

Lack of Opsonization Potential of 11S Human Secretory γ A¹ (36983)

A. ZIPURSKY, E. J. BROWN, AND J. BIENENSTOCK

Departments of Pediatrics and Medicine, McMaster University, Hamilton, Ontario, Canada

The secretory γ A antibody class undoubtedly contributes significantly to immunological mucosal resistance mechanisms. Viral and bacterial antibody activity has been demonstrated in this class, as have antibodies to dietary antigens, autoantibodies and antibodies against a wide variety of haptens and other immunizing antigens (1-3). Despite the demonstrated significance of this local immunologic system, the mechanism through which its biological function is mediated has to date eluded investigators.

We have studied opsonization as an example of one such possible mechanism. The effect of sensitization of blood group A red cells by purified human colostral γ A isoagglutinins in a human monocyte or neutrophil system was compared with the functional activity of serum γ M and γ G antibodies.

Materials and Methods. Three separate preparations of secretory γ A anti-blood group A antibody were isolated from colostral samples obtained from nursing mothers with high titers of anti-A isoagglutinins in serum. Each of these samples was handled separately in the preparative procedure. Colostral samples were centrifuged at 10,000g. The supernatant minus the fat, was then passed through a cross-linked blood group A substance column as previously described (4) after the methods of Moreno and Kabat (5). The antibodies were eluted with the immunodominant sugar, *N*-acetyl galactosamine, dialyzed extensively against 0.85% NaCl, concentrated with Aquacide II (Calbiochem), and subjected to sucrose density gradient ultracentrifugation (10-40%). Only the 11S portions of the gradients were used in the study since the heavier fractions were invariably contaminated with γ M (see Fig. 1). The 11S frac-

tions were pooled, dialyzed and concentrated. The concentrations of secretory γ A were determined by radial immunodiffusion using an 11S colostral γ A standard. The concentrations were also checked by absorbance at 280 nm employing an extinction coefficient of 1.39 (1). The final preparations were tested for possible impurity in radial immunodiffusion with potent anti- γ and γ - μ chain specific antisera, adjusted to give a lower level of sensitivity of between 10-25 μ g/ml.

Serum with high anti-A isoagglutinin titers was treated similarly to colostrum, and the 7S and 19S fractions of the gradient pooled separately. γ G and γ M concentrations were determined by radial immunodiffusion using pure γ G and γ M as standards.

White cell preparations. Neutrophils were prepared from blood group A donors' blood samples by the method of Spriggs and Alexander (6), using heparinized blood. Neutrophil-rich preparations were washed in buffered 20% fetal calf serum (FCS) and suspended in 30% FCS. FCS was absorbed with kaolin (4 g/100 ml) to remove nonspecific red cell agglutinins, centrifuged, filtered through a 0.22 μ m Millipore filter, and stored in sterile flasks at 4° until used.

Monocyte monolayers were prepared on flying cover slips in Leighton tubes by the method of Cline and Lehrer (7). In some experiments monocyte-neutrophil monolayers were prepared from the whole leukocyte dextran suspensions (7).

Sensitization and phagocytosis experiments. Blood group A red cells were obtained from heparinized blood and washed three times in buffered saline. To 0.02 or 0.04 ml of red cells (at a hematocrit of 50%) was added an equal volume of sensitizing antibody solution. The preparation was incubated in siliconized glass tubes for 1 hr at room temperature. The concentrations of immunoglobulins were ex-

¹ Supported by grants from the Medical Research Council of Canada.

pressed as micromoles per liter using molecular weights of 1,000,000 for γ M and 385,000 for secretory γ A (1) in order to make a functional comparison more effective, since each preparation consisted of pure antibody.

