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Abstract
Humans respond differently toward exposure against pathogens and some individuals are completely resistant against

transmission due to a genetically determined susceptibility. A rising number of such, so-called, host factors have been

described during the last years, but their role for diagnostic or therapeutic application is still to be clarified. Here, we

describe the biology of the chemokine receptor CCR5 and its polymorphism in the context of host adaptation and immune

system function. Furthermore, the first clinical applications exploiting our knowledge of this chemokine receptor as a host

factor are described.
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Introduction

In 1949, J B S Haldane published the speculative review
‘Disease and Evolution’. Therein, he presented for the first
time the thesis that host factors may play a crucial role in
adaptation against infectious diseases.1 Actually, individuals
respond remarkably differently toward exposure against the
same pathogens and even more, some of them are completely
resistant against transmission. This can partly be explained by
alterations in the genome, leading to a decreased suscepti-
bility of transmission, or an increased ability in elimination
of the pathogen. In this context, probably the best-known
example of such a beneficial mutation is found in the associ-
ation of malaria and the hemoglobinopathies. For instance,
individuals heterozygote for the beta-globulin sickle cell
anemia, display a strong protection against death and
severe course of disease after infection with Plasmodium
species. Although there are hundreds of structural variants
of hemoglobin, only those coding for the malaria-resistant
variants have polymorphic frequencies reaching 15–20% in
some parts of sub-Saharan Africa and exceeding 60% in
some south-east Asian populations. Furthermore, this
mutation implies such a positive selective benefit that there
is no disadvantage for maintaining a population, although
homozygotes display serious consequences of this variation,
including early death of the individual.2

In contrast, today, several genetic polymorphisms are
described while the best beneficial effect is achieved if
the mutation or disposition is homozygous. One of the
best-investigated gene polymorphism has been found for
the CC chemokine receptor 5 (CCR5). Chemokine recep-
tors are transmembrane cell surface molecules that were
originally identified in the context of leukocyte trafficking.
By binding several peptides, receptor-bearing cells migrate
toward tissues that secrete chemokines. CCR5 in combi-
nation with CD4 gained substantial interest as a crucial
host factor for cell entry exploited by the human immuno-
deficiency virus type 1 (HIV-1).3 Indeed, the interaction of
CCR5 and HIV-1 does not represent the natural function
of this chemokine receptor. To date, the exact physiologi-
cal role of CCR5 is speculative and we have achieved
insights into CCR5 function rather in individuals or cell
systems where the receptor is depleted. Several mutations
in the promoter region as well as a 32-base pair deletion
(CCR5-delta32) in the exon of CCR5 lead to a decreased
expression of up to a complete deficiency of this receptor.
The high allelic frequency of CCR5-delta32 of 10–15% in
Caucasians and the misbalance in geographical distri-
bution of this mutation is suggestive to assume a ben-
eficial role for the CCR5 depletion and confers
adaptation of the host toward (unknown) environmental
threats.4
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The CCR5 chemokine receptor

Structure and function

The chemokine receptor CCR5 belongs to the superfamily of
the seven-transmembrane G-protein-coupled receptors
(GPCRs).5 It interacts with chemokines that mediate the traf-
ficking and functions of memory/effector T-lymphocytes,
macrophages and immature dendritic cells toward sites of
inflammation. When bound by their chemokine ligands,
these receptors are internalized, impairing the subsequent
ability to bind their ligands. Once internalized, these recep-
tors tend to recycle to the cell surface in time. Most chemo-
kines activate more than one receptor subtype and like other
chemokine receptors, CCR5 can bind several chemokines.6

After activation with small ligands, GPCRs are rapidly
phosphorylated at serine and threonine residues within
the C-tail and the third intracellular loop.7

Gene regulation

The CCR5 gene is mapped to the short arm of chromosome 3
among a group of genes that encode multiple chemokine
receptors.8,9 CCR5 up-regulation has been proposed by
nuclear factor kappa-light-chain-enhancer (NF-kB), but
recently it has been suggested that gene regulated is modi-
fied by a cyclic adenosine monophosphate (cAMP)/cAMP
response element-binding protein (CREB) pathway.10,11 A
selection of previously described factors that may regulate
CCR5 are given in Table 1.

