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he concept of the mesangium as a distinct entity 
within the glomerulus was originally proposed by T Zimmermann ( 1 )  and has since received confir- 

mation by a variety of morphologic and cell studies. By 
electron microscopy, it is possible to visualize a spe- 
cialized cell type, the mesangial cell, which is situated 
between the capillaries and which has cytoplasmic pro- 
jections containing processes that are in apparent con- 
tact with the basement membrane (2). The mesangial 
cell has a low cytoplasm to nucleus ratio and contains 
mitochondria, a Golgi apparatus, and endoplasmic re- 
ticulum along with a network of microtubules and 
intermediate filaments (2, 3). The presence of acto- 
myosin and of tropomyosin in this network has been 
demonstrated by immunofluorescence using the rele- 
vant antisera (4-7). These specialized cells are em- 
bedded in an amorphous matrix which has been shown 
by immunocytochemical and biochemical techniques 
to have a composition similar to that of many extracel- 
lular matrices, consisting ofthe various collagens (8- 13), 
the glycosoaminoglycans ( 14- I9), existing principally 
as the proteoglycans, heparan sulfate and chondroitin 
sulfate, and the adhesive glycoproteins, fibronectin (6, 
20-22), laminin (10, 23), and thrombospondin (24). 

The geographic relationship of the mesangial cell, 
its projections and matrix to the glomerular basement 
membrane, the capillary endothelial lining and the 
capillary lumen, and its ability to contract suggest that 
it must play a critical role in the modulation of glo- 
merular blood flow and filtration. Indeed, these pivotal 
functions of the mesangial cell are especially revealed 
during pathologic states, such as the various forms of 
nephritis, in which there is an increase of both mesan- 
gial cell number and mesangial matrix. 
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Another important function of the mesangium is 
its participation in the process of plasma ultrafiltration. 
This process has been visualized by electron micro- 
scopic studies coupled with the use of tracers infused 
into the circulation. It is envisaged that the mesangium 
functions as a filtration barrier in two ways. First, its 
fenestrations, which have approximate dimensions of 
376 A x 626 A (25) ,  act as a molecular sieve for neutral 
molecules. As an example, particles of thorium dioxide, 
which have an average molecular length of 405 A are 
restricted in their passage by this filter. Second, the 
structural organization of the matrix, formed largely by 
the anionic proteoglycans, will attract and bind posi- 
tively charged macromolecules. Thus, Gallo et al. (26) 
were able to show that positively charged immune 
complexes were trapped more abundantly in the glo- 
merulus than were neutral or anionic immune com- 
plexes. The participation of heparin-containing proteo- 
glycans in mediating this effect was demonstrated by 
the investigations of Kanwar et al. (27), who showed 
that this effect was reduced when the kidneys were first 
perfused with heparinase to digest this species of matrix. 

Finally, the uptake of macromolecules by the mes- 
angium fulfills a role distinct from that of filtration. 
This uptake discriminates between immune complexes 
which possess an Fc moiety and other types of macro- 
molecules, such as colloidal carbons. As will be dis- 
cussed below, mesangial cells have been shown to pos- 
sess Fc receptors, which likely account for the differ- 
ential uptake. In any case, if any of these 
macromolecules are infused into the circulation, their 
uptake in the mesangium can be readily demonstrated. 
The determinants of this uptake are (i) the concentra- 
tion of the substance in the circulation, which in turn 
may depend on the functional capacity of the mono- 
nuclear phagocyte system (28) and (ii) various intraglo- 
merular hemodynamic factors (29). 



