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Recent experimental findings (1-3) pro- 
vide proof for the first time that the bio- 
chemical process of glycosyl transfer, con- 
trary to the accepted view of this process, is 
able to create glycosidic linkages de novo and 
not solely from preexisting glycosidic link- 
ages. These findings support a concept that 
recognizes glycosyl-proton interchange as the 
basis of all carbohydrase actions and as one 
of the truly major adaptable type-reactions of 
living matter. Maltosaccharide syntheses 
from p-maltose by P-amylase ( l ) ,  from 
P-D-glucopyranose by glucoamylase ( 1 ) , and 
from a-D-ghcosyl fluoride and a-maltosyl 
fluoride (in excess of hydrolysis of these sub- 
strates) by a-amylases (2, 3) prove that gly- 
cosylation extends to de novo glycosidic link- 
age formation; the results also place these 
classic enzymes, traditionally considered 
“glycoside hydrolases” (EC 3.2.1 ) , in a new 
light. 

The present report describes a further as- 
pect of evidence for the generality of the 
glycosylation concept ( 2 ,  3 ) , namely, the 
utilization of a-D-glucosyl fluoride by a poly- 
saccharide-synthesizing enzyme, dextran- 
sucrase. Hitherto, only sucrose and 4F 
p-D-galactosylsucrose (“lactulosucrose”) were 
known to support dextran synthesis by this 
enzyme (4) ; indeed, every donor substrate 
known to support polysaccharide synthesis 
by any “glycosyl transferase” (EC 2.4) has 
possessed, and has been assumed to owe its 
functionality to, a glycosidic linkage. 

Yet, as shown below, a-D-glycosyl fluoride 
which is a stereoanalog of a-D-glucopyranose 
and not a glycoside, parallels sucrose in be- 
ing utilized by dextransucrase both for glu- 
cosylating D-fructose and (depending on the 
enzyme) for synthesizing water-soluble or 

water-insoluble high polymer dextrans. The 
conversion to insoluble dextrans holds special 
interest since the formation of such dex- 
trans from sucrose by certain streptococci of 
human source (5, 6) appears related to the 
genesis of dental plaque and dental caries 
(6-10) as well as to subacute bacterial endo- 
carditis (5). 

Material and Methods. The a-D-ghCOpy- 
ranosyl fluoride was a recrystallized sample, 
[ u ] ~ ~ ~  + 88” (c, 2), synthesized as pre- 
viously described (2). Sucrose was a sample 
of beet sugar free from the traces of dextran 
and other polysaccharides that accompany 
most lots of commercial and reagent sucrose 
( 1 1 ) ; 14C-~-fructose, from New England 
Nuclear Corp., was purified by paper chrom- 
atography before use; isomaltose was the gift 
of Dr. Allene Jeanes. 

Dextransucrase from Leuconostoc mesen- 
teroides B-512F was a lyophilized sample 
kindly supplied by Dr. H. M. Tsuchiya and 
kept a t  4’ for some years; it assayed 0.58 
unit/mg (i.e., each mg converted 0.58 pmole 
of sucrose to dextran and fructose per min at  
pH 5.1 and 30”). Dextranase from Penicilli- 
urn funicdosum NRRL 1768 (12), also fur- 
nished by Dr. Tsuchiya, assayed 350 
units/mg at  30’. Analytical grade yeast in- 
vertase (P-D-fructofuranosidase) was pur- 
chased from Difco Corp.; honey invertase 
(a-D-glucosidase) was prepared from a sam- 
ple of unheated honey according to directions 
kindly supplied by Dr. J. W. White, Jr. 

Chromatography was carried out by the 
descending method, using Whatman no. 1 
paper and n-butanol : pyricdine: water (6 : 4: 3 ) . 
Carbohydrate was measured by the phenol- 
H2S04 technique (13) ; free fluoride (in the 
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TABLE I. Sucrose Synthesis from a - ~ - G l ~ ~ ~ ~ y l  Fluoride by Dextransucrase." 
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Radioactivity under well-defined peaks 

Incubation Sucroseb Leucrosec D-Fructose 
Donor substrate (min) 20-25 em 14--17 ern 30-38 em 

a - ~ - G l ~ ~ ~ ~ y l  fluoride 30 2750 300 58,000 
120 2 8,5 0 450 54,800 

Sucrose 30 39010 300 48,000 
120 3650 850 48,000 

"Mixtures (0.20 ml) i n  0.05 M acetate buffer (pH 5.1) contained donor substrate (10 
pmoles), 14C-D-fr~~t0se (10 @moles, 5 ,&i), and L. mesenteroides dextransucrase (0.1 mg, 
0.06 unit). After incubation at 30° ,  and inactivation (800, 10 min), 10 pl wm chromatographed. 
Radiochromatograms were examined with a Baird Atomic scanner equipped with integrator, 
then stained with AgNOs. 

