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ndothelial Cell Thromboregulation. The circula- 
tory system's endothelial cell lining, uniquely E situated at the interface between blood and ves- 

sel wall, plays a dynamic role in thromboregulation. 
Previously thought to represent a passive surface, the 
endothelium is now known to support a number of 
anticoagulant and profibrinolytic systems that serve to 
maintain the fluidity of blood. At least three of these 
systems involve the assembly of macromolecules on the 
endothelial cell surface. 

Two distinct anticoagulant systems associated with 
the endothelial cell surface preserve vessel patency by 
modifying thrombin activity. In the first, heparin and 
heparin-like molecules synthesized and secreted by the 
endothelium enhance the anticoagulant effect of the 
protease inhibitor antithrombin I11 (1). Heparin and 
other mucopolysaccharides present on the endothelial 
cell surface serve to alter the configuration of anti- 
thrombin 111, allowing it to bind to and inactivate 
thrombin with increased efficiency ( 1). Furthermore, 
antithrombin I11 exerts a heparin-mediated inhibitory 
effect on coagulation factors IXa and Xa on the surface 
of bovine aortic endothelial cells, suggesting a broader 
range of action (2). 

A second surface-oriented anticoagulant system on 
the cell surface involves thrombomodulin, a thrombin- 
binding glycoprotein present on all endothelial cells 
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except those in the microcirculation of the human brain 
(3, 4). When thrombin and thrombomodulin complex 
on the cell surface, thrombin acquires the ability to 
activate protein C instead of clotting fibrinogen (5, 6). 
Activated protein C, an endothelial-cell-dependent 
serine protease inhibitor, then deactivates clotting fac- 
tors Va and VIIIa through its interaction with the cofac- 
tor protein S, which also binds to the endothelial cell 
with high affinity (7, 8). Thus, expression of cell surface 
binding sites provides a key infrastructure for the vessel 
wall's anticoagulant defense, and the clinical expression 
of deficiency of protein C, protein S, or antithrombin 
I11 is, indeed, that of a prothrombotic state. 

In the fluid phase, the endothelial cell acts to 
control thrombus formation by synthesizing several 
reactants that inhibit platelet aggregation. For example, 
prostaglandin (PG) D2 and PGI2 (prostacyclin), metab- 
olites of arachidonic acid, inhibit platelet aggregation 
and induce vasodilation through a cyclic AMP-depend- 
ent mechanism (9). PGI2 synthesis by human umbilical 
vein endothelial cells is stimulated by thrombin, which 
suggests that PGI2 may serve to localize thrombus 
formation by limiting platelet aggregation at the site of 
thrombin activity (10). Thus, one role of PG12 may be 
to prevent overpropagation of an evolving thrombus. 

Another product of vascular endothelium that pro- 
motes vasodilatation and inhibits platelet aggregation 
is endothelium-derived relaxing factor (EDRF), a prod- 
uct of vascular endothelium. EDRF is an unstable, 
nonprostanoid substance released constitutively and 
also in response to a variety of neurohormonal stimuli 
(1 1). At least one form of EDRF is now known to be 
nitric oxide ( 12), a vasodilator that also inhibits platelet 
aggregation by increasing cyclic GMP levels ( 13). Thus, 
EDRF and PGI2 act through distinctly different second 
messengers to modulate platelet responsiveness. 
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Besides releasing PG12 and EDRF into the circu- 
lation, the endothelial cell can also inhibit platelet 
aggregation through a surface-connected ecto-ADPase 
( 14, 15). This enzyme, unlike prostacyclin and EDRF, 
is not secreted and mediates its antiaggregatory effect 
by hydrolyzing platelet-derived ADP, and eliminating 
its proaggregatory effect (1 5). The endothelial cell AD- 
Pase, unlike PG12, is completely insensitive to the effects 
of aspirin ( 15). 

In addition to promoting anticoagulant activity, 
the endothelium also plays many roles in regulating the 
generation of plasmin. Plasmin is a serine protease 
responsible for a number of biological events in the 
human body, only one of which is the solubilization of 
fibrin ( 16, 17). Fibrin-based generation of plasmin rep- 
resents a relatively late response to thrombus formation. 
The notion that plasmin may be formed constitutively 
on the endothelium as a consequence of plasminogen 
and plasminogen activator assembly is a relatively new 
concept in hemostasis and thrombosis (18), and may 
represent an additional defense aimed at maintaining 
the fluidity of blood. The following sections of this 
Minireview will examine the potential means by which 
the endothelial cell may regulate plasmin generation. 
These mechanisms include synthesis and secretion of 
plasminogen activators and their inhibitors, and assem- 
bly of plasminogen and plasminogen activators on the 
cell surface. 

