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Abstract

To describe left ventricular (LV) function comprehensively, it is crucial to characterize precisely transmitral, intraventricular and
transaortic pressure—flow relations. The site of measurement is important; as the measurement location is moved from the
mitral valve toward the apex and the outflow tract, important regional pressure differences are recorded inside the LV.
These intraventricular pressure gradients (IVPGs) play an important role in ventricular filling in the normal heart and may be
abolished by systolic or diastolic dysfunction. Despite their apparent importance in ventricular filling and diastolic function,
IVPGs have never been utilized in clinical cardiology, due to the complexity of their acquisition. The application of Doppler
echocardiography allows the reconstruction of diastolic IVPGs completely non-invasively, thus avoiding the risk and
expense of a cardiac catheterization. Regional pressure gradients are also present during ventricular emptying but their
correlation with systolic function is not so clear. The current minireview highlights theories and experimental data on
invasive and non-invasive assessment of diastolic and systolic IVPGs and their role in LV filing and emptying. We also
review the pathophysiological modulation of regional gradients, their importance in understanding and evaluating the

complex phenomena underlying ventricular filling, as well as their potential clinical application.
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Introduction

The hallmark of diastolic dysfunction is the impaired
capacity to fill or maintain stroke volume without a com-
pensatory increase in filling pressures." > Measurements
made during diastole are very complex, because they are
determined both by relaxation and chamber stiffness, with
the latter becoming increasingly important toward the end
of ventricular filling.4 Despite the fact that in 1896, Porter®
described a method which at the time seemed to secure ‘a
correct record of any part of intracardiac pressure curve’, the
perfect method for diastolic function evaluation has still
not been found. Therefore, intracardiac hemodynamics
remains an area of required research. Whereas regional
pressure differences between the left ventricle (LV), the LV
outflow tract and the aorta during ejection® or between
the left atrium, the LV inflow tract and the LV’ have been
recognized for some time, the potential clinical importance
of regional pressure differences within the LV during dia-
stole and systole have only more recently®™ ' gained
attention.
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To describe LV diastolic function comprehensively, it is
crucial to have a precise characterization of the transmitral
pressure-flow relation. Original Courtois et al.” recordings
showed profound differences in the transmitral pressure
relation at different sites inside the LV. During early rapid
filling, minimum LV pressure increased from 1.6 + 0.7 to
3.1 + 0.8 mmHg (mean + SD), in measurements from apex
to base. During atrial contraction, significant regional ventri-
cular apex-to-base gradients were also noted. LV end-
diastolic pressure decreased (8.1 + 2.0 to 7.4 + 2.0 mmHg),
and the upstroke of the LV filling (A-wave) near the base
was recorded earlier than near the apex. These recordings
reveal a consistent intraventricular pressure pattern that
can easily be missed when a dual-micromanometer catheter
is not used.

The presence of regional pressure differences strongly
suggests the occurrence of intraventricular pressure gradi-
ents (IVPGs) between the LV inflow tract, the LV apex and
the LV outflow tract. These diastolic IVPGs may play an
important role in ventricular filling and emptying in the
normal heart."' ~*? Systolic IVPGs have also been observed®
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between the LV apex and the subaortic area, but there is lack
of data on their magnitude and on their behavior in the
presence of systolic or diastolic dysfunction. As regional
dyskinesia interferes with the normal sequence of ventricu-
lar contraction and relaxation, it might be expected to alter
the physiological diastolic and systolic IVPGs, although a
systematic analysis of its impact on IVPGs along the entire
cardiac cycle has not yet been performed.

Thus, diastole is not amenable to analysis with simple
passive-filling models,"*"'® and any complete description
of diastole must account for ventricular suction and regional
gradients.'”” Because different regions of the LV are sub-
jected to different pressures, and thus different wall stresses
at different time points, an ideal description of LV diastolic
function must be regional in nature.'® The presence of
regional pressures and gradients indicates that studies
with techniques for assessment of LV compliance by curve-
fitting LV diastolic pressure-dimension data should use a
standardized catheter position, particularly if serial
measurements are involved. However, the technical difficul-
ties involved in multisite measurement of pressure within
the ventricle, coupled with the observation that regional
variations in pericardial constraint may also exist,'® make
regional stress-strain measurements a challenge. In fact,
invasive pressure measurements in the LV using fluid-filled
catheters with external transducers, instead of tip pressure
micromanometers, as commonly happens for clinical
studies in cath labs, are much too inaccurate to measure
with precision very low pressures and gradients.
Catheter-based measurements with micromanometers are
usually not available and therefore rarely performed in clini-
cal practice, having in addition the difficulties of aligning
microcatheters in the direction of flow. In these circum-
stances, color Doppler M-mode measurements may be
much more accurate, taking into account the spatial, tem-
poral and velocity characteristics and resolution of echo
that makes it suited for this type of work. Recently, it has
been proposed that IVPGs, as derived by color M-mode
echocardiography, correlate with LV elastic recoil and LV
Contrac’cility,10 and that IVPGs could be a useful method
to improve the assessment of LV diastolic function using
Doppler echocardiography.’” The current minireview
highlights theories and experimental data on invasive and
non-invasive assessment of diastolic and systolic pressure
gradients and their role in LV filling and emptying. We
also review pathophysiological modulation of regional gra-
dients, their importance and potential clinical application.