Sensitized cells were centrifuged at 1000*g* and resuspended in 0.1 or 0.2 ml Krebs-Ringer buffer (8) containing 2×10^{-5} M for calcium and 5.5×10^{-3} M glucose. One milliliter of a neutrophil preparation was incubated with 0.1 or 0.2 ml sensitized cells at 37° for 1 hr in siliconized glass tubes. A minimum of 100 neutrophils were counted in wet smears and expressed as the percentage of cells exhibiting attachment or phagocytosis.

To each monocyte monolayer in 1 ml of Krebs-Ringer buffer in 30% FCS on flying cover slips was added 0.02 or 0.04 ml of erythrocytes, sensitized as indicated before, in 0.1 or 0.2 ml of buffer. The preparations were incubated in a moist chamber at 37° for 1 hr. The fluid and nonadherent cells were removed by suction, and the cover slips were washed gently twice with 0.5 ml of buffered FCS at 37°, air-dried and stained with May-Grunwald-Giemsa stain. Enumeration of phagocytosis was performed as for the neutrophils.

Results. When γ M was used to sensitize red cells no attachment or phagocytosis by either monocytes or neutrophils was seen at concentrations between 0.001 and 0.14 μ moles/liter. By comparison, γ G at a concen-

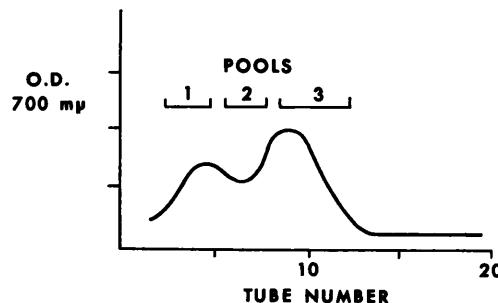


FIG. 1. Distribution of protein eluted from a cross-linked blood group A substance column by *N*-acetyl galactosamine, subjected to 10-40% sucrose density gradient ultracentrifugation. The bottom of the gradient is to the left. Pool 2 contains the 11S antibody.

TABLE I. Monocyte Phagocytosis of γ M Anti-A Sensitized Erythrocytes.

γ M concn (μ moles/liter)	Serum	% Phagocytosis*
0.001	Fresh	20
	Heated ^b	1
0.003	Fresh	43
	Heated	0
0.003	Fresh	81.5
	Heated	1.5

* Percentages of cells showing ingestion or attachment of more than 2 red cells.

^b Heated to 56° prior to use.

tration of 0.07 μ moles/liter gave rise to between 7.5 and 17.5% phagocytosis by monocytes. At a γ G concentration of 0.16 μ moles/liter 44% phagocytosis by monocytes was induced.

When fresh group A human serum was added as a source of human complement, 20% of monocytes showed ingestion of, or attachment to, red cells with γ M at a sensitizing concentration of 0.001 μ moles/liter (Table I). At a concentration of 0.003 μ moles/liter between 43 and 81% of monocytes showed binding or ingestion of red cells sensitized with γ M in the presence of fresh serum. This phenomenon occurred with both monocytes and neutrophils. Heating of the serum complement source to 56° for 30 min prior to use abolished phagocytosis with both cell types (Table I).

Secretory γ A preparations at concentrations between 0.06 and 0.2 μ moles/liter without a complement source did not induce binding or phagocytosis in either neutrophils or monocytes. When fresh serum was added to the system, however, phagocytosis by both neutrophils and monocytes occurred, which was abolished by prior heat inactivation (Tables II and IV).

Since such small amounts of γ M antibody had been shown to be active in our system (0.001 μ moles/liter), a rabbit anti- μ chain antiserum was cross-linked to agarose beads by the cyanogen bromide technique (9) and used to absorb the secretory γ A preparation. The μ chain antiserum was prepared against the Fc fragment of γ M (10) and was rendered monospecific by absorption with γ G. After absorp-

TABLE II. Monocyte Phagocytosis of Secretory γ A Anti-A Sensitized Erythrocytes.

