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A specific acidic glucose 6-phospha- 
tase (~-glucose-6-phosphate hydrolase, EC 
3.1.3.9) has been prepared from the small 
intestine of a number of animals and from 
human jejunum (1-3). In rat small intes- 
tine, however, it has not been possible to 
show directly the presence of the specific 
glucose 6-phosphatase (4, S ) . Salomon 
et d. (6) have shown that the guinea pig 
intestinal glucose 6-phosphatase is inhibited 
by rat intestinal homogenate due to the 
presence of an inhibitor of this enzyme in 
the rat tissue. This indicates that glucose 
6-phosphatase may be present in the rat 
intestine but not demonstrable due to 
endogenous inhibition. The inhibition of 
rabbit intestinal glucose 6-phosphatase by 
the rat intestinal homogenate, shown by 
Lygre and Nordlie (7 ) ,  supports the find- 
ing of Salomon et al. (6). In this study 
we made kinetic determinations of the phos- 
phohydrolytic activity of the homogenates 
of rat intestinal mucosa and delineated dif- 
ferences in the hydrolysis of glucose l-phos- 
phate (G 1 P )  and glucose 6-phosphate 
(G6P). 

Methods. The upper 15-cm segments of 
everted intestines from Albino rats were 
blotted and scraped. Homogenates (0.2 g% , 
w/v) of mucosal scrapings were prepared 
in a diluent of one part Kreb's-Ringer 
bicarbonate and three parts S O  mM tris 
(hydroxymethyl) aminomethane-HC1 buffer 
(Tris), pH 8.00, using a Teflon-glass tis- 
sue grinder. The total N contents of the 
homogenates were determined by the mi- 
crokjeldahl method (8). 

The phosphatase reaction was initiated 
by adding 1 ml homogenate to 1 ml of 
disodium G6P or disodium G1P solution 
in S O  mM Tris, pH 8.00. The incubation 
period at 37" and initial G1P and G6P 
concentrations were chosen to yield linear 
reaction with time. The reaction vessel was 
transferred to a boiling water bath for 2 
min to stop the reaction. The amount of 
free glucose and/or inorganic phosphate 
(Pi) was then analyzed to estimate the 
phosphatase activity. The methods of analy- 
sis of glucose and Pi have been reported 
elsewhere (9 ) . 

The phosphoglucose isomerase activity 
was estimated by simultaneous measure- 
ments of amounts of Pi and fructose 
6-phosphate formed. The latter compound 
was quantitated by the method of Roe et al. 
( 10). Absorbance of incubation medium 
with and without added sodium triphos- 
phopyridine nucleotide (TPN) at 340 nm 
was monitored to measure glucose 6-phos- 
phate dehydrogenase activity. This proce- 
dure allowed quantitation of reduced tri- 
phosphopyridine nucleotide (TPNH) and 
was also used for determination of phospho- 
glucose mutase activities in reaction mix- 
tures containing G1P with and without 
purified yeast glucose 6-phosphate dehy- 
drogenase (Calbiochem) . All incubations 
were carried out at 37". 

Results. The enzyme activity with G1P 
and G6P was proportional to the total nitro- 
gen contents of the homogenates over the 
following range: 0.010 to 0.032 mg/ml. 
Total nitrogen in 40 homogenate prepara- 
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TABLE I. Products Formed in G l P  and G6P 
Hydrolysis. 

~ 

~ 1 ~ 5  G6Pb 

Expt. Glucose Pi Glucose Pi 

1 2.23 2.83 2.98 2.81 
2 2.00 1.76 4.32 3.33 
3 2.23 2.23 3.42 3.29 
4 2.13 2.04 3.86 3.76 
5 - - 4.20 4.44 

=Values have units of pmoles/ (mg total N x 

I, Values have units of pmoles/ (ml homoge- 
min) . 

nate x hr) . 

tions employed in G1P and G6P hydrolysis 
was 0.022 k 0.0015 (mean k SE) mg/ml. 
A proportionality was also observed be- 
tween the two products, glucose and Pi, in 
G6P and G1P hydrolysis (Table I ) .  