Normal IVPGs
Diastole

As early as 1930, Katz*® was speculating that diastole was
not an entirely passive process and that the LV had the
ability to ‘exert a sucking action to draw blood into its
chamber’. Nevertheless, it was only in 1979 that Ling
et al.?* first described, in a canine model, a 2-5 mmHg
pressure gradient from the midventricle to the apex
during the rapid phase of diastolic filling. In 1988,
Courtois et al.” observed, also in a canine model, a
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significant early diastolic pressure gradient along the LV
inflow tract with minimum pressure in the apex suggesting
suction of the blood toward the LV apex. When it was sub-
sequently shown that these gradients were diminished by
ischemia and related to systolic function,?® the concept
that they could reflect ventricular filling and emptying
was born. Moreover, when Nikolic et al.>®> demonstrated
IVPGs during early diastole in filling as well as in non-
filling heart beats, the hope that IVPGs would become an
index for isovolumic and early ventricular relaxation was
substantiated.

Later, Smiseth et al.?* demonstrated, also in humans, the
presence of a diastolic IVPG between the apex and
outflow tract. They showed that when apical pressure
started to rise, outflow pressure continued to fall, thus creat-
ing an apex-to-outflow tract pressure gradient in early dia-
stole. The peak gradient was 3.5 + 0.3 mmHg and it had
occurred 57 + 7 ms after apical pressure nadir. It was pre-
ceded by a small opposite gradient of 1.0 + 0.2 mmHg. In
late diastole, during atrial contraction, there was also a gra-
dient from the apex-to-outflow tract; its peak value was
1.8 + 0.2 mmHg. More recently,” we were able to confirm
and extend their results (Figure 1 and Table 1).

The observation that the apical region fills first and begins
to oscillate while filling is still occurring in the basal region®
is consistent with a model of diastolic function that treats the
apex as recoiling during early diastole and contributing to
filling by actively drawing blood into the LV. The timing
during early diastolic filling at which LV pressure begins
to increase after its nadir would mark the completion of
ventricular suction.” Because such an increase in pressure
occurs earlier in the apex than in the base of the heart, it
can be inferred that filling is completed first in the apex
and only then in the base. It is now well recognized that
the driving force for early diastolic transmitral flow is the
atrioventricular pressure gradient>® This gradient is
created, in part, by elastic properties of the ventricle that
allow for the storage of potential energy in the myocardium
during systole that is released during diastole. Recent exper-
iments®*** indicate that proteins such as titin, acting as a
bidirectional, linear spring, together with the extracellular
matrix and microtubules, play a role in generating elastic
recoil. It is noteworthy that the regional pressure-wave
pattern recorded during atrial contraction is exactly oppo-
site to the pattern recorded during the early rapid-filling
phase. In this phase the upstroke of the LV rapid-filling
(E-wave) occurs first near the apex and last near the base
of the heart, suggesting a mechanism, other than passive
filling.

Van de Werf et al.®>> showed that a reversed gradient
between the atrium and the ventricle during early diastolic
filling is a normal physiological event which corresponds to
the deceleration of the transmitral E-wave. This biphasic
IVPG may play an important role in intraventricular flow
and vortex formation and it is probably related to intraven-
tricular propagation of the early transmitral flow pulse,
following myocardial segment asynchrony during relax-
ation.”®® In fact, while outflow tract segments re-extend
during the entire diastole, apical segments lengthen
first and then shorten in the late phase of diastole.
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Figure 1 Left ventricular apical (—) and outflow tract (—--) pressures and simultaneous recording of apex-to-outflow tract IVPG (gray) along the cardiac cycle in
a representative animal are displayed. Experiments were performed in open-chest anesthetized rabbits, instrumented with pressure tip micromanometers placed
in the apex and outflow tract of the left ventricle.?>2® Systolic phase: During early systole, we recorded an IVPG from apex-to-outflow (a) which inverts during late
systole (b). Diastolic phase: During diastole, we observed a significant outflow tract-to-apex IVPG in the early diastole (c) and an apex-to-outflow tract IVPG in the

late diastole. IVPG, intraventricular pressure gradient; LV, left ventricular; LVP, left ventricular pressure

