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Abstract. Satellite cells are myogenic cells attributed with the role of postnatal growth 
and regeneration in skeletal muscle. Following proliferation and subsequent differentia- 
tion, these cells will fuse with one another or with the adjacent muscle fiber, thereby 
increasing myonuclei numbers for fiber growth and repair. The potential factors which 
could regulate this process are many, including exercise, trauma, passive stretch, 
innervation, and soluble growth factors. Three classes of growth factors in particular 
(fibroblast growth factor, insulin-like growth factor, and transforming growth factor-8) 
have been studied extensively with respect to their effects on satellite cell proliferation 
and differentiation in culture. Fibroblast growth factor has been shown to stimulate 
proliferation but depress differentiation. Insulin-like growth factor stimulates both prolif- 
eration and differentiation, although the latter to a much greater degree. Transforming 
growth factor-8 slightly depresses proliferation but inhibits differentiation. When admin- 
istered in combination, these factors can induce satellite cell activities in culture which 
mimic those typical of satellite cells found in wiwo in growing, regenerating, or healthy 
mature muscle. Alterations in the concentrations of these growth factors in the muscle 
environment as well as alterations in the cell’s sensitivity or responsiveness to these 
factors represent potential mechanisms for regulating satellite cell activity in situ. 
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ammalian skeletal muscle exhibits a robust 
capacity for growth and repair. In the em- M bryo, the presumptive myoblast is responsible 

for this potential. During myogenesis, these cells prolif- 
erate, differentiate, and fuse to form myotubes and 
eventual muscle fibers. In postnatal muscle, the satellite 
cell is attributed with this role. As first described by 
Mauro (l) ,  the satellite cell lies wedged between the 
basal lamina and the plasma membrane of the muscle 
fiber and is characterized by a heterochromatic nucleus, 
sparse cytoplasm with few organelles, and an absence 
of myofilaments (2). Although considered mitotically 
quiescent in healthy mature muscle (3), given the ap- 
propriate stimulus, satellite cells will proliferate and 
fuse with the adjacent fiber (4), thereby increasing 
myonuclei numbers for fiber growth and repair. 

Both in vivo and in vitro, satellite cells and embry- 
onic myoblasts appear to be functionally equivalent. 
However, recent evidence suggests that the satellite cell 
represents a unique subclass of myogenic cells (5 ) .  
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Morphologically, satellite cells and embryonic myo- 
blasts from mouse exhibited distinct cell shapes when 
grown in culture (6). Biochemically, several differences 
have been noted. The tumor-promoting agent, 12-0- 
tetradecanoylphorbol- 1 3-acetate (TPA), reversibly in- 
hibits differentiation in mouse embryonic myoblasts; 
whereas satellite cells from adult muscle appear to be 
resistant to TPA, continuing to differentiate in its pres- 
ence (7). Similarly, a differencd in sensitivity to trans- 
forming growth factor-@ (TGF-@) was demonstrated by 
Allen and Boxhorn (8); cultured neonatal rat myogenic 
cells were much more sensitive to TGF-0 than were 
satellite cells from young adult rats. With regard to the 
expression of muscle specific proteins, the accumula- 
tion of a-actin per myonucleus was considerably lower 
in myotubes derived from juvenile, adult, or aged rat 
satellite cells as compared with myotubes derived from 
neonatal myogenic cells (9). Data from Yablonka-Reu- 
veni and Nameroff (10) suggest a difference in desmin 
expression; desmin appeared in a percentage of repli- 
cating myogenic cells from late stage embryos (probable 
satellite cells) but not in cells from early embryos (pre- 
dominantly myoblasts). And finally, Cossu et al. ( 1  1) 
found that undifferentiated mouse satellite cells ex- 
pressed functional acetylcholine receptors in vitro, 
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whereas embryonic myoblasts did not. More recently, 
however, this finding has been challenged by Bader et 
al. ( 12). Satellite cells which remained attached to their 
resident muscle fiber did not exhibit electrophysiologic 
characteristics associated with functional acetylcholine 
receptors, while dissociated cells cultured for more than 
24 hr were indeed responsive to acetylcholine. These 
results suggest that perhaps the properties of the satellite 
cell are altered by the process of dissociation from the 
muscle fiber. Taken together, this latter suggestion not- 
withstanding, the data reported above support the idea 
that satellite cells do represent a distinct subset of 
myogenic cells. The question of when and from what 
source they are derived, however, remains unresolved. 