γ A (μ moles/liter)	Serum	% Phagocytosis
0.06	Fresh	15
	Heated ^a	0
0.2	Fresh	63
	Heated	0

^a Heated to 56° prior to use.

tion of the secretory γ A preparation with the cross-linked antiserum binding and phagocytosis were abolished (Table III). Similarly, absorption of a γ M preparation with the cross-linked anti- μ antiserum removed all activity.

Different preparations of secretory γ A at the same molar concentrations were observed to give highly inconsistent results. The results of another experiment are presented in Table IV in which a much lower functional activity was found with the γ A preparation. In this experiment 4000 cells of each type were counted. Absorption with the γ M antiserum removed activity both from the γ A preparation alone, and a γ A preparation to which γ M antibody had been added.

Discussion. We have shown in this study that human 11S secretory γ A isoagglutinin does not opsonize blood group A red cells for phagocytosis by either monocytes or neutrophils, with or without an added source of complement. No evidence for a γ M receptor site was seen in human monocytes in contradistinction to the report of Lay and Nussezniewig (11) with mouse macrophages. Fur-

ther, pure secretory γ A in the present study at several hundred times the minimum effective concentration of γ G, and at several times the minimum effective concentration of γ M, did not show opsonization capacity or ability to induce binding.

Our conclusion conflicts with a recent report using human colostral γ A and blood group B red cells (12), in which evidence for

TABLE IV. Effect of Absorption with Anti- μ Chain Antiserum on Monocyte and Neutrophil Phagocytosis of γ A and γ M Sensitized Erythrocytes.

Sensitization with	% Phagocytosis ^a			
	γ A (μ moles/liter)	γ M (μ moles/liter)	Monocytes	Neutrophils
Buffer control			0	0.13
0.19 Unabs.	—		6.5	3.25
0.17 Abs.	—		0.2	0.45
0.19 ^b +	0.006 Unabs.		69.5	61.0
0.19 ^b +	0.006 Abs.		0.5	0.04

^a Percentages of 4000 cells. Monocytes and neutrophils were prepared on flying cover slips in Leighton tubes (see Methods).

^b The antibody preparations were mixed prior to sensitization. Absorption experiments were performed on the mixtures.

complement dependent opsonization was obtained with both neutrophils and macrophages. The reasons for the disparity are not clear. No absorptions of the γ A preparations with a γ M immunoabsorbent were apparently performed in the latter study. Since we have shown that such minute quantities of γ M antibody can opsonize in a similar system, such absorption experiments must be

TABLE III. Effect of Absorption with Anti- μ Antiserum on Monocyte Phagocytosis of γ A and γ M Anti-A Sensitized Erythrocytes in the Presence of Fresh Serum.

Sensitization with		% Phagocytosis	Antibody concn (μ g/ml)
γ A (μ moles/liter)	γ M (μ moles/liter)		
0.2 Unabs.	—	63	77
0.18 Abs.	—	0	66
—	0.003 Unabs. ^a	43	3 ^a
—	0.003 Abs. ^a	0	0 ^b

^a These calculations are based on the original concentration of γ M antibody before dilution.

^b This value is assumed on the basis of the functional effects of absorption, and since the concentration of γ M was below the level of sensitivity of detection.

considered essential. In our study we have used a pure 11S secretory γ A preparation. In the former study there was probably a mixture of polymeric forms. Neither 7S serum γ A (13) nor 11S secretory γ A fixes complement (14). Recent evidence that myeloma γ A, aggregated by chemical means, will activate the complement system through the bypass system (15) has prompted us to examine this with the same γ A preparations utilized in the present report. No positive evidence for Cl fixation or bypass activity by 11S secretory γ A has been found with this blood group A antigen-antibody system (Colten and Bienenstock, unpublished data).

