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Abstract
The fatty acid translocase (FAT)/CD36 belongs to the class B scavenger receptor family. In addition to the known functions of

CD36 in the uptake of oxidized low-density lipoprotein by macrophages and uptake of fatty acids by adipose tissues, skeletal

muscle and heart, emerging evidence has pointed to an equally important function of CD36 in the uptake of fatty acids in the

liver and the pathogenesis of fatty liver disease. Recent reports have also suggested CD36 as a shared transcriptional target of

several ligand-sensing and lipogenic transcriptional factors, such as the aryl hydrocarbon receptor, and several nuclear

hormone receptors, such as pregnane X receptor, liver X receptor and peroxisome proliferator activated receptor g. Non-

alcoholic fatty liver disease is common and medically significant, because it is closely related to metabolic syndrome and

has a potential to progress into the more harmful non-alcoholic steatohepatitis. It is hoped that CD36 and their

transcriptional regulators can represent novel therapeutic targets for the prevention and management of fatty liver disease.
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Introduction

Non-alcoholic fatty liver disease (NAFLD) includes a
disease spectrum ranging from simple steatosis to non-
alcoholic steatohepatitis (NASH), liver fibrosis, cirrhosis
and hepatocellular carcinoma.1 – 3 NAFLD begins as the
accumulation of excessive triglycerides in the liver (hepatic
steatosis). If unmanaged, simple steatosis may progress
into NASH, in which triglyceride accumulation is associated
with inflammation. Triglyceride buildup in patients with
NASH may eventually lead to the development of cirrhosis,
which causes scarring of the liver. NAFLD is often associ-
ated with obesity and insulin resistance, which affects
hepatic triglyceride homeostasis.3 Hepatic steatosis can
result from: (1) increased free fatty acid (FFA) supply to
the liver due to increased lipolysis from visceral and subcu-
taneous adipose tissues and/or increased intake of dietary
fat; (2) decreased FFA oxidation; (3) increased de novo
hepatic lipogenesis; or (4) decreased hepatic very low-
density lipoprotein (VLDL)-triglyceride secretion.1 Recent
studies have suggested the significance of fatty acid trans-
porters in the development of fatty liver disease, consistent
with the clinical observation that more than 60% of accumu-
lated fatty acids in the liver are derived from the circulation

in NAFLD patients.4,5 Fatty acid uptake can be facilitated by
fatty acid translocase (FAT; also known as CD36), liver fatty
acid-binding protein (L-FABP) and fatty acid transport pro-
teins (FATPs).6,7 This article is focused on recent findings on
the regulation of CD36 gene expression and the implication
of this regulation in fatty liver disease.

CD36 in fatty liver disease

An overview of CD36

Hepatic uptake of fatty acids is facilitated by cell surface
receptors, including CD36/FAT. CD36 belongs to the class B
scavenger receptor family and is expressed on the surface
of a number of cell types, including monocytes/
macrophages, endothelium and smooth muscle cells.8 – 14

Overexpression of CD36 confers tissues with increased
fatty acid and lipoprotein influx and/or utilization. CD36
is one of the major macrophage receptors responsible for
the binding and uptake of a modified, pro-atherogenic
form of low-density lipoprotein (LDL), oxidized LDL. For
this reason, CD36 is believed to play a critical role in the
development of lipid-laden macrophage foam cells, and
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atherosclerosis. Consistent with the role of CD36 in promot-
ing atherosclerosis, the absence of CD36 in the ApoE knock-
out mouse model of atherosclerosis resulted in a
significantly reduced lesion area in the aortic tree after 12
weeks of Western diet feeding.15 In addition to facilitating
oxidized LDL uptake in macrophages, CD36 affects fatty
acid uptake by tissues that are involved in storage or utiliz-
ation, and particularly those sensitive to insulin, including
adipose, skeletal muscle and heart.16 The importance of
CD36-mediated fatty acid uptake is manifested as hypogly-
cemia in fasted CD36 knockout mice due to a cardiac
inability to uptake fatty acids and a switch to glucose as
an energy substrate.17 – 19