Physiology of Cultured Mesangial Cells 
Mesangial cells were successfully cultured by Ber- 

nik (30) and Quadracci and Striker (3 1) on the basis of 
the technique of obtaining glomeruli by differential 
sieving of renal cortical tissue. From these pioneering 
studies, there have evolved two basic methods for the 
culture of mesangial cells. The cells may be allowed to 
grow either from explants of whole glomeruli or, alter- 
natively, from isolated glomeruli which have been di- 
gested with various enzymes to yield glomerular cores 
from which mesangial cells grow readily. The resultant 
cells have a morphology which on light microscopy 
shows them to be spindle shaped with many cyto- 
plasmic projections. By electron microscopy, an oval 
elongated nucleus is seen along with a well-developed 
Golgi apparatus and rough endoplasmic reticulum. The 
cells appear to be analogous to vascular smooth muscle 
cells in possessing dense bundles of microfilaments with 
dense bodies, which probably represent the contractile 
apparatus of these cells (2, 32). By immunofluoresence, 
they can be shown to stain for the characteristic cyto- 
skeletal filaments, actin, myosin, desmin, and vimentin 
(6, 32, 33) .  

In addition to this contractile mesangial cell, a 
second cell type has been isolated by Schreiner et al. 
(34). This cell type was originally isolated by the diges- 
tion of glomeruli and the plating of the resultant cells 
on petri dishes, yielding a cell which was adherent to 
plastic. Further analysis of this cell showed it to possess 
many of the characteristics of monocytes/macrophages. 
These cells can be shown to possess phagocytic ability, 
to have Fc receptors, and to present antigen. Addition- 
ally, they were shown to display the la antigen, suggest- 
ing that when blood monocytes, which in the rat and 
in mouse are Ia negative, take up residence in the 
mesangium, they must receive a signal which induces 
them to express the Ia antigen. Experiments in which 
rats were irradiated also provided evidence that these 
Ia-positive phagocytic cells in the mesangium are de- 
rived from the bone marrow (35). Further studies by 
Schreiner and Unanue (35) showed that not all phago- 
cytic cells in the mesangium express the Ia antigen, 
although all of them could be demonstrated to express 
leukocyte common antigen. From these studies, it can 
be calculated that approximately 5% of resident cells in 
the mesangium have some phagocytic capacity. 

The physiology of the contractile mesangial cell has 
been the subject of a recent comprehensive review (36). 
In summary, the data to date demonstrate that the 
contractile mesangial cell is a dynamic cell capable of 
many diverse functions. It is biosynthetically active, 
producing an array of proteins and bioactive lipids. 
Thus, it can be shown to synthesize renin, (37, 38), 
neutral proteinases (39,40), plasminogen activator and 
inhibitor (4 l), 5 '-nucleotidase (42), erythropoietin (43), 

a variety of growth factors (see below) and bioactive 
lipids, including the products of arachidonic acid me- 
tabolism and platelet activating factor. The reader is 
referred to the excellent review by Mene et al. (36) for 
details on these aspects of mesangial cell physiology, 
including the mechanisms by which mesangial cell 
contraction and signal transduction are regulated. The 
current review focuses on the interaction between the 
contractile mesangial cell and the immune cell, in 
particular the monocyte/macrophage. Emphasis has 
been placed on the growth factors which serve as me- 
diators for these interactions. 

The Mesangial Cell in Glomerulonephritis 
The mesangial cell occupies a central position in 

the genesis of the cellular lesions seen in nephritis. 
Histologically, the lesions are characterized by an in- 
crease in the number of mesangial cells and in the 
amount of the surrounding mesangial matrix. The cells 
infiltrating the mesangium in both immune complex- 
mediated nephritis and in anti-glomerular basement 
membrane nephritis have been shown to consist pre- 
dominantly of monocytes/macrophages together with 
smaller numbers of lymphocytes (44-46). The identity 
of the effector cells as monocytes/macrophages has 
been established by special stains, while their functional 
role in nephritis has been demonstrated by the treat- 
ment of experimental animal models with an antimac- 
rophage antiserum, which has abrogated the develop- 
ment of proteinuria in these models of renal disease 
(47). 