Endothelial Cell Synthesis of Plasminogen Activators 
and Plasminogen Activator Inhibitor 1 

Plasmin activity is regulated by the endothelial cell 
at many levels. Expression of genes encoding tissue 
plasminogen activator and its physiologic inhibitor, 
plasminogen activator inhibitor, type 1 (PAI- l), is sub- 
ject to modulation by a number of soluble mediators. 
Thrombin ( 19), phorbol myristate acetate (20), and 
butyric acid (21) have all been associated with elevated 
tissue plasminogen activator (t-PA) mRNA levels in 
the endothelial cell. Of these three, however, only 
thrombin elicited a concomitant increase in PAI- 1 
mRNA levels (19). In addition, shear stress from flow- 
ing blood elevated t-PA mRNA levels (22). These ob- 
servations indicate that the endothelial cell increases t- 
PA production in response to several agents that perturb 
the cell, though probably through different mecha- 
nisms. 

Similarly, PAI-1 synthesis may be stimulated by 
additional agonists that activate the endothelial cell. In 
recently published reports, interleukin 1, transforming 
growth factor-@, tumor necrosis factor, and endotoxin 
all induced dramatic increases in steady state PAI-1 
message levels without affecting t-PA production (23- 
26). Similarly, treatment of endothelial cells with lipo- 
protein( a), a low density lipoprotein-like particle clini- 
cally associated with atherosclerosis, also induced a 

2- to 4-fold increase in PAI-1 levels without affecting 
t-PA mRNA (27). This suggested that lipoprotein(a) 
regulates plasmin by a pathway separate from some 
other mediators (27). Because t-PA and PAI-1 mRNA 
levels are affected by different stimuli, it is likely that 
under most circumstances, t-PA production and PAI- 1 
production in the endothelial cell are independently 
regulated. 

Modification of Plasmin-Forming Proteins by Plasmin 
Once formed, plasmin is able to amplify its own 

generation by modifying proteins involved in plasmin- 
ogen activation. For example, plasmin converts the 
circulating zymogen N-terminal glutamic acid plasmin- 
ogen (Glu-PLG) to N-terminal lysine plasminogen 
(Lys-PLG) by releasing a 76-amino acid “preactivation” 
peptide. This shortened form of plasminogen is 10 to 
20 times more readily activated by plasminogen acti- 
vators and has higher affinity for cell surfaces (28-30). 
Similarly, the plasminogen activators t-PA and uroki- 
nase (u-PA) are also converted into more active forms 
through the action of plasmin. t-PA, synthesized by the 
endothelial cell as a single chain M, 72,000 polypeptide, 
is converted to a two-chain molecule in the presence of 
plasmin (3 1-33). Double chain t-PA more actively 
cleaves plasminogen in the absence of fibrin (3 1 ), which 
would render it particularly efficient on a fibrin-free 
cell surface. Similarly, u-PA is converted from single 
chain to double chain form when exposed to plasmin 
(33). Upon conversion to the two-chain form, u-PA 
loses its ability to bind to fibrin, which suggests that the 
two-chain form of u-PA, like two-chain t-PA, may be 
preferentially destined for plasminogen activation on 
the cell surface. 

\ 
\ 

Cell Surface Binding Sites for Plasminogen and Its 
Activators 

Recent evidence has shown that plasmin-generat- 
ing systems can assemble on the cell surface. In par- 
ticular, assembly of plasminogen and plasminogen 
activators may facilitate the formation of the active 
protease. 

Plasminogen. N-terminal glutamic acid plasmin- 
ogen, the M, 93,000 zymogen precursor of plasmin, is 
synthesized by the liver and circulates in plasma at a 
concentration of - 1.5 pM ( 17). Hydrolysis of the Arg 
560-Val 561 peptide bond of plasminogen by either t- 
PA or u-PA results in the generation of the disulfide- 
linked, two-chain molecule, plasmin ( 17). Plasmin has 
a very broad substrate specificity, and represents the 
major fibrinolytic enzyme in humans (16). 