CD36 in fatty liver disease

In addition to its role in macrophages and atherosclerosis,
emerging evidence points to an important function of
CD36 in controlling hepatic fatty acid uptake and a link to
the pathogenesis of fatty liver disease. The basal expression
of CD36 in hepatocytes is low, but is increased significantly
by a high-fat diet or by the activation of nuclear recep-
tors.20 – 24 CD36 is also expressed in Kupffer cells and
hepatic stellate cells.9,25 – 27 Elevated levels of CD36
expression have also been observed in the ob/ob mouse
model of obesity and type II diabetes.28 Recent findings
suggest that increased hepatic CD36 expression may con-
tribute to the development of fatty liver disease under
pathological conditions, such as obesity and diabetes, and
as a result of eating diets high in fat.20,29 In patients with
type II diabetes, food intake triggers liver fatty acid
uptake,30 suggesting the existence of a regulatory mechan-
ism for hepatic fatty acid transporters. In a mouse
model of human familial hypercholesterolemia (low-
density lipoprotein receptor [LDLR] knockout mice engin-
eered to only express apoB100), treatment with conjugated
linoleic acids, which had previously been shown to induce
hepatic steatosis in a manner at least partially dependent
upon the LDLR, upregulated the expression of CD36
mRNA and induced hepatic steatosis. These results
suggest that CD36 could substitute for the LDLR in lipid
uptake and development of steatosis.31 Koonen et al.20

reported that mice fed with a high-fat diet had a 2.6-fold
increase in hepatic CD36 protein expression, paralleled by
a 1.7-fold induction of hepatic triglyceride storage.
Moreover, a forced expression of CD36 by adenovirus-
mediated infection was sufficient to increase hepatic fatty
acid uptake and triglyceride storage.20 In the clinic,
hepatic CD36 gene expression was positively correlated
with liver fat content in patients with NAFLD.32

CD36 regulation by nuclear receptors and the
implication of this regulation in fatty liver disease

CD36 has been shown to be transcriptionally regulated by
several nuclear receptors, including pregnane X receptor
(PXR), peroxisome proliferator-activated receptor (PPAR) g
and liver X receptor (LXR). PXR was initially identified as
a xenobiotic receptor that regulates the expression of the
cytochrome P450 enzymes. Subsequent studies have

established PXR as a master xenobiotic receptor that plays
a central role in the transcriptional control of the mamma-
lian xenobiotic response by regulating the expression of
drug-metabolizing enzymes and drug transporters.33 – 37

Zhou et al.24 showed that PXR has a direct role in promoting
hepatic steatosis. Liver-specific transgenic mice
(Alb-VP-hPXR) that express the activated human (h) PXR
in the liver exhibited hepatomegaly, histological lipid
accumulation and marked hepatic triglyceride accumu-
lation. Pharmacological activation of PXR with rifampicin
for five weeks in hPXR ‘humanized’ mice also induced sig-
nificant liver triglyceride accumulation, suggesting that sus-
tained activation of PXR is sufficient to promote steatosis.
The steatotic effect of PXR was independent of sterol regu-
latory element-binding protein (SREBP)-1c, a master regula-
tor of de novo lipogenesis. Instead, activation of PXR induced
the expression of CD36 and two lipogenic enzymes, fatty
acid elongase and steroyl coA desaturase (SCD)-1.
Activation of CD36 gene expression was observed in both
Alb-VP-PXR transgenic mice and rifampicin-treated huma-
nized mice. Further evidence for the direct involvement of
PXR in regulating CD36 included the identification of a
direct repeat (DR)-3-type PXR response element in the pro-
moter region of the CD36 gene. Interestingly and for reasons
to be determined, the regulation of CD36 by PXR is liver-
specific.24