The satellite cell plays a critical role in both normal 
muscle growth and regeneration following injury. The 
significance of satellite cell activity to the process of 
postnatal growth and hypertrophy resides in the ability 
of these cells to contribute nuclei to normal muscle 
fibers. Numerous studies have demonstrated that (i) the 
nuclei of the myotube do not divide and (ii) that the 
majority of nuclei in mature postnatal muscle are added 
to fibers during postnatal life, after the formation of 
new myofibers has been completed (1 3). During rapid 
growth, satellite cell numbers are relatively high to 
provide increased DNA content for fiber growth. Then 
as growth slows, these numbers decrease to reach a 
small stable population in mature muscle, ranging from 
4 to 15% of total nuclei in the fiber. Schulz et al. (3) 
showed a virtual absence of thymidine incorporation 
in muscle-associated nuclei in normal adult mice, sup- 
porting the hypothesis that satellite cells are not mitot- 
ically active in healthy mature muscle. However, recent 
experiments have shown that when normal muscle is 
stressed, for example, by a significantly increased work- 
load (14, 15) or by prolonged muscle stretch (16), 
satellite cells become activated and reenter the replica- 
tive phase of the cell cycle to add further to the myo- 
nuclei population. 

The second major function of satellite cells is the 
regeneration of muscle fibers. Following an injury that 
results in death of fibers, satellite cells begin to prolif- 
erate rapidly in the injured muscle, and a large popu- 
lation of mononucleated myogenic cells is generated 
( 17). During later phases of regeneration, these satellite 
cells differentiate and fuse to form either fibers within 
the persisting basal lamina of the necrosed fiber or new 
fibers in a manner analogous to myogenesis (18). In 
response to a focal injury, satellite cells from remote, 
undamaged portions of the fiber will migrate to con- 
tribute to the repair of the injured area (19). The 
stimulus responsible for such rapid activation is un- 
known at present. However, Bischoff (20) has hypoth- 
esized that muscle-cell-specific mitogens are released 
from the fibers as a direct result of the injury. Murray 

and Robbins (21) proposed the release of a similar 
proliferation-enhancing signal from denervated muscle. 

As can be seen from the above discussion, the 
activation of satellite cells may be regulated by a variety 
of factors, including innervation, injury-related metab- 
olites, exercise, heredity, and blood-borne growth fac- 
tors. The remainder of this review will focus on the 
latter, soluble growth factors, and the mechanisms by 
which they could potentially regulate satellite cell activ- 
ity. 

Regulation by Protein Growth Factors 
Identification of factors that may stimulate or in- 

hibit satellite cell proliferation and differentiation has 
resulted almost exclusively from in vitro experiments 
with cultured satellite cells. Using culture procedures 
originally developed by Bischoff (22), mass cultures of 
rat satellite cells have been employed to demonstrate 
the mitogenic influence of fibroblast growth factor 
(FGF) and insulin-like growth factors (IGF-I and 11) on 
this myogenic cell type (23, 24). Furthermore, Bischoff 
(25) used a single fiber culture system to demonstrate 
the mitogenic effect of FGF on satellite cells in regen- 
erating fibers. It is important to note that the observa- 
tions on satellite cells were preceded by similar obser- 
vations on growth factor and hormone stimulation of 
myogenic cells from cell lines or embryonic muscle 
tissue (26-29). 

The most exciting new addition to the list of growth 
factors that regulate myogenesis is TGF-@. Evinger- 
Hodges et al. (30) first made the observation that a 
factor in conditioned medium from BRL cells was a 
potent inhibitor of myoblast differentiation. Subse- 
quently, Florini et al. (31) showed that this differentia- 
tion inhibitor was TGF-@. The differentiation inhibi- 
tory activity of TGF-P has been demonstrated with 
other muscle cell lines and embryonic muscle cells by 
Massague et al. (32) and Olson ef al. (33). Experiments 
conducted in our laboratory extended these observa- 
tions to satellite cells (8). 