In binding to the endothelial cell, circulating Glu- 
PLG is converted to its truncated, noncirculating form, 
Lys-PLG, through the proteolytic release of a 76-amino 
acid N-terminal preactivation peptide (34). In vitro, 
radiolabeled Glu-PLG exposed to cultured endothelial 
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cells or to fresh blood vessel segments yielded two 
molecular mass forms: the original species and an ap- 
parently truncated molecule that co-migrated with Lys- 
PLG on sodium dodecyl sulfate gels and reacted with a 
Lys-PLG-specific monoclonal antibody (34). Lys-PLG 
is known to be 10 to 20 times more efficiently activated 
by either t-PA or u-PA (28-30). This conversion of 
Glu-PLG to Lys-PLG provides an explanation for the 
observation that the efficiency of plasmin generation at 
the cell surface was increased over 12 times compared 
with the same reaction in the fluid phase (35, 36). Cell- 
surface-mediated conversion of Glu-PLG to Lys-PLG 
has also now been reported for U937 cells (37). 

Recent studies have demonstrated further that a 
major plasminogen binding site on human endothelial 
cells binds Lys-PLG with 2.6 times greater affinity than 
Glu-PLG (34). Radiolabeled Glu-PLG bound to hu- 
man umbilical vein endothelial cell monolayers in a 
rapid, reversible manner with high affinity ( K d  3 10 nM) 
and capacity (Bmax 1,400,000 sites per cell) (34). Lys- 
PLG binding to cultured endothelial cells, although 
also rapid and reversible, displayed higher affinity (Kd 

120 nM) and somewhat lower capacity (Bmax 390,000) 
(36), which suggests that Lys-PLG may represent a form 
preferentially associated with cell surfaces. Cold com- 
petition studies suggest that Lys-PLG and Glu-PLG 
compete for the same binding site on the endothelial 
cell, but that Lys-PLG may represent a preferred ligand 
due to its higher affinity for plasminogen binding sites. 
Of several serine protease inhibitors, including cw2-plas- 
min inhibitor, only diisopropyl fluorophosphate, a low 
molecular weight agent that covalently targets the active 
site serine, blocked the conversion of Glu-PLG to Lys- 
PLG on the endothelial cell (34). 

Approximately four distinct plasmin/plasminogen- 
binding proteins have been identified on various types 
of cells. On U937 cells, for example, a-enolase, a gly- 
colytic enzyme, has been found to interact with plas- 
minogen through a carboxy terminal lysine residue (38). 
In rat kidney glomerular and tubular epithelial cells, a 
large glycoprotein called the Heymann nephritis anti- 
gen (gp 330) may function as a plasminogen receptor 
(39). Another group has recently reported an M; 4 1,000 
protein that interacts with plasmin on the surface of 
Group A streptococci (40). Finally, we have identified 
an M; 40,000 protein expressed on human endothelial 
cells and purified from human placenta that specifically 
binds plasminogen with an affinity remarkably similar 
to that observed on the cultured endothelial cell (4 1). 
This protein has the interesting property of independ- 
ently binding tissue plasminogen activator, but not 
urokinase, with high affinity (41, 42). Since plasmino- 
gen and tissue plasminogen activator bound to this 
protein noncompetitively, this receptor may serve to 
colocalize enzyme and substrate in a manner that en- 
hances the efficiency of plasmin activation. 

Lipoprotein(a). Lipoprotein(a) (Lp(a)) is a low den- 
sity lipoprotein-like particle that is clinically associated 
with atherosclerosis (43-45). Lp(a) consists of a phos- 
pholipid-cholesterol core and two associated protein 
moieties. One of these, apolipoprotein B100, is also 
found on the low density lipoprotein particle. The 
second, apolipoprotein(a) (apo(a)), is linked to apoB 100 
through a disulfide bond. Apo(a) shares remarkable 
homology with plasminogen, including multiple re- 
peating domains similar to the “kringle” four unit of 
plasminogen, a single kringle five-like region, and a 
“pseudo” protease segment (46, 47). Furthermore, the 
finding that plasminogen and apo(a) are genetically 
linked on chromosome 6 suggests that they may have 
arisen from a common ancestral gene (48). 

