use for treatment of ill individuals,
antivirals can also be used for prophylaxis.33 A series of
mathematical modeling studies assessed the potential effec-
tiveness and logistical requirement of different targeted
antiviral prophylaxis strategies (e.g. household-based,
school-based, spatially targeted, risk-targeted, etc.) in
order to inform countries on the best use of their large anti-
viral stockpiles.11 – 14,17,20,21,34,35 These studies consistently
showed that compared with treatment-only strategies, tar-
geted prophylaxis, if implemented throughout the epi-
demic, would be an efficient use of antiviral stockpiles in
terms of reducing the epidemic size. While demonstrating
the potential effectiveness of large-scale antiviral interven-
tion, mathematical modeling studies also provided quanti-
tative assessments on the potential risk of drug-induced
antiviral resistance.19,36 – 40 Specifically, these studies empha-
sized that if a drug-induced resistant strain with low fitness
cost emerged during the early phase of a pandemic, this
strain would subsequently replace the wild-type as the
dominant pandemic strain. This could jeopardize effective
treatment of severe cases. To try to reduce this risk of resist-
ance, novel strategies have been proposed based on math-
ematical models, including the idea of stockpiling a
secondary antiviral and using it as an adjunct to the
primary antiviral in the early stages of a pandemic.19,37

Optimizing vaccination strategies

Vaccine is the long-term solution for reducing morbidity
and mortality associated with a novel influenza strain.
However, in order for vaccines to provide protection
against pandemic infections, the vaccine strain must be anti-
genically similar to the pandemic strain. Consequently,
vaccine production cannot begin until the pandemic strain
has been isolated. Because the lead time for vaccine pro-
duction is typically 4–6 months or more,41 pandemic vac-
cines will likely be in severe shortage as the pandemic
unfolds. This has motivated the proposal to stockpile pre-
pandemic vaccines made before a pandemic and composed
of potential pandemic strains; the antigenic match between
these vaccines and the actual pandemic virus are expected
to be moderate at best, although they may be able to
confer some degree of protection.42

A series of modeling studies have emphasized that even
low-efficacy or low-coverage targeted vaccination during the
early stages of a pandemic could have a substantial impact
on reducing disease transmission because R0 is likely to be rela-
tively low.13,15,21,43–46 To optimize the use of a limited amount
of pandemic or prepandemic vaccines, several groups used
mathematical modeling to assess the public health benefit of
different vaccination strategies.44,45,47–51 Because schoolchil-
dren comprise the core group for influenza transmission,
most studies concluded that vaccinating them would substan-
tially reduce transmission because of the non-linear effect of
herd immunity. These studies have played an important role
in influencing countries (including the USA) to include school-
children in their recommendations for both seasonal and pan-
demic influenza vaccination.52,53

Assessing the logistical requirement of interventions

Mathematical models of epidemics can be easily extended
to take into account operational constraints in order to
assess logistical feasibility of interventions. For example,
earlier modeling studies of bioterrorist attack with small-
pox and anthrax emphasized that the availability of man-
power to perform contact tracing and antiviral
dissemination was an important factor in limiting the effec-
tiveness of response strategies.54,55 During the 2009 influ-
enza pandemic, a study was conducted in Hong Kong to
assess the efficacy of convalescent plasma (collected from
lab-confirmed cases) in treating severe cases.56 Motivated
by the potential efficacy of this therapeutic approach, a
mathematical modeling study illustrated that in a moder-
ately severe pandemic and with blood transfusion capacity
similar to that in Hong Kong, a population-wide program
which collects plasma from a small percentage of recovered
adults could harvest sufficient convalescent plasma to treat
a substantial proportion of severe cases in realtime.57

Use of models during the 2009 influenza
pandemic

Some predictions made by mathematical modeling in ‘peace-
time’ are robust against uncertainties regarding strain-
specific transmission dynamics and were applicable during
the initial waves of pandemic (H1N1) 2009 (pdmH1N1).