In addition to the direct regulation of CD36 by PXR, PXR
may regulate the expression of CD36 by transactivating
PPARg, another positive regulator of CD36.38 By using
liver-specific (Alb-VP-PXR) or liver- and intestine-specific
(FABP-VP-PXR) transgenic mice, Zhou et al.23 showed selec-
tive induction of PPARg by PXR in the liver, but not in the
intestine. In the same study, the authors showed that the
mouse PPARg2 gene promoter is a direct transcriptional
target of PXR and contains two DR-3-type PXR response
elements. Therefore, PXR can regulate CD36 directly, or
indirectly through its activation of PPARg .23

LXRs, both the a and b isoforms, were identified as sterol
sensors that regulate cholesterol homeostasis.39 Subsequent
studies revealed that LXRs were also important regulators
of fatty acid and glucose homeostasis. LXR agonists
include endogenous cholesterol metabolites 24(S),25-epoxy-
cholesterol, 24(S)-hydroxycholesterol and 22(R)-hydroxy-
cholesterol,40 as well as synthetic agonists, such as
TO0901317 (TO1317) and GW3965.41 LXRa is highly
expressed in the liver, but its expression is also found in
the adipose tissue, intestine, macrophages, lung and
kidney. LXRb is expressed ubiquitously.42 LXRs regulate
fatty acid synthesis in the liver43 – 45 and treatment of mice
with LXR agonists elevates triglyceride levels in the liver
as well as in the plasma.43,44 It was initially thought that
the lipogenic activity of LXRs was mainly mediated
through the activation of SREBP-1c, which can subsequently
activate lipogenic enzyme genes, such as fatty acid synthase,
SCD-1 and acetyl coA carboxylase 1.43 But in a recent report,
Zhou et al.23 showed that LXR might also promote lipogen-
esis by activating the expression of CD36. Genetic (by using
the VP-LXR transgene) or pharmacological (by using LXR
agonists) activation of LXR induced the expression of
CD36 by the binding of LXR to a LXR response element
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(LXRE) in the CD36 gene promoter. Interestingly, similar to
its regulation by PXR, CD36 regulation by LXR was also
liver-specific. Further studies confirmed that the lipogenic
effect of LXR and activation of CD36 was not a simple
association, because the effect of LXR agonists on increasing
hepatic and circulating levels of triglycerides and FFAs were
largely abolished in CD36 knockout mice,46 suggesting that
intact expression and/or activation of CD36 is required for
the steatotic effect of LXR agonists.

Aryl hydrocarbon receptor in fatty liver
disease

Aryl hydrocarbon receptor and its role in xenobiotic
metabolism

The aryl hydrocarbon receptor (AhR) is a ligand-activated
transcription factor that belongs to the basic
helix-loop-helix/period-AhR nuclear translocator-single
minded family of proteins.47 AhR was originally isolated
and characterized as a xenobiotic receptor sensing environ-
mental toxicants, such as 2,3,7,8-tetrachlorodibenzo-
p-dioxin (TCDD) or dioxin.48 For this reason, AhR is also
called ‘dioxin receptor’. AhR binds structurally diverse
xenotoxicants, such as benzo[a]pyrene and 3-methylcholan-
threne (3MC), as well as endobiotic chemicals, such as
indigo and 6-formylindolo[3,2-b]carbazole. Industrial or
military exposures to dioxin, such as those associated with
the use of the herbicide and defoliant Agent Orange
during the Vietnam War, have been linked to detrimental
health effects. AhR is a central regulator of xenobiotic
metabolism by inducing the microsomal cytochrome P450
1A and 1B genes. AhR also regulates the expression of
several phase II glutathione S-transferase and
UDP-glucoronosyltransferase enzymes. AhR heterodi-
merizes with AhR heterodimeric partner (ARNT) to regu-
late gene expression.49,50 In the absence of ligand, AhR
resides primarily in the cytoplasm as an inactive complex
consisting of two 90-kDa heat-shock proteins (Hsp90),
X-associated protein 2 (also known as AhR-interacting
protein, or AIP) and Hsp90 co-chaperone protein p23.51

