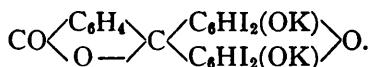


35 (731)

The diffusion of iodo-eosin from ether through rubber membrane into ether.

By JACOB ROSENBLoom.

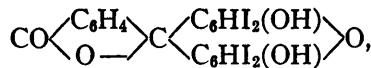

[*From the Laboratory of Biological Chemistry of the University of Pittsburgh, Pittsburgh, Pa.*]

Rosenbloom and Gies¹ have shown that many ether soluble substances diffuse from ether through rubber membrane into ether, but oddly various phospholipins do not possess this property.

Together with Boas,² I was able to show that various cholesterol esters diffuse from ether through rubber membrane into ether. This is very interesting on account of the high molecular weight of these esters. Cholesterol-stearate with a molecular weight of 652.51 diffuses very readily.

For some time I have been trying to find an ether soluble substance of higher molecular weight than cholesterol-stearate and which could be easily detected in the diffusate. The free dye-acid of iodo-eosin fulfilled these requirements. This free dye-acid has been employed by Professor Ehrlich as a very delicate reagent for free alkali in the erythrocytes of man.³

Iodo-eosin is the potassium salt of tetraiodo-fluorescein with the following formula,


As a salt it dissolves in dilute alkalies with red color, but is insoluble in ether or any other organic solvent. The free dye-acid, however, is obtained as a yellow precipitate from the alkaline solution of iodo-eosin by adding hydrochloric acid in excess, and it dissolves readily in ether, or in any other organic solvent, but is insoluble in

¹ *Proc. Amer. Soc. Biol. Chem.*, 1910, 2, p. 8; *Jr. Biol. Chem.*, 1911, IX, p. xiv. *Biochemical Bulletin*, 1912, II, p. 64; George Crocker Special Research Fund, Vol. 3; (In press.)

² *PROC. SOC. EXP. BIOL. AND MED.*, 1911, VIII, p. 132.

³ Ehrlich-Lazarus, "Die Anemia," Vienna, 1898.

water. This free dye-acid has the following formula,

with a molecular weight of 836.

The dye-acid of iodo-eosin may be made by dissolving ten grammes of iodo-eosin (commercial dye) in one per cent. potassium hydroxide and then adding hydrochloric acid in excess. The dye-acid is precipitated at once, it can then be filtered off and the precipitate washed with hot water till the washings are acid-free. The precipitate after drying is easily soluble in ether, forming a beautiful yellow-colored solution.

When this free dye-acid in ether solution is placed inside of an intact rubber membrane immersed in ether, it can readily be noted that in a few minutes diffusion currents are visible and the ether outside of the bag becomes colored, showing that the free dye-acid has diffused.

The bearing of our results on the question of permeability and impermeability of membranes will be considered later.

ABSTRACTS OF THE COMMUNICATIONS, PACIFIC COAST BRANCH.

First meeting.

San Francisco, California, December 4, 1912.

36 (732)

Chronic lead poisoning in guinea pigs.

By W. OPHÜLS.

[*From the Pathological Laboratory of Stanford University.*]

Of the twenty-eight guinea pigs treated with sublethal doses of carbonate of lead seven (25 per cent.) showed a peculiar condition to which so far attention does not seem to have been directed. There has developed a hemorrhagic, sero-fibrinous inflammation of the pericardium, of the peritoneum in the upper part of the peritoneal cavity and occasionally also of the pleurae. In the pericardium the lesion commences with a hemorrhagic exudate followed by the formation of fibrinous deposits especially on the parietal layer and ending with organization with marked thickening.