Identical i n  chromatographic mobility and slow AgNO, staining with authentic sucrose. All 
counts disappeared after treatment of the mixtures either with yeast invertase (p-D-fructo- 
furanosidase) or with a honey invertase (a-D-glucssidase) preparation free from P-D-frUC- 
tosidase activity. 

O Tentatively identified on the basis of chromatographic mobility and by the fact  that  the 
counts were unaffected by treatment of the mixtures with yeast o r  honey invertase. 

presence of glycosyl fluoride) by a micro- 
method previously described (2).  

Results and Discussion. The first evidence 
that a-D-glucosyl fluoride is an effective sub- 
strate for dextransucrase was given by experi- 
ments showing the formation of sucrose and a 
,second [disaccharide [presumably leucrose, 
O-a-D-glucopyranosyl- ( 1 + 5 ) -D-fructopyra- 
nose ( 14) ] in mixtures of enzyme, glucosyl 
fluoride, and 14C-u-fructose (Table I).  Dex- 
transucrase is known to synthesize these di- 
saccharides from sucrose plus fructose (4, 14, 
15), and a direct comparison confirms that 
glucosyl fluoride supports the same transfer 
reactions as sucrose (Table I). At the incuba- 
tion times tested (30 and 120 min), somewhat 
lower concentratioiis of the transfer products 
were found in the mixtures with glucosyl fluo- 
ride than with sucrose, e.g., approximately 
two-thirds as much labeled sucrose was pres- 
ent. However, the levels of labeled sucrose 
(which changed little between 30 and 120 min) 
cannot be used to measure the rates of syn- 
thesis since sucrose is further polymerized to 
dextran. Indeed, all reaction mixtures became 
opalescent in the course of incubation, indi- 
cating the occurrence of polysaccharide syn- 
thesis and raising the question of whether 
glucosyl fluoride is polymerized by dextran- 

sucrase or is converted only to sucrose (per- 
haps by traces of an accompanying a-glu- 
cosidase or sucrose phosphorylase ( 16) ) . 

Further study showed that, in mixtures 
without D-fructose (sucrose synthesis ex- 
cluded) a-D-glucosyl fluoride is directly con- 
verted to dextran and that the product re- 
sembles the dextran formed from sucrose by 
the particular dextransucrase use. Thus, when 
L. mesenteroides B-5 12F dextransucrose [ 1.6 
units in 3.0 ml of 0.1 M acetate buffer (pH 
5.1 ) ] was incubated with a-D-glucosyl fluo- 
ride or sucrose (300 pmoles) opalescence de- 
veloped rapidly and, after 90 min at 30°, was 
intense in both mixtures.l A highly polymeriz- 
ed, water soluble dextran was recoyered from 
each by repeated precipitation with ethanol 
(60% by volume) and drying in vacuo. The 

1 In  other experiments, under similar conditions, 
the enzymic polymerization of 100 mM glucosy! fluo- 
ride was found to follow zero-order kinetics to a t  
least 30% substrate utilization, and to yield equimo- 
lar amounts of dextran and free fluoride. The en- 
zyme was essentially without action on 200 mM glu- 
cosy1 fluoride though highly active upon 10--100 mM 
substrate. Departure from the Michaelis-Menten 
equation, long known for the dextransucrase-sucrose 
system (18) ,  proved far more pronounced in the 
case of a-D-glucosyl fluoride. 
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yield froin glucosyl fluoride (17.2 mg, 35r/c' of 
theory) was approximately three-fourths that 
obtained from the sucrose (22.6 mg, 46% of 
theory). 

Solutions of each product gave visible pre- 
cipitation at  0.25 to 4 pg/ml with a stan- 
dardized type 2 pneumococcus rabbit an- 
tiserum, characteristic of highly polymerized 
dextrans with very high proportions of 
U- 1,6-linked anhydroglucose units ( 17  ) . Solu- 
tions ( 1  mg in 1 ml) treated with P. funiculos- 
urn dextranase (20 pg, 7 units) immediate- 
ly lost their opalescence; by 30 min at  30°, 
each product appeared extensively hydro- 
lyzed since addition of ethanol (to 60%) gave 
no turbidity, and chromatograms showed the 
abundant presence of a reducing sugar iden- 
tical in migration with an authentic sample of 
i som a1 t ose. 

The polymerization of ~r.-~-glucosyl fluo- 
ride, as well as sucrose, to water-insoluble 
dextrans was demonstrated using enzymes 
from two strains of Streptococcus variety DS 
(5: 19) isolated from the blood of patients 
with subacute endocarditis. In  5 % sucrose 
broth these strains produced voluminous zoo- 
gleal gels of dextran, a phenomenon first de- 
scribed for streptococci by Hehre and Neil1 in 
1946 [cf. Fig. 1 in Ref. ( S ) ] .  For enzyme 
preparation, each strain was grown in di- 
alyzed medium (20) with D-glucose (but no 

sucrose) under conditions described by Carls- 
son, Kewbrun and Krasse (2  1) ; the neutral- 
ized culture fluids, freed of cells by centrifu- 
gation at  13,OOOg (30 min), were used. 