In our general conclusions, we are supported by the recent studies of Huber *et al.* (16) who were unable to show monocyte binding or ingestion of red cells with secretory γ A chemically bonded to their surface. In addition, Eddie, Schukkind and Robbins (17), and Wilson (18) have been unable to show phagocytosis of bacteria sensitized by secretory γ A. Further, Lascelles, Gurner and Coombs (19) have not detected γ A on the surface of colostral macrophages using the sensitive mixed antiglobulin technique. However, Knop *et al.* (20) have demonstrated *E. coli* phagocytosis by pig colostral γ A preparations in a mouse peritoneal macrophage system. As fully discussed in the latter report the levels of impurities in the immunoglobulin preparations might have accounted for the results on the basis of the extraordinarily high biological activity of γ M in such a system. It is also possible that polymeric secretory γ A may have a different biological function from the naturally occurring 11S form. This possibility would account for some of the differences in those reports reviewed above and the present study.

Further investigations of the possible biological function of the secretory γ A molecule are to be encouraged, since despite its undoubtedly biological significance, the mechanisms of its action remain obscure.

Summary. Pure human colostral 11S secretory γ A anti-A isoagglutinin was compared with serum γ G and γ M as to opsonic activity against A red cells in a system containing either human monocytes or neutrophils. Some

preparations of secretory γ A had functional activity only in the presence of fresh serum. This activity could be absorbed out by a cross-linked anti- μ chain antiserum. No evidence was found to support the view that 11S secretory γ A has an opsonic function in this system.

1. Tomasi, T. B., and Bienenstock, J., in "Advances in Immunology" (F. J. Dixon, Jr., and J. H. Humphrey, eds.), Vol. 9, p. 1. Academic Press, New York (1968).
2. Bienenstock, J., Can. Med. Ass. J. **103**, 39 (1970).
3. Heremans, J. F., and Vaerman, J.-P., in "Progress in Immunology" (B. Amos, ed.), p. 875. Academic Press, New York (1971).
4. Bienenstock, J., and Strauss, H., J. Immunol. **105**, 274 (1970).
5. Moreno, C., and Kabat, E. A., J. Exp. Med. **129**, 871 (1969).
6. Spriggs, A. T., and Alexander, R. F., Nature (London) **188**, 863 (1960).
7. Cline, M. J., and Lehrer, R. I., Blood **32**, 423 (1968).
8. Umbreit, W. W., Burris, R. H., and Stauffer, J. F., in "Manometric Techniques." Burgess, Minneapolis (1957).
9. Cuatrecasas, P., and Anfinsen, C. B., Annu. Rev. Biochem. **40**, 259 (1971).
10. Plaut A., and Tomasi, T. B., Proc. Nat. Acad. Sci. USA **65**, 318 (1970).
11. Lay, W. H., and Nussenzweig, V., J. Immunol. **102**, 1172 (1969).
12. Kaplan, M. E., Dalmasso, A. P., and Woodson, M., J. Immunol. **108**, 275 (1972).
13. Ishizaka, T., Ishizaka, K., Borsos, T., and Rapp, H., J. Immunol. **97**, 716 (1966).
14. South, M. A., Cooper, M. D., Wollheim, F. A., and Good, R. A., J. Exp. Med. **123**, 615 (1966).
15. Muller-Eberhard, H. J., in "Progress in Immunology" (B. Amos, ed.), p. 563. Academic Press, New York (1971).
16. Huber, H., Douglas, S. D., Huber, C., and Goldberg, L. S., Int. Arch. Allergy Appl. Immunol. **41**, 262 (1971).
17. Eddie, D. S., Schukkind, M. L., and Robbins, J. B., J. Immunol. **106**, 181 (1971).
18. Wilson, I. D., J. Immunol. **108**, 726 (1972).
19. Lascelles, A. K., Gurner, B. W., and Coombs, R. R. A., Aust. J. Exp. Biol. Med. Sci. **47**, 349 (1969).
20. Knop, J., Breu, H., Wernet, P., and Rowley, D., Aust. J. Exp. Biol. Med. Sci. **49**, 405 (1971).

Received Sept. 1, 1972. P.S.E.B.M., 1973, Vol. 142.