Unfortunately, many of the muscle cell lines used 
in the growth factor work are not responsive to all three 
factors (i.e., FGF, IGF, and TGF-8). Primary cultures 
of rat satellite cells, however, are responsive to all three 
factors, and the interactions of these three factors have 
been documented (34). Using optimum concentrations 
of each factor, all possible combinations have been 
examined (Fig. 1). 

In the presence of serum-free, defined medium, 
cultured satellite cells exhibited enhanced proliferation 
but depressed differentiation when exposed to FGF 
(Fig. 1). IGF-I stimulated proliferation only to a small 
degree but stimulated differentiation profoundly. TGF- 
,8 depressed proliferation and inhibited differentiation. 
In evaluating combinations of these factors, the differ- 
entiation-inhibiting effect of TGF-@ could not be coun- 
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Figure 1. Interactions of TGF-P, IGF-I, and basic FGF in serum-free 
defined medium. Cultures were initially established in 10% Dulbecco’s 
minimal essential medium for a 48-hr period prior to replacing the 
medium with serum-free defined treatment medium. Treatment me- 
dium contained lo-’ M insulin and various combinations of TGF-P (1 
nglml). basic FGF (50 ng R&D basic FGF/ml), and IGF-I (50 ng/ml). 
Medium was replaced daily. At the end of a 72-hr treatment period, 
cultures were stained and evaluated. Total cell density (A) and per- 
centage maximum fusion (B) are presented as the means and stand- 
ard deviations of four cultures per treatment for one of three separate 
experiments (maximum fusion in this experiment was 45%). Growth 
factor combinations are indicated on the x-axis: T, TGF-P; F, basic 
FGF; and I, IGF-I. Reprinted with permission from Allen and Boxhorn 
(34). 

teracted by any combination of FGF or IGF. The 
proliferation-depressing activity of TGF-0, however, 
could not inhibit the mitogenic activity of FGF. The 
greatest stimulation of proliferation occurred in the 
presence of FGF and IGF-I, and maximum differentia- 
tion was found in cultures exposed to IGF-I, in the 
absence of TGF-P. 

Based on work in the rat satellite cell culture sys- 
tem, the primary action of IGF may be to stimulate 

differentiation when in the absence of FGF; however, 
when in the presence of FGF, the primary action may 
be to stimulate proliferation (the exception being dem- 
onstrated in Fig. 1 where significant differentiation also 
occurred in the presence of FGF as a probable result of 
the extremely high cell density). Clearly, significant 
proliferation does not occur in the absence of FGF and, 
therefore, the primary function of FGF or related mi- 
togens may be to stimulate proliferation. The most 
important role for TGF-P may be inhibiting differentia- 
tion, with its effect on proliferation being secondary. 

Based on the experiments described above, a model 
for growth factor regulation of satellite cell activity was 
generated (Table I). Satellite cells, as discussed, exist in 
a variety of states. During growth and muscle hypertro- 
phy, they proliferate and differentiate to add nuclei to 
existing fibers; in culture, active proliferation and dif- 
ferentiation are stimulated by the combination of FGF 
and IGF-I. During early phases of regeneration, the 
primary activity of satellite cells is proliferation, without 
significant differentiation or myotube formation. This 
generates a large population of mononucleated satellite 
cells in preparation for fusion and myotube formation, 
which is the predominant activity during later stages of 
regeneration. In vitro, proliferation without differentia- 
tion, as in early regeneration, is stimulated by FGF and 
IGF-I in the presence of TGF-P, the latter serving to 
block differentiation. Subsequent differentiation with- 
out further proliferation, as occurs in late phases of 
regeneration, can be induced in culture by IGF-I once 
FGF and TGF-/3 have been removed. By lifting the 
differentiation block mediated by TGF-P and eliminat- 
ing the mitogenic signals of FGF, IGF-I is able to 
stimulate differentiation. Finally, the quiescent state, 
typical of satellite cells in mature healthy muscle, can 
be mimicked in vitro by the addition of TGF-P in the 
absence of FGF and IGF-I. 