The binding of a ligand to AhR triggers nuclear transloca-
tion and dissociation of Hsp90, AIP and p23, which sub-
sequently allows AhR’s heterodimerization with ARNT.52

The AhR–ARNT complex then binds to dioxin responsive
elements (DREs) in the promoter region of target genes. It
is believed that AhR function mediates the adaptive
response as a sensor to xenobiotic signals since it regulates
a number of phase I and II enzymes. AhR is also a
primary mediator of xenobiotic-induced toxicity, including
cancer, immunosuppression, liver damage and birth
defects. The relationship between AhR and toxic responses
is well documented by the genetic ablation of AhR, which
renders experimental animals resistant to dioxin or
benzo[a]pyrene-induced toxicity.53

Although AhR was initially identified as a xenobiotic
receptor, subsequent studies, mainly through the character-
ization of AhR knockout mice, have suggested that AhR
also has endobiotic functions by affecting physiology and

tissue development.54 – 56 The endobiotic functions of AhR
are also supported by the identification of endogenous
AhR agonists, including modified LDL.57

An emerging role for AhR in fatty liver disease

Lee et al.58 have recently reported the creation of
tetracycline-inducible, constitutively activated, AhR
(CA-AhR) transgenic mice. The constitutive activation was
achieved by deleting the minimal ligand-binding domain
(amino acids 287–422) of AhR, which allows constitutive
dimerization with ARNT, binding to DREs and activation
of AhR target genes.59 These tissue- and temporal-specific
transgenic mice represent a unique in vivo gain-of-function
model to study AhR function in vivo. It is known that treat-
ment with AhR ligands, such as TCDD, may exert systemic
effects and may have additional transcriptional conse-
quences independent of the presence of endogenous
AhR.58,60

Compared with wild-type mice, CA-AhR transgenic mice
exhibited spontaneous hepatic steatosis, manifested by the
accumulation of triglycerides but not cholesterol in the
liver. The steatotic effect of AhR was independent of
SREBP-1c-mediated de novo fatty acid synthesis. Instead,
the lipogenic effect of AhR likely resulted from its activation
of CD36 gene expression and the consequent increase of
hepatic FFA uptake. Activation of CD36 gene expression
was observed in both CA-AhR transgenic mice and
TCDD-treated wild-type mice, and both mouse and
human CD36 gene promoters were established as direct
transcriptional targets of AhR.58 In addition to CD36, the
expression of FATP1 and FATP2, which can also facilitate
hepatic FFA uptake, was increased in CA-AhR transgenic
mice. The activation of CD36 gene expression in transgenic
mice was associated with an increase in fatty acid uptake in
hepatocytes. Moreover, the steatotic effect of an AhR agonist
was abrogated in CD36 knockout mice.

In the transgenic model, the effect of the CA-AhR trans-
gene was most likely hepatocyte-specific because the pro-
moter was expected to target hepatocytes only. However,
in the pharmacological model and in AhR null mice, we
cannot exclude the possibility that the expression and/or
regulation of CD36 in Kupffer cells and hepatic stellate
cells might have also played a role in the steatotic pheno-
type. Activation of AhR appeared to have pleotropic
effects on steatosis. In addition to the activation of CD36
gene expression, pharmacological activation of AhR also
inhibited VLDL-triglyceride secretion. The reduced VLDL
secretion was associated with a decreased plasma protein
level of ApoB100, but not ApoB48. The peroxisomal fatty
acid b-oxidation was also inhibited in CA-AhR transgenic
mice. The expression of the rate-limiting enzyme of peroxi-
somal b-oxidation, acyl coenzyme A oxidase1 (ACOX1),
was suppressed in CA-AhR transgenic mice. Adipose lipo-
lysis was probably increased as suggested by the increased
expression of adipose triglyceride lipase mRNA in CA-AhR
transgenic and TCDD-treated mice.