Table 1 Intraventricular pressure gradients (mean; mmHg)
Experimental protocol Diastole Systole
Model Measurement Early diastole Ventricular filling Atrial contraction Rapid ejection Slow ejection
Ling et al.?" Dog Catheter +2-5
Falsetti et al.?” Dog Catheter +5.1+1.2
Pasipoularides et al.® Human Catheter +6.7+1.9
Courtois et al.” Dog Catheter +1.54+0.7 +0.7+0.2
Nikolic et al.?® Dog Catheter +2.84+0.2
Smiseth et al.>* Human Catheter -1.0+0.2 +3.5+0.3 +1.84+0.2 +3.7+ 0.4 -3.9+05
Firstenberg et al.® Human  Catheter, Doppler +1.6+0.8 +0.9+ 0.6
Greenberg et al.?® Dog Catheter, Doppler +1.8+05
Steine et al.® Dog Catheter, Doppler +3.8+0.8 +1.44+0.6
Rovner et al.?® Human Catheter, Doppler +3.0+0.8
Yotti et al.%° Minipig  Doppler +34+15
Notomi et al.3! Human Doppler +1.6 +0.5
Guerra et al.?® Rabbit Catheter —-4.6+0.7 +3.6 + 0.2 +0.5+ 0.1 +0.6 + 0.1 —-0.8+0.1

+, apex-to-base gradient direction;

—, base-to-apex gradient direction



This complex torsion and untwisting reveals the physiologi-
cal IVPGs observed during ventricular filling. It improves
myocardial relaxation, contributing first to filling of the
LV outflow tract and then preparing ventricular emptying.>”
Smiseth et al.** showed that both in animals and humans,
the pressure gradient between the ventricular apex and
the outflow tract strongly correlated not only with peak
early transmitral flow and early ventricular filling, but
also with stroke volume. These observations suggest the
crucial importance of IVPGs to ensure efficient LV diastolic
filling and emptying and therefore its close association with
LV diastolic and systolic function.

In terms of flow-driving energy expenditure, diastolic
suction contributes to filling more than one order of magni-
tude above passive atrial decompression.”® Temporal analy-
sis conducted by Yotti et al.® confirmed that in humans,
suction is initiated during isovolumetric ventricular relax-
ation and continues during rapid filling. During early ven-
tricular filling, suction causes pressure to fall despite
filling. Therefore, reduced suction shifts the left corner of
the pressure-volume loop toward a higher diastolic
pressure and diastolic suction is directly related to the
apex-to-base IVPG. Pressure gradients and redistribution
of blood flow create a ring vortex, which results from the
acceleration of blood along the inflow tract, and represents
a force applied on quiescent blood already in the ventricle.
The ring vortex will first appear at the cardiac base, at the
level of the mitral valve tips, with subsequent propagation
toward the apex during the deceleration phase of transmi-
tral flow.*0~**

Systole

A characteristic pattern of systolic IVPGs has also been
described in humans within the LV.%** A 3.7 + 0.4 mmHg
gradient between the LV apex and the subaortic outflow
tract was recorded in early systole, while an outflow
tract-to-apex 3.9 + 0.5 mmHg gradient was observed in
late systole.** The physiological significance of that gradi-
ent is still unclear. More recently,25 we studied IVPGs
along the cardiac cycle in an animal model (Figure 1 and
Table 1). We recorded a gradient from the apex to the
outflow tract during the rapid ejection phase, which
inverted during the slow ejection phase. This gradient con-
tinued into the first part of the isovolumic relaxation period.
We speculated that systolic apex-to-outflow gradient along
the ejection phase, which parallels the aortic-ventricular
pressure gradients, probably reflects earlier and faster short-
ening of apical rather than basal segments. This might favor
ventricular emptying during systole and mitral-apical flow
during diastole. However, the significance of this gradient
for intraventricular flow propagation in the normal and
the diseased heart remains to be determined.”® Generated
by the active force of the contracting ventricle,***” the systo-
lic IVPG between the LV apex and the outflow tract has
shown to be related to the inotropic state.*?”*® In the
absence of outflow obstruction, the systolic IVPG reaches
its peak early during systole and is fundamentally caused
by impulsive forces.”® The magnitude of the systolic IVPG
has been shown to increase with exercise’” and adrenergic
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stimulation*® and to decrease with g-blocking agents in
invasive studies.*® Furthermore, the peak systolic IVPG
has shown to be relatively load-independent™ and to have
a greater sensitivity than the first time derivative of pressure
for changes in the inotropic state assessment.>**’