The phosphatase and phosphoglucose 
isomerase activities are given in Table 11. 
The means of 6 determinations of glucose 
6-phosphate dehydrogenase and 13 deter- 
minations of phosphatase activity under 
similar conditions, respectively, were: 0.08 
pmole TPNH/ml homogenate and 3.40 
pmoles Pi/ml homogenate. The presence of 
phosphoglucomutase activity in the tissue 
was shown only when exogenous TPN as 
well as purified glucose 6-phosphate dehy- 
drogenase was added. In the absence of the 
added dehydrogenase enzyme and TPN, 
however, the mutase activity was not 
detectable. 

The initial velocities (v) at 7 G1P con- 
centrations, ranging from 1.41 to 9.15 mM, 

TABLE 11. Paired Comparison of Phosphoglucose 
Isomerase (PGI) and Phosphatase (PH) Activities. 

Expt. PH5 P G I ~  PGI/PH x 100 

1 3.51 0.57 16.30 
2 3.28 0.56 16.97 
3 3.29 0.36 10.96 
4 3.33 0.40 11.86 
5 3.42 0.30 8.87 
6 1.75 0.30 17.54 
7 1.75 0.31 17.82 

Values have units of prnolesl (ml homogenate x 
hr) . 20 mM G6P was used as substrate. 
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FIG. 1. Lineweaver-Burk plot of the hydroly- 
sis of G1P. Regression line is shown in the graph; 
y-intercept is 2.10 x lo5 and slope is 3.35 X 10'. 
K ,  (slope/y-intercept) = 1.69. 

were determined in homogenates from 5 
different animals. The Lineweaver-Burk 
plot (drawn by a regression analysis) of 
the mean reciprocal velocities and the re- 
ciprocal substrate concentrations is shown 
in Fig. 1. Figure 2 shows a similar plot of 
the hydrolysis of G6P by homogenates from 
six different animals. Six initial G6P con- 
centrations, 3.25 to 19.65 mM, were used. 
The apparent Michaelis constant (Km) 
calculated from these plots is 1.69 mM for 
G1P and 4.37 mM for G6P. The K ,  and 
maximum velocity (Vmax) values and the 
K,/V,,, ratios are given in Table 111. A 
comparison of mean K ,  values for G1P 
and G6P hydrolysis shows a significant dif- 

l t  

FIG. 2. Lineweaver-Burk plot of the hydrolysis 
of G6P. Regression line is shown in the graph; 
y-intercept is 1.45 X lo5 and slope is 6.33 X 10'. 
K ,  (slope/y-intercept) = 4.37. 
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?‘.IBI,E 111. K?,, and Jf , , , , ,  I’alues for the Hydrolysis of G1P and G6P. 

K m ”  V , , , * X b  Knl / v m a ,  
- 

i\n imal G1P GGP G1P G6P G1 I’ G6P 

1 
2 
3 
4 
5 
6 

Mean 
P 

2.02 8.61 
1.48 4.22 
1.07 2.81 
1.95 3.94 
2.01 1.88 
- 3.99 

1.71 4.58 
<0.05 

5 .62 12.66 0.36 0.68 
4.63 6.80 0.32 0.61 
3.98 6.10 0.27 0.45 
5 3 6  10.42 0.35 0.56 
3 2 9  3.91 0.37 0.4.5 
- 5 .95 - 0.67 

5.02 7.65 0.34 0.57 
>0.05 

‘I m ICI . 
’’ pmoles glucose formed/ (mg total N x min) . 

ference (P < 0.05). The V m a x  values for 
the two substrates were not significantly 
different. A variability in the K ,  values 
within each substrate group and in the 
V m a x  values of both substrates was observed 
and could not be accounted for by experi- 
mental error alone. 

Discussion. The phosphoglucose isomer- 
ase and the glucose 6-phosphate dehy- 
drogenase activities, respectively, were ap- 
proximately 14 and 3% of the phosphatase 
activity in the mucosal homogenates. The 
utilization of G1P or G6P by the mucosal 
phosphoglucomutase was negligible. Studies 
of Villar-Palasi and Larner (11) have 
shown that rat intestinal mucosa contains 
extremely low quantities of the enzyme 
phosphorylase. These authors have also re- 
ported that the phosphorylase activity was 
equal to less than 1% of the phosphogluco- 
mutase activity. It appears that in rat intes- 
tinal mucosa phosphatase activity is more 
prevalent than other phosphoglucose-utiliz- 
ing enzyme systems. Thus, influence of 
enzymes other than phosphatase on the 
“apparent K,” measurements of G1P and 
G6P hydrolysis might not be significant. 