Recent experiments in several laboratories, utiliz- 
ing the cultured mesangial cell as a model cell for study, 
have shed light on some of the mechanisms which may 
underlie these in vivo tissue reactions, especially in 
terms of identifying potential mediators which may 
subserve these reactions. Thus, information has been 
obtained which assists in clarifying the following issues: 
(i) How do immune complexes localize in the mesangial 
cell? What effect do these complexes have on the phys- 
iology of the mesangial cell? (ii) How do macrophage 
and lymphocyte products regulate mesangial cell pro- 
liferation? (iii) Does the mesangial cell in turn produce 
mediators which modulate immune cell function? 

Mechanisms for the Uptake of Immune Com- 
plexes by the Mesangial Cell. Previous investigations 
have shown that when experimental animal models are 
infused with preformed immune complexes, these mac- 
romolecules readily localize in the mesangium of the 
kidney. The mechanisms underlying such uptake of 
immune complexes have only recently been clarified 
by investigations with explanted mesangial cells. As 
discussed earlier, there are at least two populations of 
mesangial cells. The most abundant mesangial cell type 
appears to be a contractile cell analogous to the vascular 
smooth muscle cell (32). Additionally, a second cell 
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which is Ia positive and which has the properties of a 
monocyte/macrophage has been identified (34). As ex- 
pected, the phagocytic mesangial cell can be demon- 
strated to possess Fc receptors and to participate in the 
uptake of immune complexes. However, the numbers 
of such resident macrophages in the mesangium are 
insufficient to account for the bulk endocytosis of such 
complexes. More recently, the contractile mesangial cell 
has also been discovered to have Fc receptors. Sedor et 
al. (48), by using '251-labeled bovine y-globulinlanti- 
bovine y-globulin antigen-antibody complexes, dem- 
onstrated the presence of such receptors on Ia-negative 
contractile mesangial cells. By saturation binding stud- 
ies with the same ligand, they showed that the mesangial 
Fc receptor has the characteristics of a low-affinity Fc 
receptor with a Kd of 640 n M  and a binding site density 
of 1 .O X lo5 sites/cell. These investigators demonstrated 
that occupancy of such mesangial Fc receptors led to 
the generation of superoxide anion. The potential of 
such reactive oxygen species in producing glomerular 
damage in nephritis is still a matter of speculation. 
Further investigations from the same laboratory (49), 
using essentially the same system, have shown that 
stimulation of mesangial cells by immune complexes 
leads not only to the generation of superoxide anion 
but also to the production of prostaglandin E (PGE) 
and thromboxane B2 in a dose- and time-dependent 
manner. Simultaneously, immune complexes induced 
the cells to contract with 250 pg of the specific antibody 
inducing 45.8 f 10.1% contraction, with an average 
decrease in surface area of approximately 20% as as- 
sessed by imaging microscopy. Additionally, the mech- 
anisms of signal transduction were studied in such 
stimulated cells with measurements of cytosolic free 
calcium and phosphatidylinsositol turnover being 
made. Immune complexes led to a mobilization of 
calcium from intracellular stores as well as an influx of 
this cation across the plasma membrane but had no 
measurable effect on water-soluble inositol phosphate 
generation (49). 

Confirmatory evidence for the presence of Fc re- 
ceptors functioning in contractile mesangial cells has 
been provided by studies with colloidal gold particles 
which have been coated with bovine serum albumin 
followed by anti-bovine serum albumin (50). Uptake 
of these particles was shown to be a saturable process, 
inhibitable by sodium azide and cytochalasin B. By 
electron microscopy, the process was visualized as ve- 
sicular uptake with delivery to endosomes. Mesangial 
uptake of these particles was associated with stimulation 
of PGE2 synthesis and production of platelet activating 
factor. By using subclass specific antibodies, the nature 
of the Fc receptor on rat mesangial cells was shown to 
be specific for mouse IgG-2a. 

