

Total Acid-Labile CO₂ Content in Dog Renal Cortex and Medulla¹ (34455)

MARIO BARAC-NIETO² AND JULIUS J. COHEN

Department of Physiology, University of Rochester School of Medicine and Dentistry,
Rochester, New York 14620

Information concerning the renal corticomedullary distribution of bicarbonate (HCO₃⁻) and CO₂ is of importance since either may affect intra- and extracellular pH (1), H⁺ secretion rate by renal collecting duct cells (2), and in addition, certain metabolic processes (3) which may occur in the renal medulla.

We have attempted to determine whether there is a corticomedullary gradient for total CO₂ (CO₂ + HCO₃⁻) by measuring the acid-labile CO₂ (4) content of renal cortex and medulla. The acid-labile CO₂ content of tissue includes gaseous or dissolved CO₂, HCO₃⁻, and carbamino-bound CO₂. Thus, a corticomedullary gradient for any one of these moieties could account for any difference observed in the measured acid-labile CO₂ content between renal cortex and medulla. Due to the countercurrent arrangement of the tubules and blood vessels in the renal medulla, it seemed likely that trapping of the gaseous CO₂, which is produced locally, could raise the medullary acid-labile CO₂ above that in the cortex. The following experiments were done to test this hypothesis.

Methods. Female mongrel dogs were anesthetized with sodium pentobarbital (30 mg/kg iv); additional doses of 10 mg/kg iv pentobarbital were given as needed. Duplicate 5-ml arterial (5) samples were obtained in oiled syringes for anaerobic pH determination using the Cambridge Research Model pH meter thermostated at 38°. Samples (5-ml) for determination of urine pH were ob-

tained through a self-retaining bladder catheter. The left kidney and its pedicle were exposed through a flank incision, the pedicle was then clamped and the kidney excised. The kidney was cut transversely into six sections (the poles were discarded) and as much medulla as possible (the position of the arcuate vessels was used to determine the corticomedullary junction) was rapidly separated from the cortex with stainless-steel cork borers of appropriate size. The kidney sections were immediately placed in liquid nitrogen, in a CO₂-free, nitrogen atmosphere (6). Less than 30 sec elapsed from the time of clamping of the pedicle to the time of freezing the tissue in liquid nitrogen. Aliquots of frozen cortex and medulla were pulverized while immersed in liquid N₂, in a stainless-steel mortar which was immersed in liquid nitrogen. Approximately 1-g aliquots of frozen cortical or medullary tissue were then transferred to tared flasks containing 0.1 N NaOH and 0.5% ferric fluoride (as enzyme inhibitor) (4). The flasks were immediately closed, the tissue allowed to thaw, and the wet weight of the tissue samples was taken. Determination of the total tissue CO₂ content was done in triplicate using the manometric Van Slyke apparatus according to the method of Danielson and Hastings (4). All handling of the frozen tissue samples was done in a nitrogen atmosphere free of CO₂ (6).

Results. The results of all five experiments done are summarized in Table I. The total acid-labile CO₂ content of renal medullary tissue is significantly greater than that of renal cortical tissue. The variability in the determination of total CO₂ content was similar in tissue samples from the same animal and in tissue samples from different animals. In the one experiment (Expt. 3) where only one

¹ Supported by U.S.P.H.S. Grant AM-03602 and the Life Insurance Medical Research Fund. Dr. Barac-Nieto was a fellow of the Rockefeller Foundation.

² Present address: Departamento de Ciencias Fisiológicas, Universidad del Valle, Facultad de Medicina, Cali, Colombia.

TABLE I. Acid-Labile CO₂ Content in Dog Kidney.

Expt.	pH		Acid-labile CO ₂ content (μ moles/g wet wt) ^a		
	Blood	Urine	Cortex	Medulla	Corticomedullary difference ^b
1	—	—	10.50 \pm .46 (3)	13.25 \pm .19 (3)	—2.73
2	7.25	6.98	13.36 \pm 1.55 (3)	16.50 \pm 1.39 (3)	—3.17
3	7.32	7.01	16.25 (1)	16.22 \pm 1.22 (4)	+0.03
4	7.24	7.00	14.58 \pm .50 (4)	16.77 \pm .31 (3)	—2.19
5	7.28	7.30	10.68 \pm .60 (3)	16.17 \pm 1.14 (2)	—5.49
Means \pm 1 SE			13.07 \pm .99	15.78 \pm .57	—2.71 \pm .79
No. of experiments			(5)	(5)	(5)
					<i>p</i> < .05

^a Means \pm 1 SE are presented. The number in parentheses indicates the number of separate CO₂ determinations done on a single tissue sample.

^b Negative figures indicate that the CO₂ content is higher in medulla.

cortical sample was analyzed, the renal cortical CO₂ content exceeded that in the renal medulla. Comparison of the CO₂ content observed in this experiment with those of the other experiments, indicated that this difference is due to a relatively high cortical CO₂ content rather than to a decrease in medullary CO₂ content.

The observed greater total CO₂ content of renal medullary tissue might arise from a difference in water content in the two areas of the kidney (7). However, in dog, the medullary water content exceeds that of the cortex (tissue water is 81% \pm 0.3% of wet weight in the medulla vs 78% \pm 0.3% in the cortex (7)). In Table II are summarized the calculated total acid-labile CO₂ contents of dog medullary and cortical tissues expressed per gram of wet or dry weight, and also per gram of tissue water. The medullary CO₂ content per gram wet weight is higher by 17%

than that of the cortex and higher by 39% when expressed per gram dry weight. Thus, the acid-labile CO₂ concentration in medullary tissue H₂O is greater than in cortical tissue water.