Because of the strong structural similarity between 
apo(a) and plasminogen, a number of groups have 
studied the effects of Lp(a) on plasminogen binding to 
cell surfaces. On cultured endothelial cells, Lp(a) puri- 
fied from blood from two different donors inhibited 
50% of Lys-PLG binding at 7- and 22-fold molar excess 
ratios, respectively (49). In addition, a 36-fold molar 
excess of purified apo(a) effectively inhibited 50% of 
Lys-PLG binding to cultured endothelial cells, whereas 
neither low density lipoprotein nor lipoprotein( -), the 
reductively cleaved apo( a)-free particle, inhibited Lys- 
PLG binding at all (49). These results implicate the 
kringle-containing apo(a) component of the Lp(a) mol- 
ecule in competing with plasminogen for binding sites 
on the endothelial cell. Additional studies have shown 
that Lp(a) can block plasmin generation on the cell 
surface but not in the fluid phase (49). The ability of 
excess Lp( a) to interfere with plasminogen binding, and 
hence plasmin generation, may link a subclinical 
thrombotic tendency and the development of athero- 
sclerosis. 

Plasminogen Activators 
In addition to binding plasminogen, the endothelial 

cell also expresses cell surface binding sites for plasmin- 
ogen activators, allowing enzyme and substrate to as- 
semble on the cell surface while also preserving the 
catalytic activity of the activator. 

Urokinase. Urokinase is an M, 55,000 serine pro- 
tease synthesized and secreted as the single-chain proen- 
zyme (scu-PA). On the cell surface, scu-PA is converted 
to a two-chain enzyme also known as high molecular 
weight urokinase (49). This form can be further cleaved 
by plasmin to yield a low molecular weight species and 
an amino-terminal fragment (ATF) that contains the 
epidermal growth factor (EGF) and kringle domains 

Urokinase has been shown to bind a variety of cell 
types, including monocytoid U937 cells (5 1 -54), A43 1 
epidermoid carcinoma cells (5 5, 56), fibroblasts (57- 
59), mouse spermatozoa (60), Friend erythroleukemia 

(50). 
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cells (61), and bovine corneal endothelial cells (62). In 
addition, u-PA has recently been observed to bind 
human umbilical vein endothelial cells (42, 50, 63). In 
binding assays conducted on endothelial cell mono- 
layers, 1251-labeled scu-PA bound the cell monolayer in 
a saturable, reversible, and specific manner with Kd 2.8 
nMand B m ,  2.2 x lo5 sites/cell(50). Binding of labeled 
scu-PA was inhibited by the unlabeled ligand, by ATF, 
and by a peptide fragment mimicking the EGF domain. 
It appears from these data that a portion of the EGF 
domain is required for binding of scu-PA to endothelial 
cells. The EGF domain has also been implicated in u- 
PA binding to the U937 monocytoid cell line (64). In 
fact, all cells that have receptors for u-PA on the cell 
surface appear to specifically bind u-PA via this ATF 
sequence (64). Thus, the ATF-deficient low molecular 
weight u-PA is unable to bind the endothelial cell while 
the ATF-containing scu-PA and two-chain enzyme re- 
tain high affinity. 

Recently, cDNA encoding a urokinase receptor was 
cloned and sequenced from a human fibroblast cDNA 
library (65). The full-length cDNA predicted a protein 
of 313 amino acids with a 21-residue signal peptide. 
Expression of the protein in murine LB6 cells conferred 
the ability to bind urokinase as judged by a caseinolytic 
assay. Further analysis of the purified protein revealed 
a single Mr 55,000-60,000 band by sodium dodecyl 
sulfate-polyacrylamide gel electrophoresis, which was 
reduced to Mr 35,000 upon enzymatic deglycosylation 
(63, 66). Urokinase associated with this receptor ap- 
peared to maintain its susceptibility to the physiologic 
inhibitor, plasminogen activator inhibitor 1 (67, 68), 
which may promote its clearance by monocytoid cells 
(69). A similar u-PA-binding protein has been identified 
by ligand blotting in extracts of a plasma membrane 
preparation from cultured human umbilical vein endo- 
thelial cells (42). 