................................................................................................................................................
958 Experimental Biology and Medicine Volume 236 August 2011



For example, travel restrictions and border screening were
predicted to be ineffective in slowing down international
spread of pdmH1N1 except for very isolated populations
and were not recommended by the World Health
Organization (WHO), and accordingly most countries did
not aggressively attempt to prevent entry of the pandemic
strain.17,58 – 61 Furthermore, most health authorities were
well prepared for the likelihood of local epidemics within a
few months of the WHO global pandemic alert in April
2009. These modeling predictions had likely influenced the
WHO to not issue travel alerts during the 2009 pandemic
(unlike during the 2003 epidemic of severe acute respiratory
syndrome)62 and were eventually consistent with the rate of
international spread of the pdmH1N1 virus.

Rapid global dissemination of pdmH1N1 implied that
containment strategies would not be sensible, and shortly
after announcing the advent of the 2009 influenza pan-
demic, the WHO recommended that countries should
focus on strategies for local mitigation but not contain-
ment.63 Several groups consistently concluded that
large-scale vaccination targeted at schoolchildren during
the early phase of a pandemic would be the most efficient
use of vaccines across a wide range of plausible scen-
arios.47,50,64,65 However, given that vaccine production
required at least 4–6 months, initial waves of the pandemic
would be largely over in most countries by the time pan-
demic vaccines became available. Therefore, large-scale vac-
cination at that stage would probably have limited value in
reducing morbidity and mortality and a more relevant ques-
tion was the optimal use of vaccines following an initial
wave. A recent modeling study suggested that the optimal
vaccination strategy would in general depend on the stage
of epidemic at which vaccination begins.48

Mathematical modeling was also used in the ‘war-time’
during the 2009 influenza pandemic to inform situational
awareness and public health decision-making. In one
example, a mathematical modeling approach was used to
interpret surveillance data on influenza-like illness.66

Although in the initial phase the model was unable to
predict the course of the epidemic, once the epidemic
peaked, the model was able to accurately predict how long
the epidemic would last, and the final attack rate. In the UK,
an age-structured mathematical model fitted to influenza-like
illness reports was able to track the course of the epidemic
through time and provide timely predictions on the timing
and size of the winter 2009–2010 wave.65 The results were
subsequently validated on serological data which showed
substantial attack rates among children in certain areas of
the UK in the spring 2009 wave.67

Because influenza pandemic preparedness plans were for-
mulated based on epidemiological understanding of past
pandemics, estimation of R0 and Tg was a top public health
priority when the 2009 pandemic began in order to help
policy-makers quickly putting their preparedness plans into
perspective. Shortly after the emergence and global spread
of pdmH1N1, its R0 and Tg were estimated to fall within the
ranges of previous pandemic influenza viruses,68 – 70 imply-
ing that this pandemic was not likely to be any more severe
than its predecessors. The next but more formidable challenge
was to estimate infection attack rate and severity (e.g. case-

fatality) in order to assess the burden that the pandemic
would pose on the health-care and economic system. While
existing influenza pandemic surveillance systems typically
tracked the number of lab-confirmed pdmH1N1 cases or
patients presenting to the local health-care system with
influenza-like illness,71 this represented only the tip of the
iceberg of the actual number of infections because not all
infected cases would seek care.72 Without an accurate count
of the number of infections in different age groups, math-
ematical modeling studies conducted during the early stage
of the 2009 pandemic failed to predict the age distribution
of pdmH1N1 infections which skewed towards school-aged
children to a greater extent than predicted based on typical
modeling assumptions.65,73 Accurate estimates of attack
rates, severity and other important epidemiological charac-
teristics of pdmH1N1 only became available months after
the pandemic began.67,74 – 77

Discussion

While influenza pandemics occur infrequently, the possi-
bility of many millions of deaths worldwide in a severe pan-
demic means that they present a significant threat to public
health. While the 2009 pandemic was only of mild to mod-
erate severity, the next pandemic may be more serious and
countries will continue to update their pandemic plans to
insure against the impact of a low-probability but severe
pandemic. Mathematical models provide a systematic fra-
mework that can be used to analyze and interpret infectious
disease data, as well as to predict the course of epidemics
and the impact of potential interventions.