As shown in Table I1 and Fig. 1 ,  both 
a-D-glucosyl fluoride and sucrose were con- 
verted by each of these enzymes into water- 
insoluble dextran gels of high serological ac- 
tivity. Under the conditions used, gel forma- 
tion was evident with both donors after 3.5 
hr incubation at  30". Analysis at 20 hr 
showed that the total dextran formed from 
glucosyl fluoride was 7 5 4 0 %  of that from 
sucrose; also, that 15-20% of the polymer 
from the glucosyl fluoride was water soluble 
whereas almost all of the sucrose-derived pro- 
duct was insoluble. 

A noteworthy finding was that these and 
similar streptococcal dextran gels are solubil- 
ized by dimethyl sulfoxide (22). That is, 
when centrifuged and washed gels (8-10 mg 
dextran/ml) were treated with 10 vol of di- 
methyl sulfoxide, clear viscous solutions re- 
sulted. Dialysis of these provided clear aque- 
ous solutions of dextran (ca. 0.5 mg/ml) 
from which gels were obtained when concen- 
tration was attempted, e.g. ,  by vacuum evap- 
oration at  3 5 O. These observations suggest 
that gel formation involves a final, nonenzy- 
mic, molecular association process. 

Studies by Hestrin (23) and Eisenberg and 

TABLE 11. Insoluble Dcxtran Synthesis from a - ~ - G l ~ ~ ~ ~ y l  Fluoride by  Enzymes from Endo- 
carditis Streptococci." 

~ ~~~ 

Strcptococcus DS var. 
(strain 53) enzyme 

Streptococcus DS var. 
(strain 135) enzyme 

Insoluble destrnn Soluble destrnn Insoluble dextran Soluble dextrnn 
Sub st r a t,e gel ( pniolcs) (,.molts) gel (&moles) (@moles) 

4.4 
0.c; 
0.0 

14.4 
21.3 
0.0 

2.2 
0.G 
0.0 

a Mixtures of su1)strnte (100 pmolcs), streptococcal enzyme (0.50 ml), benzyl penicillin I< 
salt (50 units), and 0.1 M pH 6.8 phosphate buffer (0.50 ml) were incubated at 30" (20 hr). 
After lieat inactivation and centrifugation, gel and fluid components were separated. Gels were 
washed three times by  suspension i n  1% sodium acetate and centrifugation (1500g, 30 min) ; 
finally dissolved in 1 N NaOH and aiialyzed for carbohydrate (13). Dextran in fluids was 
separated by repeated precipitation with ethanol and determined similarly (13) .  

Equivalent to percentage of the theoretical yield from 100 &moles of substrate. 

coccus rabbit antiserum (17), as well as hydrolysis by P. funiculosum dextranase. 
"Identified as dextran on the basis of precipitation at 0.3-0.5 pg/ml with type 2 pneumo- 



DEXTRAN SYNTHESIS FROM GLUCOSYI, FLUORIDE 1301 

FIG. 1. Insoluble dextran gels produced by Strep- 
tococcus DS 53 dextransucrase incubated with (1) 
0.1 M sucrose; (2)  0.1 M a-D-glucosyl fluoride. The 
enzyme-substrate mixtures, lightly centrifuged (700 
g, 15 min), show the near absence of opalescence of 
the fluids. ZX. See Table I1 for analyses. 

Hestrin (24) have established that dexitran- 
sucrase is a glucosylase that does not transfer 
the glycosidic oxygen bridge atom of sucrose 
to the dextran product. The present finding 
that a-D-glucosyl fluoride is a substrate shows 
further that a preexisting glycosidic linkage 
in the donor substrate is unnecessary for the 
activity of this enzyme. The de nuvo synthe- 
sis of glycosidic linkages by dextransucrase 
supports the view (2 ,  3)  that the process of 
glycosyl transfer is not, as commonly be- 
lieved, restricted to the redistribution of al- 
ready existing glycosidic linkages. 

Summary. ~ - D - G ~ u c o s ~ ~  fluoride, a ster- 
eoanalog of ~~-~-glucopyranose, parallels suc- 
rose in serving as an effective substrate for 
dextransucrase. Its polymerization to soluble 
dextran by L. mesenteroides enzyme, and to 
water-insoluble dextran gels by enzymes from 
certain endocarditis streptococci (Streptococ- 
cus var. DS), are the first known examples of 
enzymic polysaccharide synthesis from a don- 
or substrate lacking a glycosidic linkage. 
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