Tissue Plasminogen Activator. Another plasmin- 
ogen activator that possesses high affinity for the endo- 
thelial cell surface is tissue plasminogen activator (70). 
t-PA has previously been shown to function efficiently 
on fibrin, thrombospondin, or histidine-rich glycopro- 
tein (71). However, recent evidence has shown that t- 
PA can also bind through a variety of mechanisms to 
many types of cells, including human aortic endothelial 
cells (72), human fibroblasts (70, 73), rat and human 
hepatoma cells (74-76), bovine alveolar macrophages 
(77), neuroblastoma cells (78), and human smooth 
muscle cells (70), in addition to cultured human um- 
bilical vein endothelial cells (70, 79, 80). 

t-PA binding to cultured human umbilical vein 
endothelial cells has been studied in some detail. The 
binding isotherm described a specific, largely reversible, 
high affinity interaction consisting of two classes of 
saturable sites (Kdl 29 pM, B m a l  3,700 sites/cell and 
Kd 18 nM, Bmm2 8 15,000 sites/cell) (70). Unlike plas- 

ENDOTHELIAL CELL 

Figure 1. Hypothetical model of plasminogen and tissue plasminogen 
activator assembly on the endothelial cell surface. Upon binding to 
the endothelial cell surface, circulating N-terminal glutamic acid plas- 
minogen is converted to its truncated, noncirculating form, N-terminal 
lysine plasminogen, through the proteolytic release of a 76-amino 
acid preactivation peptide (76 AA). Lys-PLG binds with high affinity 
to a 40-kDa cell surface associated protein. Tissue plasminogen 
activator, synthesized and secreted by the endothelial cell, can bind 
to the same protein at a separate domain. Assembly of plasminogen 
and t-PA in complex with the 40-kDa protein on the cell surface 
would foster efficient generation of plasmin. Lipoprotein(a), in suffi- 
cient concentration, would compete with plasminogen for its binding 
site on the endothelial cell, thereby dampening production of the 
active protease. 

minogen, t-PA interaction with the major binding site 
was essentially lysine-binding site independent. Once 
bound to the endothelial cell surface, t-PA appeared to 
be protected from its physiologic inhibitor, plasmino- 
gen activator inhibitor, type 1 (70). Further evidence 
suggests that the high affinity t-PA binding site associ- 
ated with endothelial cell monolayers represents PAI- 
1, which is primarily matrix associated (80). 

To study membrane-associated binding sites on 
cultured endothelial cells in the absence of matrix, cell 
membrane preparations were isolated and studied. A 
plasma membrane fraction was found to bind '251-t-PA 
at a single saturable site ( K d  9.1 nM, B,, 3.1 pmol/mg 
membrane protein) (42). Ligand-blotting experiments 
revealed an Mr 40,000 membrane protein present in 
detergent extracts of isolated membranes that bound 
both single and double chain t-PA (42). The interaction 
was reversible, cell-specific, and sensitive to nanomolar 
concentrations of trypsin. The relevant binding protein 
was not found in the subendothelial matrix, failed to 
react with antibodies against PAI- 1, and interacted with 
t-PA in an active site-independent manner (42). The 
isolated t-PA binding site was resistant to reduction and 
preserved its capacity for plasmin generation (42). 
These studies clearly distinguished the t-PA binding 
protein from the u-PA receptor and also from PAL 1. 
Further studies of this receptor have revealed a separate 
binding domain for plasminogen and t-PA (4 l), raising 
the possibility that it may facilitate the assembly of both 
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plasminogen and t-PA, thereby promoting generation 
of plasmin (Fig. 1). 

Summary 
Through assembly of plasminogen and its activa- 

tors, the endothelial cell surface may provide a favora- 
ble environment for constitutive generation of plasmin. 
This system may be regulated at multiple levels. Abun- 
dant expression of a 40-kDa protein with dual ligand- 
binding capacity may promote cell surface plasmin 
formation by colocalizing t-PA and plasminogen in a 
catalytically favorable configuration. Conversion of 
Glu-PLG to the preactivated form .Lys-PLG, in the 
vicinity of the cell surface, may also precede plasmin 
formation. Physiologic concentrations of Lp( a), fur- 
thermore, may serve to modulate plasminogen activa- 
tion at the cell surface by competing for binding sites, 
whereas elevated levels of Lp(a) might suppress this 
mechanism and lead to a subclinical prothrombotic 
state. Finally, cell surface binding sites for both plasmin 
and t-PA appear to protect these molecules from their 
physiologic antagonists, a2-plasmin inhibitor and plas- 
minogen activator inhibitor, type- 1, respectively. Plas- 
min formation may contribute to the nonthrombogen- 
icity of the blood vessel wall. 
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