The use of mathematical models in the interpandemic
period provided valuable information on epidemiological
characteristics of past pandemic influenza viruses.
Building on such understanding of past pandemics, math-
ematical modelers built simulation models to show that a
pandemic virus would inevitably reach all countries
within a few months once it spreads in a city linked to the
international air travel network. These computer simu-
lations have also provided a systematic platform to assess
the effectiveness of different pandemic containment and
mitigation strategies that would otherwise be difficult or
impossible to evaluate in empirical settings. In particular,
these modeling studies have provided well-documented
guidelines on the plausible outcomes of large-scale antiviral
intervention and vaccination which were, and will remain,
major components of national influenza pandemic plans.

While mathematical models have demonstrated their
value in ‘peace-time’, in general they were not able to facili-
tate accurate prediction of epidemic size and severity in real-
time during the 2009 influenza pandemic. One critical
limitation was the difficulty in interpreting available surveil-
lance data in most settings, and in particular, information on
the proportion of infections leading to mild or severe illness,
which were needed for accurate model formulation and
parameterization.43,65 In particular, if serological data had
been available during the early stages of the pandemic,
these would have been invaluable for estimating age-
specific attack rates and severity as well as eliciting potential
differences in susceptibility among different age groups
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against the pandemic virus.43,65,67 Such data could have
greatly reduced the uncertainties associated with the use
of laboratory-confirmed case counts or influenza-like
illness rates adjusting for symptomatic proportions and
bias in health-care-seeking behavior.67,74

In conclusion, although mathematical modeling has
shown limitations as a ‘war-time’ risk-assessment tool
during the 2009 pandemic, it has nonetheless played an
important role in pandemic response. Its use has provided
a systematic framework for revealing the weaknesses of
existing pandemic surveillance systems and guiding how
these systems should be strengthened in order to cope
with future epidemics of influenza or other emerging infec-
tious diseases. Table 1 gives a brief overview of the contri-
butions and limitations of mathematical modeling on
informing influenza pandemic preparedness and response
that we have discussed in this review, which cover only a
subset of all mathematical modeling studies on this topic.
We envision that mathematical modeling will remain an
important tool for infectious disease control in the future.

Author contributions: Both authors contributed equally to
the writing of this review.

ACKNOWLEDGEMENTS

This work was supported by the Harvard Center for
Communicable Disease Dynamics from the US National
Institutes of Health Models of Infectious Disease Agent
Study program (grant no. 1 U54 GM088558), and the Area
of Excellence Scheme of the Hong Kong University Grants
Committee (grant no. AoE/M-12/06).

REFERENCES

1 Lagace-Wiens PR, Rubinstein E, Gumel A. Influenza epidemiology –
past, present, and future. Crit Care Med 2010;38(4 Suppl):e1–9

2 Shortridge KF. Poultry and the influenza H5N1 outbreak in Hong Kong,
1997: abridged chronology and virus isolation. Vaccine 1999;17(Suppl
1):S26–9

3 Anderson RM, May RM. Infectious Diseases of Humans: Dynamics and
Control. Oxford, New York: Oxford University Press, 1994

4 Henley E. The growing threat of avian influenza. J Fam Pract 2005;54:442–4
5 Smith GJ, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, Pybus OG, Ma SK,

Cheung CL, Raghwani J, Bhatt S, Peiris JS, Guan Y, Rambaut A. Origins and
evolutionary genomics of the 2009 swine-origin H1N1 influenza A
epidemic. Nature 2009;459:1122–5

6 Keeling MJ, Rohani P. Modeling Infectious Diseases in Humans and Animals.
Princeton: Princeton University Press, 2008

7 Wallinga J, Lipsitch M. How generation intervals shape the relationship
between growth rates and reproductive numbers. Proc Biol Sci
2007;274:599–604

8 White LF, Pagano M. Transmissibility of the influenza virus in the 1918
pandemic. PLoS One 2008;3:e1498

9 Chowell G, Ammon CE, Hengartner NW, Hyman JM. Estimation of the
reproductive number of the Spanish flu epidemic in Geneva,
Switzerland. Vaccine 2006;24:6747–50

10 Mills CE, Robins JM, Lipsitch M. Transmissibility of 1918 pandemic
influenza. Nature 2004;432:904–6

11 Longini IM Jr, Nizam A, Xu S, Ungchusak K, Hanshaoworakul W,
Cummings DA, Halloran ME. Containing pandemic influenza at the
source. Science 2005;309:1083–7

