

Effect of Growth Hormone on Plasma Triglycerides in Man¹ (37498)

F. AZIZI,² W. P. CASTELLI, M. S. RABEN,³ AND M. L. MITCHELL⁴

*Lemuel Shattuck Hospital, Framingham Heart Study, New England Medical Center Hospital
and the Department of Medicine, Tufts University School of Medicine,
Boston, Massachusetts 02111*

The rapid mobilization of free fatty acids following the administration of human growth hormone has been demonstrated repeatedly (1-4). More recently, studies have shown that the elevation in plasma free fatty acids can persist for at least 12 hr in normal subjects after a single 10 mg intramuscular dose of human growth hormone (5). Since circulating plasma free fatty acids are considered to be a major source of endogenous triglycerides (6-8), and an increase in fatty acids may be followed by increase in other lipids, plasma was examined for changes in triglyceride and cholesterol 12 hr after the administration of growth hormone. In view of the recognized lipid abnormalities in diabetics, it seemed possible that the effects might be enhanced in such subjects. The effect of a single dose of human growth hormone on plasma triglycerides and cholesterol was therefore studied in both diabetic and nondiabetic persons.

Methods. Control plasma cholesterol and triglycerides were measured after an overnight fast of at least 12 hr. Ten units of human growth hormone were administered intramuscularly at 8 PM and plasma cholesterol and triglycerides were measured in plasma obtained 12 hr later. Cholesterol was measured by the method of Abel *et al.* (9), and the triglyceride determination was done by the method of Kessler and Lederer (10).

¹ This study was supported by Grants HL05391, HL06924, and AM01567 from the U.S. Public Health Service.

² Present address: St. Elizabeth's Hospital, Brighton, MA.

³ Recipient of a Research Career Award, National Institutes of Health, U.S. Public Health Service.

⁴ Present address: State Laboratory Institute, Boston, MA 02130.

The groups were composed of:

1. Three female and 3 male adult-onset diabetics who were not insulin dependent and 10 controls matched for age and sex without hyperglycemia, hypercholesterolemia or hypertriglyceridemia.

2. Six normal young men with no family history of diabetes mellitus and with normal plasma lipids.

3. Six normal young women who were taking contraceptive pills at the time of the test.

Results. Plasma triglycerides were elevated in all diabetics 12 hr after administration of growth hormone. The mean increase was 116 mg/100 ml and ranged from 24 to 295 mg. The percentage rise over the base line values ranged from 14 to 248% with a mean of 91%. In the control group, plasma triglycerides decreased in 2, with little change in 4, and moderate increase in another 4 subjects. The percentage change ranged from -13% to +35% with a mean of +10%. Although the base line values were not statistically different between diabetics and nondiabetic controls, the difference was significant ($p < 0.005$) after growth hormone administration. The percentage increase in plasma triglycerides was also significant. Changes in plasma cholesterol were not constant and there was no difference between the two groups (Table I). In the only two patients tested, plasma triglycerides continued to be elevated 36 hr following administration of growth hormone.

In normal young men, the responses were erratic but the increase for the group in plasma triglycerides 12 hr following growth hormone administration was significant (Table II). Plasma triglycerides increased substantially in 4 and remained unchanged in 2. The mean increment was 41 mg/100 ml with a

TABLE I. Effect of 10 mg Human Growth Hormone on Plasma Lipids in Diabetics and Nondiabetic Controls.

Age/sex	Plasma triglycerides (mg/100 ml)				Plasma cholesterol (mg/100 ml)	
	Pre-GH	Post-GH	Absolute change (mg %)	Change (%)	Pre-GH	Post-GH
Diabetics						
1	48-F	119	414	+295	+248	163
2	59-F	123	251	+128	+104	240
3	69-F	270	308	+38	+14	307
4	60-M	167	191	+24	+14	201
5	69-M	80	151	+71	+89	228
6	70-M	184	323	+139	+75	276
Mean		157	273	+116	+91	235
SD		67	96	99	86	52
Paired <i>t</i> test		<i>p</i> < 0.05				NS
Nondiabetic controls						
7	47-F	84	75	-9	-11	240
8	52-F	134	154	+20	+15	237
9	52-F	106	114	+8	+7	308
10	54-F	135	118	-17	-13	264
11	60-F	61	79	+18	+30	214
12	60-M	66	66	0	0	167
13	60-M	113	111	-2	-2	285
14	62-M	164	221	+57	+35	220
15	63-M	75	76	+1	+1	150
16	69-M	136	160	+24	+18	192
Mean		107	117	+10	+10	228
SD		35	49	21	21	50
Paired <i>t</i> test		NS				NS