Since the Lineweaver-Burk plots of G1P 
and G6P hydrolysis were reasonably linear, 
we assumed that the reactions conformed 
to the following Michaelis-Menten scheme : 

K~ Enzyme + En:yme 5 Enzyme-Sub. ~ 

Substrate - Ks Comp‘ex (s Product 
According to this scheme, V , , ,  = K ,  X e 

(where e = enzyme concentration), and 

(12). Should the Vmax variation observed in 
homogenates of different animals be due to 
enzyme concentration differences and be 
independent of changes in K, ,  one would 
not observe variability in K m  determinations. 
Since K,, variation within each substrate 
group was observed, the Vmax variation in 
all probability was the result of changes in 
K ,  as well. This would mean that K ,  can- 
not be equal to K , / K ,  in the hydrolysis of 
G 1P or G6P. Lumrey et al. ( 13) interpreted 
K,,, as equal to K J K ,  because of the oc- 
currence of proportional changes in K,. and 
Vmax values. Dixon and Webb (14) state that 
if K 2  is negligible for an enzyme, any factor 
that would produce a change in V,,, would 
change Km proportionately. These general- 
izations seem to apply to the data pre- 
sented in this report, as the K,/VmX ratio 
was constant for G1P or G6P (see Table 
111). This would mean that K m  values in 
all likelihood were equal to K J K , .  As K ,  
is equal to V m a x / e ,  Km would be equal to 
Vm,x/K, X e and the ratio Kqn/VmaX equal 
to 1/K, X e .  It becomes possible then to 
approximate the value of the quantity 
K ,  X e from the K.m/Vma, ratio. Assuming 
that roughly equal quantities of enzymes 
were employed in G1P and G6P reactions, 
a ratio of K 1 ( G I P ) / K 1 ( G G P )  can be calculated. 
This ratio has a value of 1.65 and indicates 
that the constant K , ,  which describes the 
formation of the enzyme-substrate com- 
plex, for G1P hydrolysis is significantly 

Km = K2/K1, ( K ,  + K , ) / K , ,  or K3/K1 
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higher (68% ) than that for G6P hydroly- 
sis. Although statistically significant differ- 
ences were present in the K ,  values for 
G1P and G6P, the variability of this param- 
eter in intestinal homogenates of different 
animals was too large to substantiate the 
difference. The estimated difference between 
the K ,  values for the two phosphoglucose 
esters was clearly substantial because of 
much smaller variance in the K m / V m x  
ratios. 

Our observations indicate that the ratio 
of K ,  for G1P and G6P hydrolysis calcu- 
lated from K m  and V,,, determinations is 
a better criterion for differentiating the two 
hydrolytic reactions than the kinetic param- 
eter of K m  itself. As pointed out by Slater 
(15), knowledge of K ,  is valuable in 
evaluating the functional capacity of en- 
zymes in vivo. This constant describes the 
rate of formation of the enzyme-substrate 
complex at concentrations of substrate that 
may exist physiologically and not near the 
level of concentration required to saturate 
the enzyme. 

Summary. The enzymatic hydrolysis of 
glucose 1 -phosphate (G 1P) and glucose 
6-phosphate (G6P) by homogenates of rat 
intestinal mucosa was quantitated. These 
substrates were not utilized by enzymes 
other than phosphatases to any appreciable 
extent. The mean K m  value for the hydroly- 
sis of G6P was higher (4.3 mM) than 
that for G l P  (1.69 mM). A variability 
was observed in K,, values in each substrate 
group. However, the KJV,,, ratio was 
constant for each of the two substrates. 
Such proportional changes in K m  and V,,, 
values allow the approximation of the rate 
constant ( K , )  related to the formation of 
the enzyme-substrate complex. The K ,  

value thus estimated for G1P was approxi- 
mately 1.68 times that for G6P. 
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