Definitive evidence for the presence of an Fc recep- 
tor in cultured mesangial cells was later furnished by 

Santiago et al. (51). They performed experiments in 
which mesangial cells were subjected to surface iodi- 
nation followed by immunoprecipitation with either a 
polyclonal or monoclonal antibody prepared against 
murine Fcy receptor. Both antibodies precipitated a 
45-kDa iodinated protein band from cultured rat mes- 
angial cells which co-migrated with that from murine 
macrophage 5774 cells on sodium dodecyl sulfate-poly- 
acrylamide gel electrophoresis. By immunofluores- 
cence, all mesangial cells stained positively with the 
polyclonal anti-Fcy receptor antibody. Finally, a cDNA 
probe for the Fcy RII-a on murine macrophages hy- 
bridized to mRNA from cultured rat mesangial cells. 
This mRNA was of the same size as that of the Fc 
receptor isolated from 5774 macrophages. 

The uptake of immune complexes has been shown 
to be modulated by various vasoactive agents. Singhal 
et al. (52) found that the uptake of gold particles coated 
with IgG by mesangial cells was enhanced by pretreat- 
ment of the cells with angiotensin 11. Conversely, atrial 
natriuretic peptide and dopamine attenuated the uptake 
of these particles both during basal conditions and in 
response to stimulation by angiotensin 11. 

The functional capacity of the Fc receptor is also 
subject to regulation. Santiago et al. (53) reported that 
Fc receptor activity, Fc receptor protein, and mRNA 
for the Fc receptor were increased when mesangial cells 
were treated with either colony-stimulating factor- 1 
(CSF- 1)  or CAMP. 

Regulation of Mesangial Cell Function by Prod- 
ucts of Immune Cells. Because of the pivotal role of 
the monocyte/macrophage in the genesis of the lesions 
in glomerulonephritis, studies in many laboratories 
have attempted to define the role of the various mac- 
rophage products in modulating mesangial cell func- 
tion. After exposure to whole macrophage supernatant, 
mesangial cells react in a biphasic manner (54-56). The 
type of response is dependent on the underlying physi- 
ologic state of the cell. In relatively slow-growing mes- 
angial cells in culture, which approximate the typical 
in vivo state of this glomerular cell type, macrophage 
supernatants were shown to stimulate proliferation of 
these cells (54, 56). The mechanism by which this 
occurred was clarified by experiments in which the 
mesangial cells were pretreated with indomethacin (56). 
The stimulatory effect of the macrophage supernatants 
was partially abrogated, suggesting that its growth-pro- 
moting effect may be mediated in part by the release of 
endogenous prostaglandins. Assays for PGE in the su- 
pernatants of mesangial cell cultures supported this 
mechanism, as mesangial cells stimulated by macro- 
phage products produced significantly more PGE when 
compared with that of control cell supernatants. Fur- 
ther corroboration of this mechanism was provided by 
the direct demonstration that exogenous PGE2 stimu- 
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lates mesangial cell growth (56). Other reports show 
PGE, inhibiting proliferation. 

The effect of one macrophage product, interleukin 
I (IL-1) on mesangial cell function has been the focus 
of intensive study. Lovett et al. (57) showed that puri- 
fied IL-1 enhanced the proliferative rates of mesangial 
cells in the presence of serum but was without effect 
when the cells were grown in serum depleted of platelet- 
derived growth factor (PDGF). PDGF acted to increase 
the percentage of cycling cells without affecting the 
length of cycling times. IL-1 also has been shown to 
stimulate mesangial cell production of gelatinase (58), 
PGE (59), and oxygen radicals (60). The biochemical 
mechanism by which IL-I activates the mesangial cell 
has been provided by further studies of Lovett et al. 
(6 1). In these investigations, IL- 1 activated mesangial 
cell plasma membrane protein kinases. Plasma mem- 
branes from cycling mesangial cells were incubated with 
purified IL-1 and ATP in the absence of calcium and 
cyclic nucleotide. Macrophage IL- 1 stimulated the 
rapid phosphorylation of several plasma membrane 
proteins, the most significant of which were 52-55, 46, 
and 20 kDa in size. Macrophage IL-1 induced specific 
membrane phosphorylation in concentrations as low as 
1.5 X lo-', M, an effect obtained with equivalent 
concentrations of purified mesangial cell IL- 1. The 46- 
kDa phosphoprotein, which was the most prominent, 
was alkali resistant and contained phosphotyrosine 
when examined by phosphoamino acid analysis. The 
52- to 55- and 22-kDa phosphoproteins were alkali 
labile and contained phosphoserine. The 46-kDa phos- 
phoprotein was the major phosphoprotein recovered 
from concanavalin A-Sepharose IL- 1 affinity columns. 
Induction of plasma membrane-associated protein ki- 
nase activity may represent one mechanism whereby 
IL- 1 initiates mesangial cellular activation. 