Pathological IVPGs

Several studies have shown marked changes in the intraven-
tricular filling pattern and the diastolic IVPG in patients
with myocardial ischemia and in those with congestive
heart failure.”?°~5% Courtois et al.?> found, in an animal
model, that the diastolic IVPG disappeared during acute
ischemia and demonstrated a relationship between the
decrease in IVPG and LV systolic dysfunction. Later, it
was speculated® that during systole, some elastic potential
energy could be stored in the dyskinetic segment and then
released, when LV intracavitary pressure declines to low
levels during the late isovolumic relaxation and early dias-
tolic filling phases. Such inward diastolic movement of the
dyskinetic segment could impart some motion to blood
pooled in the apical and anterior regions of the ventricle
and thus contribute to the alteration of the normal early
diastolic IVPG.>**° Thus, acute regional myocardial ische-
mia, by diminishing the amount of ventricular myocardium
available for contraction and subsequent elastic recoil in one
region of the ventricle, should result in loss or attenuation of
the diastolic IVPG in that region.

Firstenberg et al.'’ complemented previous animal exper-
iments. They showed the presence of IVPGs in humans and
demonstrated that improvements in LV systolic and dias-
tolic function correlate directly with the recovery of the dias-
tolic IVPG. Their findings suggest that improvements in
ventricular relaxation, through surgical myocardial revascu-
larization, are related to LV remodelling and to changes in
LV elastic recoil. More else, the lack of a relationship
shown® between IVPGs and left atrial pressures suggests
that IVPGs occur even in the absence of LV filling. In fact,
Nikolic et al.? using a non-filling LV model, suggested
that the diastolic IVPG could reflect intrinsic properties of
the LV and not only transmitral pressure gradients.

Beppu et al.>® also showed that after coronary artery lig-
ation in dogs with consequent apical akinesis or dyskinesis,
the normal apical diastolic pressure differentials are attenu-
ated. The absence or decrease of IVPGs during both the
filling and ejection phases can contribute to the relative
stasis of blood throughout the cardiac cycle, predisposing
to thrombus formation. During mitral to apical flow accel-
eration, the IVPG is directed toward the apex, and during
the subsequent flow deceleration, the pressure gradient
reverses. Such pressure gradients observed from the apex
to the subaortic region and from the mitral tip to the subaor-
tic region can play an important role in intraventricular
flow.>”® Therefore, in dogs with relatively large infarcted
area and apical dyskinesis, distribution of the inflow
blood toward the infarcted area is absent or extremely
small, and blood stagnation develops in the apex.”® Using
a different approach, Smiseth et al.** also demonstrated a
marked increase in the early diastolic IVPG during



volume loading and a marked decrease during reduced LV
filling by caval constriction, showing a strong correlation of
the IVPG with peak rate of transmitral filling and with
stroke volume. Diastolic IVPGs therefore appear to reflect
mass and velocity of global LV filling, being correlated
with peak apex-outflow tract velocities and presumably
playing a role in the redistribution of the early filling
wave toward the LV outflow region®* Actually, Falsetti
et al.”’ observed a gradual increase in the magnitude of
the IVPG during B-stimulation and a decrease during
B-blockade and during myocardial ischemia, suggesting
the close association between LV relaxation rate and the
magnitude of the IVPG. The decrease in the mitral to
apical pressure gradient during myocardial ischemia or
B-blockage was attributed to marked prolongation of tau,
a loss of non-uniformity of tau between the apex and
base, and a marked increase in end-systolic volume.’