Physiological function

The exact physiological function of CCR5 has been entirely
unknown for a long time. Individuals lacking CCR5 display
no remarkable illness and no increased susceptibility
toward infectious diseases could be observed until Lim
et al.12 figured out a possible role for CCR5 during infection
with the West Nile virus (WNV). They found an increased
risk for individuals with the CCR5-delta32-mutation devel-
oping fatal encephalitis and therefore suggest that the func-
tional receptor acts by recruiting leukocytes into the infected
central nervous system. Nevertheless, CCR5 deficiency is
not a risk factor for WNV infection per se, but is a risk
factor for both early and late clinical manifestations after
WNV-infection.13

CCR5 and HIV cell entry

HIV-1 uses the highly conserved host elements of both CD4
and CCR5 for cell entry. The HIV envelope protein is

comprised of three heterodimeric glycoproteins; each consists
of a transmembrane glycoprotein 41 (gp41) non-covalently
associated with glycoprotein 120 (gp120). In the first step,
gp120 binds to cellular CD4, causing a conformational
change in the envelope glycoprotein. In the second step, the
conformation change exposes previously inaccessible
domains permitting binding to the CCR5 co-receptor. This
new association provides a second confirmation change in
the third step as it induces the uncovering of the free amino
terminal-fusion domain of gp41 consequently embedded
into the host cell membrane, to link the viral and host cell
membrane. The fusion of virion and host cell is mediated by
forming a 6-helix bundle of gp41 bringing the viral membrane
and host cell membrane together.14

CCR5 polymorphism

Soon after the detection of CCR5 as a co-factor for HIV-1 cell
entry, several mutations in this gene have been found. To
date, there are at least 74 mutations described.15 – 17 Several
studies have demonstrated that polymorphism at the
CCR5 locus both in the coding and the regulatory regions
may affect susceptibility toward HIV infection. The much-
studied CCR5-delta32 allele is a 32-base pair deletion that
introduces a premature stop-codon into the CCR5
chemokine-receptor locus and thus obliterates the recep-
tor.18 Epidemiological studies of the Caucasian population
demonstrated that the CCR5-delta32 deletion shows the
highest frequency of 10–20% among the heterozygous,
and 1% among the homozygous karyotype. Interestingly,
the deletion cannot be found in the Asian, Middle East,
African and the American Indian population.19 It is sup-
posed that the imbalanced distribution of this allele is
caused by environmental-based selective pressure, resulting
in a privilege for the delta32 deletion.4,20

Suggested candidates for this positive selection pressure
include protection from plague caused by Yersinia pestis,
smallpox or other related poxviruses. Nevertheless, there is
no laboratory evidence for this thesis in addition to the unre-
vealed physiological role of this chemokine receptor.21 – 23

Consequences of CCR5 polymorphism

CCR5-delta32 and HIV infection

Homozygosity for CCR5-delta32 deletion is associated with
a high, but not complete, protection against HIV-1.8,24

Although CCR5-delta32 results in a high degree of resist-
ance toward HIV-1-transmission, several individuals tested
to be homozygous for this mutation acquired HIV-infec-
tion.25 – 28 Under certain circumstances, HIV-1 quasispecies
are able to use CXCR4 as an alternative co-receptor
instead of CCR5. The responsible mutation occurs at V3 of
the HIV-1 genome encoding an envelope glycoprotein
(gp120) binding either to CCR5 (R5 type) or CXCR4 (X4
type).29 The switch from R5 to X4 occurs in the natural
course of infection and the rate of X4 increases to approxi-
mately 50% during antiretroviral therapy.30 A trial with
979 HIVþ and antiretroviral-naı̈ve individuals demon-
strated that 18.2% were harboring an X4-variant of HIV-1.31

Table 1 Regulation of CCR5 expression

Factor Effect on CCR5

IFN-alpha55 Up-regulation

cAMP/CREB pathway10 Up-regulation

IL-1556 Up-regulation

IL-4 together with IL-1057 Up-regulation

IL-1b58 Down-regulation

IFN, interferon; IL, interleukin; cAMP, cyclic adenosine monophasphate;

CREB, cAMP response element-binding protein
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Interestingly, although several individuals were fre-
quently exposed to X4, the R5 variant dominates during
transmission and early infection, irrespective of the course
of transmission.32 Furthermore, despite the fact that
CCR5-delta32 homozygous individuals can be infected
with X4 or R5X4 quasispecies, this practically never
happens.33 A ‘gatekeeper’ function preferring CCR5 using
R5 is postulated during first infection showing an almost
perfect negative selection of X4.34

Recently, we performed the successful stem cell trans-
plantation (SCT) of an HIV-1-infected patient suffering
from acute myeloid leukemia, applying homozygous
CCR5-delta32 donor cells. These hematopoietic progenitor
cells engrafted, proliferated and differentiated to produce
mature myeloid and lymphoid cells that were highly resist-
ant to HIV-1 infection. Currently, nearly four years after the
allogeneic SCT and in the absence of any antiretroviral treat-
ment, no plasma viral load or proviral DNA was detectable
in peripheral blood cells or certain tissue samples, including
rectal mucosa and brain tissue.35 – 37

Chronic viral infection

Murine models with CCR5 deficiency mice have demon-
strated a robust T-cell response to several infectious
agents.38 A vigorous T-cell response is required to recover
from acute hepatitis B virus (HBV) infection. Interestingly,
Thio et al.39 found that CCR5-delta32 increases the likeli-
hood of recovery form HBV infection and reduces the devel-
opment of chronic HBV infection by nearly 50%.
Furthermore, this protective effect was exclusively mediated
by the CCR5-delta32 deletion and not by any of the other
neighboring polymorphisms.