The stimulatory effect of IL-1 on mesangial cell 
growth is amplified by the action of another macro- 
phage product. p-endorphin, a neuropeptide released 
by organisms during periods of stress. In studies of Ooi 
et al. (62) both p-endorphin and metenkephalin aug- 
mented the effect of IL- 1 on mesangial cell proliferation 
in a dose-dependent fashion. Pretreatment of the cells 
with naloxone did not significantly reduce this ampli- 
fication effect of the neuropeptides on mesangial cell 
growth, indicating that this effect was mediated by 
naloxone-insensitive receptors. These observations 
highlight a potential mechanism by which neuropep- 
tides may influence immune-mediated cellular pathol- 
ogy * 

The interaction of IL-1 with mesangial cells is 
further complicated by the finding that the mesangial 
cell itself produces IL- 1. Rat mesangial cells in culture 
produce a substance with thymocyte-activating prop- 
erties, which behaves as an endogenous pyrogen and 
which, on stringent biochemical analysis, has the same 

molecular weight, charge, specific activity, and peptide 
map as macrophage IL-1 (63-65). This would suggest 
that IL-1 can affect mesangial cell function in both a 
paracrine and an autocrine fashion. Continuing studies 
by Lovett and Larsen (66) have demonstrated the pres- 
ence of mRNA for IL- 1 in proliferating mesangial cells 
but not in nonproliferating cells. The significance of 
IL-1 expression in disease has been validated by obser- 
vations in a model of immune complex glomerulo- 
nephritis in which nephritic kidneys were shown to 
contain a two-fold to three-fold increase in IL- 1 mRNA 
compared with normals (67). Enhanced gene expression 
of IL-I has also been observed in some strains of 
autoimmune mice (68, 69). 

Another growth factor produced by macrophages 
is PDGF (70). PDGF has been shown to bind to mes- 
angial cells in a specific manner and to induce the 
proliferation of such cells (7 1). This growth factor also 
induces the contraction of mesangial cells, as assessed 
by cell imaging techniques, and may exert its effect by 
a phospholipase C-dependent pathway (72). 

Studies by Abboud et al. (73) show that mesangial 
cells produce a PDGF-like protein. This was initially 
demonstrated by finding that a mesangial cell product 
could compete with purified labeled PDGF for binding 
to human foreskin fibroblasts, and by showing that this 
PDGF-competing activity coelutes with PDGF when it 
is subjected to procedures which are used for the isola- 
tion of PDGF (73). Subsequently, investigators from 
the same laboratory have demonstrated the presence of 
poly(A) RNA expression of both PDGF A and B chain 
mRNA in human mesangial cells (71). The expression 
of PDGF mRNA in the mesangial cell is enhanced 
when they are exposed to other mitogens such as epi- 
dermal growth factor (EGF), tumor necrosis factor 
(TNF), and basic fibroblast growth factor (74). In fact, 
the mitogenic effect of EGF is partially abrogated by 
treatment of the cells with anti-PDGF antibody (74). 
These observations suggest that PDGF may be an effec- 
tor molecule that plays a role in the mitogenic response 
of mesangial cells to many types of growth stimuli. In 
nephritis, PDGF may play an active role, as has been 
demonstrated in a model of IgA nephropathy induced 
by the administration of DEAE-dextran or dextran 
sulfate to mice. Increased expression of PDGF was 
correlated with the development of a pathologic picture 
of mesangial proliferative glomerulonephritis (75). 