12 Longini IM Jr, Halloran ME, Nizam A, Yang Y. Containing pandemic
influenza with antiviral agents. Am J Epidemiol 2004;159:623–33

13 Ferguson NM, Cummings DA, Fraser C, Cajka JC, Cooley PC, Burke DS.
Strategies for mitigating an influenza pandemic. Nature 2006;442:448–52

14 Ferguson NM, Cummings DA, Cauchemez S, Fraser C, Riley S, Meeyai
A, Iamsirithaworn S, Burke DS. Strategies for containing an emerging
influenza pandemic in Southeast Asia. Nature 2005;437:209–14

15 Halloran ME, Ferguson NM, Eubank S, Longini IM Jr, Cummings DA,
Lewis B, Xu S, Fraser C, Vullikanti A, Germann TC, Wagener D,
Beckman R, Kadau K, Barrett C, Macken CA, Burke DS, Cooley P.
Modeling targeted layered containment of an influenza pandemic in the
United States. Proc Natl Acad Sci USA 2008;105:4639–44

16 Longini IM Jr, Fine PE, Thacker SB. Predicting the global spread of new
infectious agents. Am J Epidemiol 1986;123:383–91

17 Colizza V, Barrat A, Barthelemy M, Valleron AJ, Vespignani A. Modeling
the worldwide spread of pandemic influenza: baseline case and
containment interventions. PLoS Med 2007;4:e13

18 Hufnagel L, Brockmann D, Geisel T. Forecast and control of epidemics in
a globalized world. Proc Natl Acad Sci USA 2004;101:15124–9

19 Wu JT, Leung GM, Lipsitch M, Cooper BS, Riley S. Hedging against
antiviral resistance during the next influenza pandemic using small
stockpiles of an alternative chemotherapy. PLoS Med 2009;6:e1000085

20 Wu JT, Riley S, Fraser C, Leung GM. Reducing the impact of the next
influenza pandemic using household-based public health interventions.
PLoS Med 2006;3:e361

21 Germann TC, Kadau K, Longini IM Jr, Macken CA. Mitigation strategies
for pandemic influenza in the United States. Proc Natl Acad Sci USA
2006;103:5935–40

22 Mills CE, Robins JM, Bergstrom CT, Lipsitch M. Pandemic influenza: risk
of multiple introductions and the need to prepare for them. PLoS Med
2006;3:e135

23 World Health Organization. Pandemic influenza preparedness and
response. 2009. See http://www.who.int/csr/disease/influenza/

pipguidance2009/en/index.html (last checked 6 May 2011)
24 Hatchett RJ, Mecher CE, Lipsitch M. Public health interventions and

epidemic intensity during the 1918 influenza pandemic. Proc Natl Acad
Sci USA 2007;104:7582–7

25 Bootsma MC, Ferguson NM. The effect of public health measures on the
1918 influenza pandemic in U.S. cities. Proc Natl Acad Sci USA
2007;104:7588–93

26 Lam PY. Avian influenza and pandemic influenza preparedness in Hong
Kong. Ann Acad Med Singapore 2008;37:489–96

27 Bell DM. Non-pharmaceutical interventions for pandemic influenza,
national and community measures. Emerg Infect Dis 2006;12:88–94

28 Cowling BJ, Lau EH, Lam CL, Cheng CK, Kovar J, Chan KH, Peiris JS,
Leung GM. Effects of school closures, 2008 winter influenza season,
Hong Kong. Emerg Infect Dis 2008;14:1660–2

29 Cauchemez S, Valleron AJ, Boelle PY, Flahault A, Ferguson NM.
Estimating the impact of school closure on influenza transmission from
Sentinel data. Nature 2008;452:750–4

Table 1 Some contributions and limitations of mathematical mod-
eling on influenza pandemic preparedness and response

