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ong-chain, non-esterified free fatty acids 
(FFA), the building blocks from which triglyc- L erides are synthesized, are important energy 

substrates in various tissues, essential building blocks 
for the lipid components of cell membranes, and pre- 
cursors for the synthesis of important biological medi- 
ators such as the prostaglandins. They are also in- 
creasingly being recognized as important intracellular 
mediators of gene expression. These multiple roles 
suggest that careful regulation of all aspects of FFA 
disposition, including cellular uptake, would be advan- 
tageous. However, although the intracellular metabo- 
lism of FFA and their transport in plasma as com- 
plexes with albumin have been extensively studied, 
little attention was paid until recently to the mecha- 
nisms by which FFA enter and leave cells. This ne- 
glect occurred both for methodologic reasons and be- 
cause the cellular uptake of FFA was long considered 
to be an entirely unregulated process in which FFA 
partitioned passively into the lipid bilayer of the 
plasma membrane. 

Since 1981, a series of studies from several groups 
clarified the influence of albumin binding on the up- 
take kinetics of FFA and other bound ligands, making 
more detailed studies of the uptake process feasible 
(14) .  Once it became clear that FFA uptake occurred 
principally from the very small unbound ligand pool in 
plasma and not from the albumin-bound compartment, 
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it was quickly reported that a major component of 
FFA uptake in certain cell types, including hepato- 
cytes, adipocytes, and cardiac and skeletal myocytes, 
in fact exhibited all the kinetic properties of a facili- 
tated transport process: saturation, trans-stimulation, 
cis-inhibition, and counter transport (7-18). These ob- 
servations, which-if valid-cannot be explained by 
purely passive diffusion, have suggested to many in- 
vestigators the existence of a facilitated uptake pro- 
cess for FFA, which appears to exist in parallel with a 
nonsaturable, presumable diffusive pathway. 

The kinetic evidence favoring facilitated FFA 
transport was sufficiently persuasive to some investi- 
gators to initiate a search for FFA transporters. In- 
deed, no fewer than five putative FFA transporters 
have by now been identified by various techniques in 
the plasma membranes of several tissues (Table I) (19- 
23). cDNA clones have been identified for three of 
them (19, 22, 23). A complex facilitated FFA transport 
system, involving both a peripheral membrane protein 
which serves as an “acceptor” and a distinct trans- 
membrane transporter, also has been well character- 
ized in Escherichia coli (24). 

Despite the identification of putative transporters, 
the evidence for facilitated transport has been uncon- 
vincing to some investigators, particularly those with a 
strong focus on the physicochemical aspects of mem- 
brane: solute interactions. These investigators have 
documented that the purely passive, physicochemical 
flux of FFA across certain synthetic lipid membranes 
occurs at rates which far exceed those observed in 
vivo, and would be more than adequate to meet cellu- 
lar needs. They argue that, in these circumstances, 
there would be no need for cells to have additional, 
specialized FFA transport mechanisms. The converse, 
of course is also possible: namely, that these purely 
synthetic membranes are poor models for biological 
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Table 1. Identification and Isolation of Plasma Membrane Fatty Acid-Binding Proteins 

Size Name Technique" 
W a )  

Year Lab 
(reference) Sitesb 

~ 

TMSD" Homologies Functiond 

Berke (19) 1985 43 FABPpm AC, PhA-L L, A, My, I, E 4(?) mAspAT Ab-I, LR, GenExpr 
Fujii (20) 1987 56/60 - AC K, My ? ? N.R. 
Trigatti (21) 1991 22 - PhA-L A ? ? N.R. 

Lodishe (23) 1994 63/71 FATP Exp-Clon A, My, M (K,B,L,Lu) 6 FACSFACL' GenExpr 
Abumrade (22) 1993 88/53 FAT Coval-L A, My, M, 1 ,  T 2 CD36 UT-I 

" AC, affinity chromatography; PhA-L, photoaffinity labeling; Coval-L, covalent labeling; Exp-Clon, expression cloning. 
A, adipose tissue; B, brain; E, endothelium; I, intestine; K, kidney; L, liver; Lu, lung; M, skeletal muscle; My, cardiac muscle; T, testis. 
TMSD, trans-membrane spanning domains. 
Ab-I, Selective inhibition of uptake by antibodies to protein; LR, reconstitution of transport by insertion of protein into synthetic 

liposomes; GenExpr, expression of protein and transport function follows expression of cloned genetic message (cDNA or cRNA); 
UT-I, Selective inhibition of uptake by covalent labeling of protein; N.R., not reported. 

' FACWFACL, fatty acid co-A synthase/ligase. 
cDNA cloned. 
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Figure 1. Initial rate of oleate uptake by isolated 

bound oleate concentration (O,), in the presence 
and absence of 55 nM unbound palmitate. The al- 
bumin concentration in all studies was 600 KM. Em- 
ploying a wide range of oleate:BSA molar ratios to 
vary 0,, uptake was saturable when plotted against 
0, both in the absence and in the presence of 
palmitate. Analysis of these data in terms of 

for transport between these two fatty acids. (left 
panel) Linear plot. (right panel) Double reciprocal 
plot. (Reproduction from Ref. 16.) 
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plasma membranes, and that FFA transfer rates in, for 
one, synthetic liposomes in vitro are not reflective of 
the passive transfer rates of FFA across plasma mem- 
branes in vivo. 