Preliminary observations have also been made on 
the effects of two other substances elaborated by the 
macrophage: EGF and TNF. EGF has been found to 
increase mesangial cell growth (76, 77) and to stimulate 
the production of PGE (78,79). Its action on cell growth 
is modulated by the effect of transforming growth fac- 
tor-P (TGF-0) (77). 

TNF has been found to stimulate mesangial cell 
proliferation (80, 81) and to generate PGE. The acti- 
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vation of cyclooxygenase by TNF is a function syner- 
gistic with that of IL-1 (82, 83). TNF itself activates the 
IL-1 gene as well (84). Finally, TNF induces the release 
of procoagulant activity and oxygen radicals (85). Mes- 
angial cells can be induced to produce TNF by various 
lectins and viruses (86). The significance of TNF in 
renal disease has been suggested by enhanced expres- 
sion of this gene in various strains of autoimmune mice 
(68, 69). 

In addition to mitogenic peptides, the macrophage 
also secretes substances which suppress growth. One of 
these is TGF-P (87). Studies from three laboratories 
show that this substance is capable of inhibiting the 
growth of mesangial cells, both under basal conditions 
and in response to various mitogens (77, 88, 89). Ad- 
ditionally, Mackay et al. (88) found a bifunctional effect 
of TGF-P which was dependent on the density of the 
cells plated. These investigators have demonstrated a 
high-affinity receptor for this peptide (Kd = 5 pM) in 
mesangial cells and in other glomerular cell types. The 
mechanism of action of TGF-/3 whereby it antagonizes 
the actions of EGF and PDGF has been examined by 
Jaffer et al. (89). They have found that this function 
was not mediated at the receptor level, since TGF-P did 
not alter the binding of either mitogen to the mesangial 
cell. The peptide also did not act by decreasing the 
synthesis of PDGF in these cells, PDGF being the 
autocrine effect or molecule which mediates the growth 
effect of these mitogens (see above). Of interest, recent 
preliminary observations suggest that mesangial cells 
are capable of producing TGF-P (90). Thus, the mes- 
angial cell appears to have multiple internal regulatory 
controls by producing substances which both stimulate 
and inhibits its own growth. In addition to its effect on 
growth, TGF-(3 also influences matrix production by 
the mesangial cells. Mackay et al. (88) reported that 
this peptide increased the production of fibronectin and 
collagen by mesangial cells. In contrast, Border et al. 
(9 1) found that TGF-P increased the production of the 
two proteoglycans, decorin and biglycan, but had no 
effect on the synthesis of other matrix proteins. 

Another substance liberated by activated macro- 
phages which has been shown to suppress mesangial 
cell growth is 1,25-dihydroxyvitamin D3 (92). This vi- 
tamin D metabolite inhibited the primary proliferation 
of mesangial cells in culture and antagonized the effect 
of EGF on cell growth. 

Modulation of Immune Function by Mesangial 
Cell Products. Studies in several laboratories have 
shown that there is reciprocal modulation of cell func- 
tion by mesangial cell products. The investigations by 
Lovett et al. (63-65), which have demonstrated the 
biosynthesis of IL-1 by rat mesangial cells, have been 
described in detail in the previous section. In addition, 
studies by MacCarthy et al. (93) found that the super- 
natant of mouse mesangial cells contained a factor 