Contributions Limitations

(1) Transmissibility and mean

generation time of influenza

(2) Rate of global spread and limited

effectiveness of travel restrictions

(3) Potential effectiveness of

containment and mitigation

strategies

(4) Optimal use of antivirals and

control strategies for

drug-induced antiviral resistance

(5) Optimal pandemic and

prepandemic vaccination

strategies

(6) Logistical requirement of

mitigation and treatment

strategies

(7) Strategies for strengthening

influenza surveillance

(1) Accurate severity estimates

early in the pandemic

(2) Accurate epidemic forecasts

during the early pandemic

stages

(3) Remaining uncertainty over the

public health and economic

burden posed by the

pandemic

(4) Remaining uncertainty over the

explanation for seasonality of

annual influenza epidemics

(5) No consensus on the

effectiveness and feasibility of

school closure

................................................................................................................................................
960 Experimental Biology and Medicine Volume 236 August 2011

http://www.who.int/csr/disease/influenza/pipguidance2009/en/index.html
http://www.who.int/csr/disease/influenza/pipguidance2009/en/index.html
http://www.who.int/csr/disease/influenza/pipguidance2009/en/index.html


30 Cauchemez S, Ferguson NM, Wachtel C, Tegnell A, Saour G, Duncan B,
Nicoll A. Closure of schools during an influenza pandemic. Lancet Infect
Dis 2009;9:473–81

31 Vynnycky E, Edmunds WJ. Analyses of the 1957 (Asian) influenza
pandemic in the United Kingdom and the impact of school closures.
Epidemiol Infect 2008;136:166–79

32 US Department of Health and Human Services. HHS Pandemic
Influenza Plan. 2005. See http://www.hhs.gov/pandemicflu/plan/

#overview (last checked 6 May 2010)
33 Halloran ME, Hayden FG, Yang Y, Longini IM Jr, Monto AS. Antiviral

effects on influenza viral transmission and pathogenicity: observations
from household-based trials. Am J Epidemiol 2007;165:212–21

34 van den Dool C, Hak E, Bonten MJ, Wallinga J. A model-based
assessment of oseltamivir prophylaxis strategies to prevent influenza in
nursing homes. Emerg Infect Dis 2009;15:1547–55

35 McCaw JM, McVernon J. Prophylaxis or treatment? Optimal use of an antiviral
stockpile during an influenza pandemic. Math Biosci 2007;209:336–60

36 Moghadas SM, Bowman CS, Rost G, Wu J. Population-wide emergence
of antiviral resistance during pandemic influenza. PLoS One 2008;3:e1839

37 McCaw JM, Wood JG, McCaw CT, McVernon J. Impact of emerging
antiviral drug resistance on influenza containment and spread: influence
of subclinical infection and strategic use of a stockpile containing one or
two drugs. PLoS One 2008;3:e2362

38 Lipsitch M, Cohen T, Murray M, Levin BR. Antiviral resistance and the
control of pandemic influenza. PLoS Med 2007;4:e15

39 Arino J, Bowman CS, Moghadas SM. Antiviral resistance during
pandemic influenza: implications for stockpiling and drug use. BMC
Infect Dis 2009;9:8

40 Alexander ME, Bowman CS, Feng Z, Gardam M, Moghadas SM, Rost G,
Wu J, Yan P. Emergence of drug resistance: implications for antiviral
control of pandemic influenza. Proc Biol Sci 2007;274:1675–84

41 Stohr K, Esveld M. Public health. Will vaccines be available for the next
influenza pandemic? Science 2004;306:2195–6

42 Hehme N, Colegate T, Palache B, Hessel L. Influenza vaccine supply:
building long-term sustainability. Vaccine 2008;26 Suppl 4:D23–6

43 Van Kerkhove MD, Asikainen T, Becker NG, Bjorge S, Desenclos JC, dos
Santos T, Fraser C, Leung GM, Lipsitch M, Longini IM Jr, McBryde ES,
Roth CE, Shay DK, Smith DJ, Wallinga J, White PJ, Ferguson NM, Riley
S. Studies needed to address public health challenges of the 2009 H1N1
influenza pandemic: insights from modeling. PLoS Med 2010;7:e1000275

44 Riley S, Wu JT, Leung GM. Optimizing the dose of pre-pandemic influenza
vaccines to reduce the infection attack rate. PLoS Med 2007;4:e218

45 Milne G, Kelso J, Kelly H. Strategies for mitigating an influenza pandemic
with pre-pandemic H5N1 vaccines. J R Soc Interface 2010;7:573–86

46 Wu JT, Riley S, Leung GM. Spatial considerations for the allocation of
pre-pandemic influenza vaccination in the United States. Proc Biol Sci
2007;274:2811–7