Allogeneic SCT and graft versus host disease

Chemokines play a crucial role in the pathogenesis of graft
versus host disease (GvHD) disease after allogeneic SCT.
In experimental models, due to the redundancy of
receptor 2 ligand interaction, the deficiency or blockade of
a single chemokine does not protect the allograft from
acute rejection.40 However, recent studies have demon-
strated that the blockade or absence of a single chemokine
receptor does prolong allograft survival in a fully major
histocompatibility complex (MHC) mismatched model.41

In a study with CCR5-knockout and wild-type mice,
animals were lethally irradiated and underwent full
MHC-mismatch bone marrow transplantation. Observing
more cases of GvHD in the group of CCR5-knockout
mice, Kuziel and colleagues42 concluded that the absence
of CCR5 results in donor T-cell expansion with a consecu-
tive higher rate of GvHD. In another animal model, the
authors demonstrated that CCR5 and CXCR3 combined
chemokine blockade is effective in prolonging allograft sur-
vival and limiting acute rejection concurrently.43

A study investigating the CCR5 polymorphism from
donors of 186 allografted recipients demonstrated contra-
dicting results to those of Kuziel. Here, the authors
suggested that the presence of the CCR5-delta32 allele rep-
resents a protective factor regarding the risk of developing

GvHD after allogeneic SCT.44 Previously, Murai et al.45

described the recruitment of CCR5-expression CD8þ
T-cells during acute liver GvHD in patients after allogeneic
SCT.

Most recently, a significant association of the common
CCR5 haplotype (H1/H1) and advantage of disease-free
survival and overall survival in recipients of allogeneic
SCT has been found. The authors suggested CCR5 genotyp-
ing as a new diagnostic and therapeutic strategy for therapy
optimization.46

Organ transplantation and graft rejection

Recipients of organ allografts homozygous for CCR5-delta32
show longer survival of transplant function than those with
other genotypes. This has been shown for renal and liver
transplants suggesting that patients with CCR5-delta32
might be candidates for a reduced immunosuppressive
therapy.40,47 Furthermore, interaction and blockade of the
CCR5 receptor may also reduce alloantigen-specific T-lym-
phocyte proliferation and may be effective in preventing
acute and chronic rejection of allograft.48

CCR5-targeted therapy

Based on the challenges of the pharmacological interaction
with CCR5 during HIV-1 therapy, we have gained deep
insights into the action of CCR5 blocking agents.49 These
experiences can also be useful for other applications
besides HIV-1 infection, for example, transplantation medi-
cine. Interference with CCR5 function or expression in terms
of manipulation of the immune system and responses seems
to be a promising approach. Both CCR5 blockade and
down-regulation with rapamycin are effective in modulat-
ing transplant immunity and lead to prolonged allograft
survival in the animal model.50

Currently, two clinical trials are investigating the effect of
interaction with the CCR5 receptor system in patients with
rheumatoid arthritis and patients following allogeneic
SCT (NHI ClinicalTrials.gov Identifier: NCT00948753 &
NCT00979771), but supposable applications of this approach
are numerous.51

Conclusions

Taken into account the actual technology in comparison
with earlier times, we are now able to identify host factors
in a more sufficient way. Additionally, new biotechnical
methodology has improved our ability to generate a patient-
optimized therapy based on individual host factors. This
enables us to predict, prevent, diagnose and treat subtypes
of diseases in a more efficient way.52 Our diagnostic and
therapeutic tools in individualized medicine have rapidly
advanced in the last few years, such as the automated
Sanger method, which has been considered as a ‘first-
generation’ technology, and even more recent methods are
referred to as next-generation sequencing. These new tech-
nologies include a mixture of several techniques: bacterial
cloning or polymerase chain reaction, template purification,
labeling of DNA fragments using the chain termination
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method with energy transfer, dye-labeled dideoxynucleo-
tides and a DNA polymerase, capillary electrophoresis
and fluorescence detection providing four-color plots to
reveal the DNA sequence.53 Most recently, the 454
Sequencing, as a next-generation sequencing technology,
features a unique mix of long reads, exceptional accuracy
and ultra-high throughput.54

Studying host factors and their genetic contribution to
infectious and other diseases presumes fundamental under-
standing of pathogenesis (Table 2). The association of candi-
date gene polymorphisms in several circumstances, not only
for infectious diseases, has provided new strategies of inter-
vention. In the future, genomic testing will allow us to
perform both prognostic and predictive sub-typing of
patient populations. Patients may benefit from therapeutics
targeted to their specific disease processes and will (prob-
ably) therefore have a reduced risk regarding the develop-
ment of life-threatening adverse events caused, for
example, by genetic differences in drug metabolism.
Finally, this kind of revolution in regenerative medicine
and therapeutics offers the possibility to transform the effi-
ciency of managing disease from palliation up to cure.
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