which could induce the production of IL-1 by splenic 
macrophages. This was demonstrated by experiments 
which initially found that mesangial cell supernatant 
could stimulate splenic cell proliferation. The finding 
that this stimulating action of mesangial cell superna- 
tant on splenic cell proliferation was dependent on the 
presence of macrophages in the target cell population 
suggested that this effect might be mediated by the 
release of IL- 1. That this was the case was demonstrated 
by the presence of a co-thymocyte proliferation factor 
in the supernatants of cultures of macrophages incu- 
bated with mesangial cell supernatant. Further studies 
from the same laboratory showed that a similar mes- 
angial cell product also induced the replication of 
splenic monocytes/macrophages and of blood mono- 
cytes but not of peritoneal macrophages (94). Replica- 
tion of monocytes/macrophages was demonstrated 
both by cell enumeration and by macrophage uptake 
of tritiated thymidine. The replicated cells were shown 
to be monocytes/macrophages by the Fc receptor assay 
and by immunofluorescence staining of cells for the 
macrophage antigen, MAC- 1. Purification of the factor 
by sequential chromatofocusing followed by gel chro- 
matography has been accomplished, revealing the fac- 
tor to have a PI of 4 and molecular mass of approxi- 
mately 68,000 daltons (94). These are the characteristics 
of CSF- 1, a substance which previously has been shown 
to induce monocyte/macrophage replication (95). In 
support of CSF-1 production by mesangial cells is the 
recent report that CSF-1 can be detected by radio- 
immunoassay in the supernatants of mouse mesangial 
cell cultures (96). The biosynthesis of this substance is 
increased by y-interferon and inhibited by dibutryl 
CAMP. mRNA for CSF-1 could also be demonstrated 
in these cells using a specific cDNA probe. Additionally, 
receptors for CSF-1 were visualized in such cells using 
either radiolabeled CSF-1 or a probe for the mRNA of 
the receptor. Zoja et al. (84) have corroborated these 
observations and additionally, found that mesangial 
cells stimulated with IL- 1 also expressed granulocyte- 
macrophage (GM)-CSF. Related studies (97) have 
shown that a product from mouse mesangial cells could 
induce the expression of the Ia antigen of blood mono- 
cytes (which are normally Ia negative). The process was 
shown to be time dependent and to be dependent on 
novel protein synthesis, since prior treatment of the 
target cell with cycloheximide abrogated the effect of 
the mesangial cell-derived product. This observation 
has implications in two areas. It provides the mecha- 
nism by which blood monocytes which take up resi- 
dence in the mesangium are enabled to express the Ia 
antigen. It also provides the mechanism by which the 
mesangium can locally regulate the numbers of Ia- 
positive cells during nephritis. Definitive data on the 
synthesis of GM-CSF has been provided by the inves- 
tigations by Budde et al. (97), who have demonstrated 
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a factor in the supernatant of cultured rat mesangial 
cells which supports the growth of the helper cell line, 
HT-2, which increases the growth of macrophages, and 
which, by serologic and biochemical analysis, has all of 
the characteristics of GM-CSF. Furthermore, Northern 
blot and in situ hybridization with a specific cDNA 
probe for murine GM-CSF showed that mesangial cells 
expressed GM-CSF transcripts. 

In addition to IL-1, GM-CSF-1, GM-CSF, and 
CSF- 1, recent data, reported in preliminary form, doc- 
ument that mesangial cells produce other immuno- 
modulatory substances such as TGF-P (90), TNF (86), 
and interleukin 6 (98). 

Summary 
It is likely that a complex bidirectional interaction 

occurs between mesangial cells and the immune cells 
which infiltrate the mesangium during nephritis. Mac- 
rophages and other immune cells liberate a series of 
mediators, including substances such as IL- 1, @-endor- 
phin, TNF, and PDGF-all of which promote the 
growth of mesangial cells. The end result is mesangial 
cell proliferation and increased matrix production, both 
of which are seen in nephritis. The proliferating mes- 
angial cells liberate autocoids such as IL-I and PDGF, 
thereby setting up an amplifying loop. Simultaneously, 
suppressive factors such as TGF-P are released which 
antagonize the actions of these growth-promoting sub- 
stances. The proliferating mesangial cells also produce 
immunomodulatory peptides, which will in turn act on 
the infiltrating macrophages to stimulate their replica- 
tion and activation. Such activated macrophages con- 
tinue to amplify the inflammatory lesion and also pro- 
mote the phagocytosis of localized antigen-antibody 
complexes. The net effect of all of these interactions 
will depend on the dominance of substances which 
persist and override the roles of other molecules. Studies 
of the controls which regulate the production of these 
growth factors/immune modulators will yield insights 
into the fundamental mechanisms which determine the 
outcome in glomerulonephritis. 
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