range of 2 to 89 mg. The percentage change ranged from 2 to 124% with a mean of 56%. Triglycerides also increased in the normal young women on contraceptive pills. The increase was not significant at the $p = 0.05$ level by the paired *t* test, but was significant by the sign test (Table III). The percentage increase for the group was the same as for the young men (56%), but the base line value before growth hormone was higher, 102 versus 71 mg/100 ml. Plasma cholesterol was not changed in any group.

Discussion. Previous studies on the relationship between growth hormone and fat metabolism in man have been concerned largely with the interaction between growth hormone and acute changes in plasma free fatty acid (1-5). The studies reported here have examined the early response of plasma triglycerides and cholesterol to human growth

hormone.

It seems clear from the results that a single dose of growth hormone can raise plasma triglycerides, and that this effect is most marked in diabetic subjects. Since circulating free fatty acids are considered to be a major source of endogenous triglycerides (6-8), the mobilization of fatty acids by growth hormone might be a contributing factor in the elevation of plasma triglycerides frequently seen in diabetics (11). Considering that plasma triglycerides continue to remain elevated for 12 to 36 hr after a single injection of growth hormone, it seems reasonable to speculate on the significance of growth hormone in diabetics. In view of recent findings which demonstrate higher growth hormone levels in diabetics (12) than in normals, one wonders whether the failure of normal control of secretion of growth hormone contrib-

TABLE II. Effect of 10 mg Human Growth Hormone on Plasma Lipids in Normal Young Men.

Subject	Age	Plasma triglycerides (mg/100 ml)				Plasma cholesterol (mg/100 ml)	
		Pre-GH	Post-GH	Absolute change (mg %)	Change (%)	Pre-GH	Post-GH
17	22	34	52	+18	+ 52	198	212
18	23	72	120	+48	+ 67	207	198
19	27	65	69	+ 4	+ 6	183	183
20	27	87	89	+ 2	+ 2	229	213
21	28	101	190	+89	+ 88	182	185
22	29	67	150	+83	+124	195	188
Mean		71	112	+41	+ 56	199	196
SD		23	52	39	47	17	13
Paired <i>t</i> test		<i>p</i> < 0.05				NS	

utes to the elevated plasma triglycerides.

The marked difference in the response of triglycerides between diabetics and normals raises the question of using the response to growth hormone as a means of identifying potential diabetics while they are still asymptomatic. Before such a prospective study could be undertaken, additional tests would have to be performed on large numbers of normals, prediabetic and overtly diabetic subjects. Juvenile-type diabetics were not included in this study, mainly because of their insulin dependency which makes the interpretation of data difficult, and because of their tendency to ketoacidosis following administration of growth hormone.

The importance of growth hormone in cho-

lesterol metabolism and in prevention of hypercholesterolemia in athyroid rats has been stressed in recent reports (13, 14). The suggestion has been made that the effect of growth hormone is mediated via stimulation of pancreatic alpha cells with the subsequent discharge of glucagon (15). Recently, the same workers found that, after 1 wk of treatment with human growth hormone at a dose of 5 mg every 12 hr intramuscularly, the serum cholesterol was lowered and the triglycerides were raised in "coronary-prone (type A)" hypercholesterolemic subjects (16). In the present study, there was no consistent change in plasma cholesterol 12 hr following a single administration of growth hormone in man.

TABLE III. Effect of 10 mg Human Growth Hormone on Plasma Lipids in Young Women on Oral Contraceptive Pills.