Discussion. Our observations do not permit us to identify whether it is the carbamino-CO₂, the gaseous CO₂, or the [HCO₃⁻] which accounts for the high medullary acid-labile CO₂ content.

Any difference in carbamino-CO₂ content between renal cortex and medulla would be due to a difference in the concentration of terminal amino groups of proteins between the two regions (1). Although there is a corticomedullary gradient for albumin (8), it is doubtful whether the increased albumin content could form enough carbamino-CO₂ to account for the observed difference in CO₂ content. Further, the concentration of hemoprotein in medulla is lower than in cortex

TABLE II. Renal Acid-Labile CO₂ Content on Wet- and Dry-Weight Basis.

	Total acid-labile CO ₂ content ^a		
	Cortex	Medulla	Cortex—medulla
μ moles/g wet wt	13.07 \pm 0.99	15.78 \pm 0.57	—2.71 \pm 0.79
μ moles/g dry wt	59.40 \pm 4.50	83.10 \pm 3.0	—23.70 \pm 5.44
μ moles/g tissue H ₂ O	16.75 \pm 1.27	19.45 \pm 0.71	—2.70 \pm 1.48

^a Means \pm 1 standard error of the mean are presented. The standard errors for the derived data (i.e., per gram dry weight and per gram of tissue water) were calculated as the geometric mean of the standard error for the CO₂ content (per gram wet weight) and for the renal tissue water content (9).

(9). Thus, it is unlikely that carbamino-CO₂ is the basis for the high CO₂ content of medulla.

During alkalosis the PCO₂ of the urine and presumably of the medulla may be as high as 200 mm Hg. (10). Assuming a solubility coefficient for CO₂ in renal medullary tissue water of 0.2834 μ moles/ml per mm Hg (which is similar to that in whole blood (11)), and assuming a tissue water content of 81% of wet tissue weight (7), the concentration of dissolved CO₂ at PCO₂ of 200 mm Hg is 4.58 μ moles/g wet weight. Thus, in alkalosis, if the PCO₂ in the medulla and in the urine were the same, the medullary PCO₂ alone could account for acid-labile CO₂ content of renal medulla which is higher than in cortical tissue.

If we now assume that the higher medullary acid-labile CO₂ content observed in our experiments is due entirely to a difference in PCO₂ this would require that the medullary PCO₂ be 95 mm Hg greater than the cortical PCO₂. If cortical PCO₂ is 45 mm Hg (similar to venous PCO₂) a medullary CO₂ tension of 140 mm Hg would be necessary to account for our experimental observations as being due entirely to a high medullary PCO₂. However, the reported urine PCO₂ under experimental circumstances similar to ours is not above 100 mm Hg (12). Further, Ulich *et al.* (13) have recently reported that the PCO₂ in vasa recta blood of normal rats (during NaCl infusion) is only \sim 10 mm Hg greater than that of arterial blood. If the PCO₂ of vasa recta blood is of similar magnitude in dog, the contribution of the gaseous CO₂ moiety to the total CO₂ of medulla is minimal. Thus, the high medullary total CO₂ content reported here is best accounted for by an accumulation of HCO₃⁻ in the medulla. Further, since Ulich *et al.* (13) observed no increase in HCO₃⁻ of vasa recta blood above that

present in arterial blood, most of the increased HCO₃⁻ content is located in the extravascular compartment of the medullary tissue, and most probably in the intracellular compartment.

Summary. Total acid-labile CO₂ was measured in aliquots of dog renal cortex and medulla frozen in liquid nitrogen. A higher (15.87 μ moles/g wet weight vs 13.55 μ moles/g wet weight, $p < .05$) acid-labile CO₂ content was found in the renal medulla. It is suggested that the higher medullary total acid-labile CO₂ content is primarily due to a high [HCO₃⁻] in the medullary intracellular fluid rather than to a high medullary PCO₂.

1. Conway, E. J. and Fearon, P. J., *J. Physiol.* **103**, 274 (1933).
2. Rector, F. C., Carter, N. W., and Seldin, D. W., *J. Clin. Invest.* **44**, 278 (1965).
3. Hastings, A. B. and Fanestil, D. D., *Biochem. Z.* **338**, 276 (1963).
4. Danielson, J. S. and Hastings, A. B., *J. Biol. Chem.* **130**, 349 (1939).
5. Seldinger, S. I., *Acta Radiol.* **39**, 368 (1953).
6. Ponten, U. and Siesjo, B. K., *Acta Physiol. Scand.* **60**, 297 (1954).
7. Kean, E. L., Ph.D. Thesis, University of Pennsylvania, University Microfilms, Ann Arbor, Michigan, p. 81 (1961).
8. Lassen, N. A., Langley, J. B., and Lilienfield, L. S., *Science* **128**, 720 (1958).
9. Kean, E. L., Adams, P. H., Davies, H. C., Winters, R. W., and Davies, R. E., *Biochem. Biophys. Acta* **64**, 503 (1962).
10. Sendroy, J., Seeling, S., and Van Slyke, D. D., *J. Biol. Chem.* **106**, 463 (1934).
11. Peters, J. P. and Van Slyke, D. D., "Quantitative Clinical Chemistry," Vol. II, p. 281. Williams & Wilkins, Baltimore (1932).
12. Ryberg, C., *Acta Physiol. Scand.* **15**, 123 (1948).
13. Ulich, E., Baldamus, C. A., and Ullrich, K. J., *Pflugers Archiv. Ges. Physiol.* **303**, 31 (1968).

Received Sept. 11, 1969. P.S.E.B.M., 1970, Vol. 133.