47 Patel R, Longini IM Jr, Halloran ME. Finding optimal vaccination
strategies for pandemic influenza using genetic algorithms. J Theoret Biol
2005;234:201–12

48 Medlock J, Meyers LA, Galvani A. Optimizing allocation for a delayed
influenza vaccination campaign. PLoS Curr 2009:pRRN1134

49 Longini IM Jr, Halloran ME. Strategy for distribution of influenza
vaccine to high-risk groups and children. AmJ Epidemiol 2005;161:303–6

50 Basta NE, Chao DL, Halloran ME, Matrajt L, Longini IM Jr. Strategies for
pandemic and seasonal influenza vaccination of schoolchildren in the
United States. Am J Epidemiol 2009;170:679–86

51 Vynnycky E, Pitman R, Siddiqui R, Gay N, Edmunds WJ. Estimating the
impact of childhood influenza vaccination programmes in England and
Wales. Vaccine 2008;26:5321–30

52 US Centers for Disease Control and Prevention. Novel H1N1 Vaccination
Recommendations. 2009. See http://www.cdc.gov/h1n1flu/vaccination/

acip.htm (last checked 6 May 2010)
53 US Centers for Disease Control and Prevention. Key facts about seasonal

flu vaccine. 2009. See http://www.cdc.gov/flu/protect/keyfacts.
htm#who (last checked 6 May 2010)

54 Wein LM, Craft DL, Kaplan EH. Emergency response to an anthrax
attack. Proc Natl Acad Sci USA 2003;100:4346–51

55 Kaplan EH, Craft DL, Wein LM. Emergency response to a smallpox attack:
the case for mass vaccination. Proc Natl Acad Sci USA 2002;99:10935–40

56 Hung IF, To KK, Lee CK, Lin CK, Chan JF, Tse H, Cheng VC, Chen H,
Ho PL, Tse CW, Ng TK, Que TL, Chan KH, Yuen KY. Effect of clinical

and virological parameters on the level of neutralizing antibody against
pandemic influenza A virus H1N1 2009. Clin Infect Dis 2010;51:274–9

57 Wu JT, Lee CK, Cowling BJ, Yuen KY. Logistical feasibility and potential
benefits of a population-wide passive-immunotherapy program during
an influenza pandemic. Proc Natl Acad Sci USA 2010;107:3269–74

58 Cooper BS, Pitman RJ, Edmunds WJ, Gay NJ. Delaying the international
spread of pandemic influenza. PLoS Med 2006;3:e212

59 Grais RF, Ellis JH, Glass GE. Assessing the impact of airline travel on the
geographic spread of pandemic influenza. European J Epidemiol
2003;18:1065–72

60 Hollingsworth TD, Ferguson NM, Anderson RM. Will travel restrictions
control the international spread of pandemic influenza? Nat Med
2006;12:497–9

61 Eichner M, Schwehm M, Wilson N, Baker MG. Small islands and
pandemic influenza: potential benefits and limitations of travel volume
reduction as a border control measure. BMC Infect Dis 2009;9:160

62 World Health Organization. No rationale for travel restrictions. 2009.
See http://www.who.int/csr/disease/swineflu/guidance/

public_health/travel_advice/en/ (last checked 6 May 2010)
63 New influenza A (H1N1) virus: WHO guidance on public health measures,

11 June 2009. Releve epidemiologique hebdomadaire/Section d’hygiene du
Secretariat de la Societe des Nations¼Weekly epidemiological record/

Health Section of the Secretariat of the League of Nations 2009;84:261–4
64 Medlock J, Galvani AP. Optimizing influenza vaccine distribution.

Science 2009;325:1705–8
65 65 Baguelin M, Hoek AJ, Jit M, Flasche S, White PJ, Edmunds WJ.