Rovner et al.”” demonstrated an increase in LV relaxation
and the IVPG during diastole with exercise in both normal
subjects and in patients with heart failure. However, this
mechanism was significantly impaired in the heart failure
group compared with normal subjects. In patients with
heart failure, the decreased ability to augment ventricular
relaxation and diastolic IVPG is responsible for the inability
to accommodate the increase in estimated preload during
exercise, resulting in higher filling pressures.”®~°! In contrast
to what is seen in normal hearts, minimum diastolic
pressure of failing ventricles rises during exercise.®® It is
very likely that the limited suction reserve recruitable by
inotropic stimulation is a major determinant of this abnor-
mal behavior induced by exercise. Also, uncoordinated
regional ventricular function is a major cause of prolonged
ventricular relaxation and abnormal diastolic IVPG.%
These observations suggest an additional mechanism by
which cardiac resynchronization therapy can hypothetically
improve filling of dilated cardiomiophaty ventricles. If true,
IVPG evaluation could be potentially helpful to analyze
regional ventricular filling and to optimize or to predict
the response to resynchronization therapy.

The practical value of IVPGs is enhanced by the recog-
nition of its general applicability and quantification, since
diagnosing and quantifying suction via pressure gradients
is important in understanding pathophysiology.*** In
fact, dilated ventricles are poor suction pumps, aspirating
a relatively small volume in early filling and compensating
with atrial contraction and a resting tachycardia to maintain
cardiac output. Healthy ventricles store greater amounts of
elastic energy during systole and are therefore more effec-
tive suction pumps during diastole. A reduced diastolic
IVPG is the consequence not only of a lower impulse due
to depressed elastic recoil, but also of relatively higher dele-
terious convective forces and impaired ventricular relax-
ation which adversely affects LV filling.>*%%

Estimation of IVPGs by Doppler
echocardiography

Doppler echocardiography has been proposed® as a prom-
ising approach to evaluate LV diastolic function and LV

filling non-invasively. It provides velocity information, not
only at a single location and point in time, but also along
the entire inflow tract from the left atrium across the
mitral valve into the LV throughout the entire diastolic
filling period. Greenberg et al.?® hypothesized that
Doppler profiles, representing flow velocities within the
ventricle between the base and apex, could provide infor-
mation on IVPGs. They proposed a novel concept to apply
basic hydrodynamic principles to reconstruct non-
invasively the IVPG present during LV filling. They used
the local spatial and temporal velocity distribution
measured by color Doppler M-mode echocardiography to
calculate local pressure gradients using the Euler equation,
integration of which allows them to calculate a pressure
difference between two points along the inflow tract. In
their study, they focused on pressure gradients between
the base and apex of the LV and compared the results of
this estimate with direct catheter measurements. They also
showed that this approach not only provides accurate infor-
mation under baseline conditions, but is also able to detect
relatively small changes in transmitral and IVPGs induced
by pharmacologically altering LV relaxation. Actually,
several studies®~>*®” observed differences in the LV
inflow patterns by Doppler echocardiography in different
disease states and physiological conditions. Stugaard
et al.°! noticed a significant change in the Doppler inflow
pattern with delayed apical filling during ischemia caused
by balloon occlusion of the left anterior descending coron-
ary artery. During isoproterenol infusion, Greenberg
et al.®® observed an increase in the reconstructed IVPG,
similar to the observations of Falsetti et al.*” and consistent
with the finding by Brun et al.”® of increased flow propa-
gation into the LV in patients during intracoronary dobuta-
mine infusion.

This application of Doppler echocardiography allows the
reconstruction of a small diastolic IVPG completely non-
invasively, thus avoiding the risk and expense of a cardiac
catheterization. This method also enables the detection of
changes in IVPGs induced by alterations in LV relaxation
and may help in understanding and evaluating the
complex phenomena underlying LV filling.** The accuracy
of pressure difference estimates results in part from the
accuracy of color Doppler M-mode velocity data used in
the non-invasive calculation of pressure differences.®® In
addition to this velocity resolution, the temporal and
spatial resolutions of color Doppler M-mode images are
important as they determine the degree of accuracy for the
partial derivative terms of the Euler equation. The accuracy
of the pressure estimate is also related to the degree to
which the ultrasound scanline approximates an inflow
streamline through the center of the mitral valve. Because
color Doppler M-mode velocities are measured as a conti-
nuum between the left atrium and the LV apex at 0.5-mm
spatial resolution, the derived pressure gradient distribution
along a scanline can be integrated over space to produce a
pressure map.'*?*%°=% However, this method is limited
because the transmitral velocity profile is also affected by
several parameters other than LV diastolic function, such
as heart rate, atrioventricular conduction interval and left
atrial pressure. In fact, a reliable non-invasive method to



characterize the state of LV relaxation is still an unsolved
issue and to overcome the limitations of standard Doppler
echocardiography, additional techniques are required.
Analysis of the pulmonary venous flow patterns,”” and
more recently, the use of tissue Doppler imaging,’®~"2
strain”® and strain rate imaging’*”> have been suggested
as promising tools in the evaluation of LV filling using
ultrasound-based technology.