The debate over the processes underlying the 
transmembrane movement of amphipathic molecules 
is not restricted to FFA. Similar questions have been 
raised, often by the same research groups, about the 
transport of such molecules as bilirubin, bile acids, 
and phospholipids. 

In the following two articles, a leading proponent 
of each of the two major schools of thought about FFA 
transport summarizes his point of view. Professor 
David Zakim of the New York Hospital-Cornell 
Medical Center offers an elegant and highly lucid sum- 
mary of the reasons why some investigators continue 
to believe that cellular FFA uptake is a purely passive, 
physicochemical process. Professor Wolfgang Strem- 
me1 of Heidelberg argues equally strongly for the ex- 
istence of protein-mediated transport processes for 
FFA and other amphipaths. 

My personal view favors the existence of facili- 
tated transport system for FFA. Indeed, Professor 

I 

0 1  

Stremmel and I collaborated in the past on studies in 
this area and were the first to identify a putative FFA 
transporter, which we designated plasma membrane 
fatty acid-binding protein (FABPpm) (19). Neverthe- 
less, Dr. Zakim argues this case here, as he has else- 
where ( 2 5 ) ,  with great persuasiveness, and raises a 
number of difficult and pointed questions which keep 
us from becoming complacent about our point of view. 

Table II. Evidence for the Identity of FABPpm 
and mAspAT 

The two proteins have similar or identical: 
0 Molecular masses: 43 kDa by SDS-PAGE, 44.5 kDa 

0 pl: 9.1 with multiple, characteristic charge isomers 
0 Chromatographic behavior in multiple systems 
0 Amino acid composition 
0 N-terminal amino acid sequence (35 residues) 
0 Tryptic digests 
0 mAspAT enzyme specific activity: 205-210 U/mg 
0 K, for oleate binding: 7-8 x 
0 Photoaffinity labeling 
0 Immunologic epitopes 

by MS 

M 
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Figure 2. [3H]-oleate uptake by Xenopus laevis oocytes from solution containing 150 pA4 BSA. (left panel) Typical uptake curves 
measured over 4-5 h on Day 3 after injection with either capped mAspAT mRNA (0-0) or H,O (0---0). Uptake rate was determined 
by linear regression. Correlation coefficients are invariably >0.95 when healthy oocytes are employed. (right panel) Oleate uptake 
rates in Xenopus oocytes at various times after injection with a capped mAspAT mRNA or with H,O, as described above. Highly 
significant increases in uptake were observed on Day 2 and 3 after injection. Uptake declined appreciably by Day 4. (From Ref. 33.) 

Ultimately, however, even if I cannot address all of 
Dr. Zakim's questions at the present time, the follow- 
ing evidence convinces me that cellular FFA uptake is 
a protein-mediated transport process. 

First, FFA uptake does exhibit kinetic properties 
strongly suggestive of facilitated transport. The high- 
affinity binding of FFA to albumin extracellularly and 
to cytosolic FABPs intracellularly complicates the de- 
sign and interpretation of the necessary experiments, 
but with meticulous attention to detail, such defining 
properties as competitive inhibition are readily demon- 
strable both in the perfused rat liver and in isolated 
hepatocyte systems (Fig. 1) (16). Second, although an- 
tibodies to FABPpm do not enter viable cells (26) and 
do not, therefore, alter intracellular metabolism, FFA 
uptake is highly selectively inhibited by such antibod- 
ies in certain cell types. Specifically, they inhibit FFA 
uptake in cells exhibiting FABPpm on the plasma 
membrane (10-12, 14, 15, 26, 27, 31), but not in fibro- 
blasts (27), which do not display appreciable amounts 
of this protein. The antibody effects are highly spe- 
cific. Uptake of glucose, or of medium chain fatty ac- 
ids (which do not enter cells by diffusion) are not af- 
fected. And third, incorporation of FABPpm into syn- 
thetic liposomes appears to reconstitute FFA uptake 
(28). Similar effects are not seen with other, control 
proteins. 

Defining the role of FABPpm in mediating FFA 
uptake was enormously complicated by the discovery 
that it is identical to the mitochondria1 isoform of as- 
partate aminotransferase (29-3 1). The physicochemi- 
cal and immunologic evidence favoring their identity is 
summarized in Table 11. 

Since pre-mAspAT had been cloned (32), the dual 
hypotheses that FABPpm was identical to mAspAT, 
and that this protein-mediated FFA uptake was test- 

able in now standard transfection studies. In a mam- 
malian system, the 3T3 fibroblast, transfection with 
plasmid pMAAT2, containing a full-length pre- 
mAspAT cDNA under the control of a Z n + + -  
inducible metallothionein promoter resulted in the de 
novo Zn++-sensitive appearance of FABPpm on the 
plasma membrane, which was highly correlated with 
an up to a 10-fold, Zn + +-sensitive increase in satura- 
ble FFA uptake (26). Similarly, microinjection of Xe- 
nopi4s laevis oocytes with a capped mAspAT cRNA 
led to a selective increase in FFA uptake by the 
oocytes (Fig. 2) (33). 

Selectively antibody inhibition, liposome reconsti- 
tution, and genetic expression have become the widely 
accepted techniques by which the function of a candi- 
date transport protein is confirmed (33). If FFA trans- 
port is mediated by a specific protein, as the data just 
summarized strongly suggest, then the process is not 
one of simple, passive diffusion. I find the data in this 
regard quiet compelling. But I would sleep better if I 
could answer all of Dr. Zakim's questions. 
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