Subject	Age	Plasma triglycerides (mg/100 ml)				Plasma cholesterol (mg/100 ml)	
		Pre-GH	Post-GH	Absolute change (mg %)	Change (%)	Pre-GH	Post-GH
23	25	121	149	+ 28	+ 23	191	192
24	24	66	122	+ 56	+ 85	168	143
25	22	89	106	+ 17	+ 19	145	161
26	27	204	429	+225	+110	266	264
27	23	48	77	+ 29	+ 60	203	197
28	31	86	122	+ 36	+ 42	214	217
Mean		102	167	+ 65	+ 56	198	196
SD		55	130	79	36	42	43
Paired <i>t</i> test		NS				NS	
Sign test		.031				NS	

The higher base line values of triglyceride in the young women on contraceptive pills compared with the young men is consistent with the observations that a rise in plasma triglycerides frequently occurs with the use of oral contraceptives (17-20). An increase in endogenous growth hormone may contribute to the rise in triglyceride since it has been observed that women on contraceptive pills secrete about 3 times as much growth hormone as other normal premenopausal women (2.59 vs 0.85 mg/24 hr) and almost 4 times as much as adult males (0.68 mg/24 hr) (21).

Summary. Twelve hours after the intramuscular administration of a single 10 mg dose of human growth hormone (HGH), fasting blood samples were obtained and analyzed for levels of triglycerides and cholesterol. Growth hormone was found to raise fasting plasma triglycerides significantly in a group of 6 middle-aged and elderly diabetic subjects but not in 10 nondiabetic middle-aged and elderly controls. Smaller and less consistent increases were also observed in a group of 6 normal young men and in 6 young women who were taking contraceptive pills at the time. In no group was there any significant change in plasma cholesterol level 12 hr following growth hormone administration.

1. Raben, M. S., and Hollenberg, C. H., *J. Clin. Invest.* **38**, 484 (1959).
2. Henneman, D. H., and Henneman, P. H., *J. Clin. Invest.* **39**, 1239 (1960).
3. Mautalen, D., and Smith, R. W., Jr., *J. Clin. Endocrinol.* **24**, 494 (1964).
4. Schwarz, F., Van Riet, H. G., and Schopman,

- W., *Metabolism* **15**, 194 (1966).
5. Mitchell, M. L., Raben, M. S., and Ernesti, M., *Diabetes* **19**, 196 (1970).
6. Havel, R. J., *Metabolism* **10**, 1031 (1961).
7. Friedberg, S. J., Klein, R. F., Trout, D. L., and Bogdanoff, M. D., *J. Clin. Invest.* **40**, 1846 (1961).
8. Nestel, P. J., Carroll, K. F., and Havenstein, N., *Metabolism* **19**, 1 (1970).
9. Abel, L. L., Levy, B. B., Brodie, D. B., and Kendall, F. E., in "Standard Methods of Clinical Chemistry" (D. Seligson, ed.), Vol. 2. Academic Press, New York (1958).
10. Kessler, G., and Lederer, H., in "Technicon Symposia Automation in Analytical Chemistry" (L. T. Skeggs, Jr., ed.). Mediad, New York (1966).
11. Fredrickson, D., Levy, R. I., and Lees, R. S., *N. Engl. J. Med.* **276**, 274 (1967).
12. Yde, H., *Acta Endocrinol.* **64**, 339 (1970).
13. Friedman, M., Byers, S. O., and Elek, S. R., *Nature (London)* **225**, 464 (1970).
14. Byers, S. O., Friedman, M., and Rosenman, R. H., *Nature (London)* **228**, 464 (1970).
15. Friedman, M., Byers, S. O., and Rosenman, R. H., *Lancet* **2**, 464 (1971).
16. Friedman, M., Byers, S. O., Rosenman, R. H., and Li, C. H., *Proc. Soc. Exp. Biol. Med.* **141**, 76 (1972).
17. Aurell, M., Cramer, K., and Rybo, G., *Lancet* **1**, 291 (1966).
18. Wynn, V., Doar, J. W. H., and Milis, G. L., *Lancet* **2**, 720 (1966).
19. Wynn, V., Doar, J. W. H., Milis, G. L., and Stokes, T., *Lancet* **2**, 756 (1969).
20. Gershberg, H., Hulse, M., and Javier, Z., *Obstet. Gynecol.* **31**, 186 (1968).
21. Thompson, R. G., Rodriguez, A., Kowarski, A., and Blizzard, R. M., *J. Clin. Invest.* **51**, 3193 (1972).

Received Apr. 9, 1973. P.S.E.B.M., 1973, Vol. 143.