With tissue Doppler imaging, regional LV wall motion
dynamics can be sequentially analyzed throughout the
cardiac cycle, providing an efficient assessment of the LV
relaxation pathophysiology, process and dynamics.”® The
diastolic motion of the mitral annulus, as measured by
tissue Doppler imaging, has been wused to provide
additional information.”” Mitral annulus velocity reflects
the rate of change in LV long-axis dimension and volume.
This, in turn, is related to myocardial relaxation, so that
impaired relaxation results in a reduced early mitral
annulus velocity (¢”). Unlike other Doppler parameters of
diastolic function, e’ velocity appears to be relatively inde-
pendent of preload, especially when the rate of myocardial
relaxation is decreased.”® In addition, the ratio of early
transmitral flow velocity (E) to early diastolic septal mitral
annulus velocity (E/e’) has been shown to be the most accu-
rate non-invasive predictor of elevated LV filling
pressure.””® With diastolic dysfunction, the LV filling and
IVPG pattern are altered. The annular motion away from
the apex is coincident with the IVPG in normal LV function
but with loss of suction in heart failure, the annular motion
is delayed and occurs after the E-wave and after the early
diastolic IVPG.2°-8* In particular, the E/e” is correlated
with LV filling pressures and evaluates how much blood
enters the ventricle for a given atrium-ventricle pressure
gradient.®® Although its applicability has some limitations,
determining this ratio is strongly recommended in the
evaluation of diastolic function and LV filling.*®

The determination of diastolic function using IVPGs offers
several advantages over the conventional diastolic par-
ameters that are currently in clinical use.”” With the advent
of ultrasound technology and computer programming, the
color M-mode velocity information can be used to determine
the diastolic IVPG not only during resting conditions
but also during exercise in relation to heart failure
patients.’”~%! The use of newer indexes of diastolic function
that are less preload-dependent in patients with heart failure
and abnormal preload provide more objective information in
the clinical setting. These newer diastolic indexes include
transmitral annular flow velocity (Ea) obtained from tissue
Doppler and transmitral flow propagation velocity (Vp)
obtained from color M-mode Doppler.”>~** The ability to
integrate the continuum of the velocities from the LV base
to the LV apex can produce the pressure maps that allow
for a non-invasive determination of LV filling pressures
and normal and pathological IVPG patterns.”> Rovner
et al”® demonstrated an important relationship between
the IVPG and overall clinical status. Improvement in exercise
capacity, increase in ejection fraction and decrease in
mitral regurgitation severity correlated well with improve-
ment in the IVPG in patients with diastolic dysfunction.
Recently, Yotti et al.'® also showed that Doppler-derived
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measurements of diastolic and systolic IVPGs provide a sen-
sitive, reliable, reproducible and relatively load-independent
index of the rate of LV relaxation. When combined with early
myocardial lengthening velocity, this method improves the
assessment of LV relaxation and LV filling in the clinical setting.

Summary

Accurate diastolic and systolic IVPGs have been identified
in the LV since some years ago, but their importance in
determining diastolic and systolic function only recently
became evident. Significant IVPGs during diastolic filling
were described along the inflow tract and directed to the
apex. They occur early in diastole and they are probably a
marker of diastolic suction and ventricular filling. During
late diastole, these IVPGs reverse, directing now from the
apex to the outflow tract and preparing the ventricular emp-
tying. In fact, when ventricular emptying is opposed by
afterload elevations or after ischemia, the normal IVPG are
abolished, indicating ventricular ejection impairment.
Regional alterations in these diastolic IVPGs might be an
important factor in the characteristic changes that occur
in intraventricular flow in specific cardiac disorders.
Recently, the early diastolic velocity of the myocardium,
as measured by tissue Doppler imaging, and the spatial-
temporal distribution of the velocity of blood flow from
the annulus to the apex, as measured by M-mode color
Doppler, have been used to predict LV filling pressures
and gradients. The ability to directly and non-invasively
quantify IVPGs in the LV may allow for better assessment
of cardiac function in response to interventions, such as
pharmacological echocardiographic stress testing or intra-
operative assessment of surgical interventions. Moreover,
the clinical application and interpretation of IVPGs might
contribute to the knowledge of normal intraventricular
physiology and to predict LV filling and emptying impair-
ment during specific cardiac disorders.
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