In an independent study, Kawano et al.61 showed that
3-methylchoranethrene (3-MC), another AhR agonist,
induced hepatic steatosis through a similar mechanism.
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Treatment with 3-MC significantly enhanced the expression
of CD36 in mice and in cultured human hepatoma HepG2
cells. Treatment of mice with 3-MC changed the expression
of key transcription factors involved in lipid metabolism,
including PPARa and SREBP-1. It is interesting to note
that 3-MC-mediated induction of PPARa, a positive regula-
tor of CD36, was not observed in CA-AhR transgenic mice.
Nevertheless, studies from several laboratories have clearly
demonstrated a novel link between AhR-induced steatosis
and the expression of CD36.

Summary and perspectives

Recent studies, as summarized in Figure 1, have established
the role of CD36 and its regulation by AhR and nuclear
receptors in the pathogenesis of hepatic steatosis. The
shared regulation of CD36 by AhR and nuclear receptors
PXR, LXR and PPARg suggests FAT as a common target
of these receptors in their control of lipid homeostasis. As
xenobiotic receptors, the primary function of AhR and
PXR is xenobiotic response by regulating the expression of
drug metabolizing/detoxifying enzymes and transporters.
The regulation of CD36 by AhR and PXR suggests that in
addition to their xenobiotic functions, these two receptors
can also impact the homeostasis of endobiotics, such as
the lipids. LXR was previously known for its lipogenic
activity through the activation of Srebp-1c and several key
lipogenic enzymes. The regulation of CD36 by LXR suggests
a novel mechanism by which LXR may affect lipid metab-
olism.23 PPARg was previously known to activate the
expression of CD36 in macrophages, which was implicated

in foam cell formation and atherosclerosis.38 The more
recent results suggested that the regulation of CD36 by
PPARg is conserved in hepatocytes, and in addition to its
direct transactivation of CD36, PPARg could also mediate
the effect of PXR on CD36 gene expression by functioning
as a PXR target gene.23

CD36 is previously known for its functions in macro-
phages, endothelium and smooth muscle cells. The
network of CD36 regulation in the liver underscores the pre-
viously unrecognized significance of CD36 in the liver.
Liver plays an important role in insulin-mediated fat and
glucose metabolism. It remains to be determined whether
AhR has a broader role in impacting obesity and diabetes.
Indeed, adiposity was decreased in CA-AhR transgenic
mice, but this was likely due to an indirect mechanism,
because the transgene was not targeted to the adipose
tissue. In addition, AhR may have direct effects on adipo-
genesis since it has been reported that NF-E2 p45-related
factor 2 (NRF2) inhibited adipogenesis through activation
of AhR.62

Exposure to dioxin or polychlorinated biphenyls has been
linked to insulin resistance and diabetes. Dioxin exposure
was associated with increased prevalence of fatty liver in
human populations.63 Although the regulation of CD36 by
AhR has been shown to be conserved in human liver
cells,58,61 the human relevance of CD36 in the pathogenesis
of fatty liver needs to be systemically evaluated.

Simple steatosis or NAFLD, if unmanaged, may progress
into NASH. Recent reports suggest that CD36 and other
surface receptors may play a role in the pathogenesis of
NASH by affecting Kupffer cells or hepatocytes. Bieghs
and colleagues showed that transplantation of LDLR knock-
out mice with bone marrow from SRA and CD36 double-
knockout mice reduced diet-induced hepatic inflammation,
apoptosis, lipid oxidation and fibrosis, which are common
features of NASH. The hepatocyte-specific CA-AhR trans-
genic mice showed signs of oxidative stress and inflam-
mation.58 It remains to be determined whether the hepatic
steatosis observed in CA-AhR transgenic mice may even-
tually progress to NASH, or activation of AhR will sensitize
animals to NASH.
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