In vitro experiments in our laboratory have estab- 
lished the ability of satellite cells to respond to TGF-P, 
IGF-I, and FGF, and indicate that the in vivo state of 
satellite cell activity can be reproduced in culture with 
combinations of these factors. But, our experiments do 
not provide evidence that IGF-I, FGF, and TGF-P are 
indeed the physiologic regulators of these activities in 
living organisms. 

Of the three factors discussed, IGF-I and FGF have 
been localized at the cellular level in skeletal muscle. 
Jennische and Hansson (35) used IGF-I-specific anti- 
bodies to localize this factor in satellite cells of regen- 
erating muscle. Based on in situ hybridization experi- 
ments, IGF-I mRNA appears to be synthesized in sat- 
ellite cells. Therefore, at least some of the IGF-I 
visualized by immunocytochemical techniques was ac- 
tually synthesized in these cells (36). In nonregenerating 
tissue IGF-I would be expected to circulate in the 
bloodstream in relatively high concentrations most of 
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Table 1. Satellite Cell Functions 

Growth Early regeneration Late regeneration Quiescence 

Activities 
Proliferate Proliferate Proliferate No division or differentiation 
Differentiate No differentiation Differentiate 

Mediators 
FGF FGF IGF-I TGF-0 
IGF-I TGF-0 

IGF-I 

the time, although it is complexed with binding proteins 
that may modulate its activity (37-39). 

The physiologic functions of basic and acidic FGF 
have not been firmly established, but several cell types 
have been identified that have the capacity to synthesize 
and secrete FGF (40). Macrophages (41) and vascular 
endothelial cells (42) have both been shown to be a 
source of this factor. Recently, FGF has been specifi- 
cally localized in skeletal muscle (43); by immunoflu- 
orescence techniques, basic FGF was localized to the 
periphery of muscle fibers, presumably sequestered by 
elements of the basement membrane. The site of FGF 
synthesis, however, was not revealed by these experi- 
ments. One possibility is that FGF was derived from 
vascular endothelial cells and subsequently dispersed in 
the tissue. In other studies, the heparin-binding ability 
of FGF has been exploited in its purification and may 
be an important factor in its physiology. 

The ubiquitous nature of TGF-/3 has become ap- 
parent (44), and its importance in development and 
wound healing are active areas of current research. 
Although platelets are an important source of TGF-/3 
for purification, it has been isolated from many tissues. 
Specific antibodies have been used to localize TGF-/3 
in specific cells in the developing embryo (45-47), and 
in situ hybridization experiments (48) indicate that 
TGF-/3 is an autocrine or paracrine factor, in that it is 
synthesized in specific cells in developing tissues. TGF- 
p has yet to be localized in postnatal skeletal muscle, 
even though the effects of this factor on myogenic cells 
and satellite cells are well documented (8, 33, 34, 49). 

The mere presence of these growth factors may not 
ensure activity, however. All three can be found com- 
plexed to other macromolecules. IGF are most fre- 
quently found in association with binding proteins, 
FGF may be bound to heparin in the basement mem- 
brane, and TGF-/3 can be found in a latent form in 
association with a larger protein. Nonetheless, if these 
factors are active in skeletal muscle growth regulation 
via their actions on satellite cells, it should be possible 
to localize them in association with satellite cells during 
growth. 

Regulation by Altered Sensitivity and Responsiveness 
The discussion thus far has centered around the 

direct effects of growth factors on satellite cells. The 

Table II. Altered Responsiveness in Activated 
Satellite Cells 

Pulse label Labeling index (YO) 
period 

(hr) Marcaine“ Controlb 

0-8 19% (+4) 0% 
24-32 32% (+3) 19% (+1) 

a Cells were harvested from the tibilalis anterior and EDL muscles 60 
hr after marcaine injection. 