Vaccination against pandemic influenza A/H1N1v in England: a
real-time economic evaluation. Vaccine 2010;28:2370–84

66 Ong JB, Chen MI, Cook AR, Lee HC, Lee VJ, Lin RT, Tambyah PA, Goh
LG. Real-time epidemic monitoring and forecasting of H1N1–2009 using
influenza-like illness from general practice and family doctor clinics in
Singapore. PLoS One 2010;5:e10036

67 Miller E, Hoschler K, Hardelid P, Stanford E, Andrews N, Zambon M.
Incidence of 2009 pandemic influenza A H1N1 infection in England: a
cross-sectional serological study. Lancet 2010;375:1100–8

68 Fraser C, Donnelly CA, Cauchemez S, Hanage WP, Van Kerkhove MD,
Hollingsworth TD, Griffin J, Baggaley RF, Jenkins HE, Lyons EJ, Jombart
T, Hinsley WR, Grassly NC, Balloux F, Ghani AC, Ferguson NM,
Rambaut A, Pybus OG, Lopez Gatell H, Alpuche Aranda CM, Chapela
IB, Zavala EP, Guevara DM, Checchi F, Garcia E, Hugonnet S, Roth C.
Pandemic potential of a strain of influenza A (H1N1): early findings.
Science 2009;324:1557–61

69 White LF, Wallinga J, Finelli L, Reed C, Riley S, Lipsitch M, Pagano M.
Estimation of the reproductive number and the serial interval in early
phase of the 2009 influenza A/H1N1 pandemic in the USA. Influenza
Other Respi Viruses 2009;3:267–76

70 Yang Y, Sugimoto JD, Halloran ME, Basta NE, Chao DL, Matrajt L,
Potter G, Kenah E, Longini IM Jr. The transmissibility and control of
pandemic influenza A (H1N1) virus. Science 2009;326:729–33

71 Cheng CK, Lau EH, Ip DK, Yeung AS, Ho LM, Cowling BJ. A profile of
the online dissemination of national influenza surveillance data. BMC
Publ Health 2009;9:339

72 Lipsitch M, Hayden FG, Cowling BJ, Leung GM. How to maintain
surveillance for novel influenza A H1N1 when there are too many cases
to count. Lancet 2009;374:1209–11

73 Nishiura H, Chowell G, Safan M, Castillo-Chavez C. Pros and cons of
estimating the reproduction number from early epidemic growth rate of
influenza A (H1N1) 2009. Theoretical Biol Med Model 2010;7:1

74 Presanis AM, De Angelis D, Hagy A, Reed C, Riley S, Cooper BS, Finelli
L, Biedrzycki P, Lipsitch M. The severity of pandemic H1N1 influenza in
the United States, from April to July 2009: a Bayesian analysis. PLoS Med
2009;6:e1000207

75 Lessler J, Reich NG, Cummings DA, Nair HP, Jordan HT, Thompson N.
Outbreak of 2009 pandemic influenza A (H1N1) at a New York City
school. N Engl J Med 2009;361:2628–36

76 Cauchemez S, Donnelly CA, Reed C, Ghani AC, Fraser C, Kent CK, Finelli
L, Ferguson NM. Household transmission of 2009 pandemic influenza A
(H1N1) virus in the United States. N Engl J Med 2009;361:2619–27

77 Cowling BJ, Chan KH, Fang VJ, Lau LL, So HC, Fung RO, Ma ES, Kwong
AS, Chan CW, Tsui WW, Ngai HY, Chu DW, Lee PW, Chiu MC, Leung
GM, Peiris JS. Comparative epidemiology of pandemic and seasonal
influenza A in households. N Engl J Med 2010;362:2175–84

................................................................................................................................................
Wu and Cowling. Mathematical models of pandemic influenza 961

http://www.hhs.gov/pandemicflu/plan/%23overview
http://www.hhs.gov/pandemicflu/plan/%23overview
http://www.hhs.gov/pandemicflu/plan/%23overview
http://www.cdc.gov/h1n1flu/vaccination/acip.htm
http://www.cdc.gov/h1n1flu/vaccination/acip.htm
http://www.cdc.gov/h1n1flu/vaccination/acip.htm
http://www.cdc.gov/flu/protect/keyfacts.htm%23who
http://www.cdc.gov/flu/protect/keyfacts.htm%23who
http://www.cdc.gov/flu/protect/keyfacts.htm%23who
http://www.who.int/csr/disease/swineflu/guidance/public_health/travel_advice/en/
http://www.who.int/csr/disease/swineflu/guidance/public_health/travel_advice/en/
http://www.who.int/csr/disease/swineflu/guidance/public_health/travel_advice/en/