Cells were harvested from noninjected tibilalis anterior and EDL 
muscles from the contralateral side. 

implication is that growth factors in the satellite cell’s 
environment play an important role in stimulating or 
inhibiting cellular activities. Varying the concentrations 
of these factors in the muscle environment may indeed 
represent one mechanism for regulating satellite cell 
activity. Alterations in the cell’s sensitivity or respon- 
siveness to these growth factors represent a second 
possible mechanism. 

Age-related alterations in satellite cell growth pro- 
vide an example of altered sensitivity or responsiveness. 
Schultz and Lipton (50) provided the first evidence that 
satellite cells from old rats initiate DNA replication 
more slowly when placed in culture at clonal density 
than myogenic cells from very young or fetal rats. Not 
only did the older cells initiate growth more slowly but 
they formed smaller colonies than cells from younger 
animals, even though medium conditions were identi- 
cal. More recently, Dodson and Allen (51) monitored 
the growth of satellite cells in mass cultures and com- 
pared satellite cells from young, rapidly growing rats, 
12-month-old adult rats, and 24-month-old rats. When 
compared with the two adult groups, the cells from 
young rats displayed a shorter lag period after being 
placed in culture before they began dividing. Appar- 
ently, cells from older animals are not able to immedi- 
ately respond to regulatory factors in culture medium 
that readily stimulate cells from young animals. 

In a closely related example from our laboratory, 
the initiation of DNA replication by satellite cells cul- 
tured from adult rat tibialis anterior and extensor digi- 
torum longus (EDL) muscle was monitored by pulse 
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labeling cultures with [3H]thymidine from 0 to 8 hr in 
culture or from 24 to 32 hr. These cells were taken 
from muscles that had been injected 60 hr earlier with 
marcaine (a local anesthetic with known myotoxic ef- 
fects (52)) or from the noninjected contralateral mus- 
cles. As indicated in Table 11, satellite cells from the 
marcaine-treated leg began synthesizing DNA almost 
immediately after being cultured, whereas cells from 
control muscle did not initiate DNA synthesis until 24 
hr later. This provides another example of altering the 
activity of satellite cells by altering the state of the 
muscle in vivo. 

A final example of altered satellite cell response 
capabilities has been reported by Thompson et al. (53). 
These experiments were designed to document the 
mechanisms responsible for trenbolone-induced muscle 
hypertrophy. Trenbolone (TBOH), a synthetic anabolic 
steroid, has been studied for several years and has been 
demonstrated to increase animal growth rate and feed 
efficiency (54, 55). The mode of action has generally 
been attributed to the effect ofTBOH on muscle protein 
synthesis and degradation. 

In our experiments, female rats were injected with 
TBOH daily for 2 weeks. Then several growth param- 
eters were measured, and cells were prepared for cul- 
ture. One of the most striking findings was the consist- 
ent elevation in muscle DNA content in muscles from 
the TBOH-treated rats. These observations suggested 
that increased satellite cell activity may be involved in 
TBOH action. When the effect of TBOH was examined 
in culture with satellite cells from control rats, there 
was no evidence for a direct stimulatory interaction of 
TBOH on satellite cells. When cultures of satellite cells 
were prepared from control rats or TBOH-treated rats 
and examined for their ability to respond to IGF-I and 
FGF, satellite cells from TBOH-treated rats consistently 
responded with greater IGF-I-induced differentiation 
and greater FGF-induced proliferation. Therefore, it 
appears that the ability of satellite cells to respond to 
specific growth factors known to regulate proliferation 
and differentiation was altered by treating the rats with 
TBOH. 

Satellite cells play an important role in muscle 
growth and regeneration and, depending on the circum- 
stance, they may be called upon to proliferate, differ- 
entiate, or remain quiescent. Three growth factors in 
particular (IGF-I, FGF, and TGF-0) have been shown 
to stimulate or inhibit satellite cell growth in culture; 
these factors may have similar effects in the living 
animal. In addition to regulating satellite cell activity 
by exposure to different combinations of growth factors 
or hormones, satellite cells may also be regulated by 
altering their ability to respond to these growth factors 
or hormones. Regulation of satellite cell activity in vivo 
is undoubtedly complex, involving the interactions of 

various tissues and cells and being mediated by a variety 
of factors. 
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