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Abstract. Apoptosis is now widely recognized as an important mode of cell death. 
Since the apoptotic pathway is an active process, modulation of apoptosis is impor- 
tant in our understanding of cell pathophysiology. Recent data have shown the inhi- 
bition of apoptosis in different cell types exposed to certain cytokines. Therapeutics 
that modulate the regulation of apoptosis provide an opportunity for the treatment of 
certain diseases. There are many reviews for apoptosis induction and the regulators 
involved. The present report selects important articles on the recent data showing the 
anti-apoptotic ability of cytokines in mammalian cells. Other novel compounds show- 
ing anti-apoptotic functions are also reviewed. [P.S.E.B.M. 1999, Vol 2211 

his review article focuses on agents and cytokines 
with anti-apoptotic functions. Apoptosis is now T widely recognized as an important mode of cell 

death whereby environmental or developmental stimuli ac- 
tivate a genetic program for a specific series of events that 
result in death of a cell (1). Many cells undergo apoptosis 
(programmed cell death) during normal development (1); in 
most mammalian tissues this process continues throughout 
life. Although the mechanism of apoptosis is still not com- 
pletely understood, evidence indicates its conservation in 
evolution from nematode worms to humans (2). Apoptosis 
differs from necrosis, which results from physical injury and 
is typified by cytoplasmic organelle destruction and loss of 
plasma membrane integrity (3). Apoptosis is associated 
with cytoplasmic blebbing, chromatin condensation, and 
nuclear DNA fragmentation (4). 

In addition to morphologic nuclear changes, an impor- 
tant biochemical hallmark of apoptosis is fragmentation of 
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DNA into discrete 180-200 base-pair fragments (4). Inter- 
nucleosomal DNA cleavage is preceded by the formation of 
high-molecular-weight DNA fragments; the relationship be- 
tween the formation of these large fragments (700-, 300-, 
and 50-kilobase-pair) and oligonucleasomal DNA laddering 
represents both precursor and product (5). Identification and 
evaluation of DNA fragmentation thus serves as the basis 
for many apoptotic analytical methods including in siru hy- 
bridization and flow cytometry. 

Induction and Inhibition of Apoptosis 

Many regulators of apoptosis fall into two categories: 
developmental cues or environmental cues. Of the former, 
proper regulation depends both on survival factors and 
death factors. Cell viability is promoted by survival factors 
both in vivo and in v i m  and is critical for normal develop- 
ment (6). Absence of survival factors induces apoptosis (6). 
Many studies and reviews are available for apoptotic induc- 
ers (1, 2); this will not be a subject covered in detail in this 
review. 

The subject of this review is the wide variety of rec- 
ognized inhibitors of apoptosis with specific focus on ge- 
netic regulators of apoptosis and the anti-apoptotic actions 
of cytokines. Study of these inhibitors advances our under- 
standing of apoptosis and its relationship to malignancy. 
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Significance of Apoptosis in Health and Disease 
All mammalian cells have the ability to initiate neces- 

sary signaling and processing pathways to undergo apopto- 
sis. It is now well understood that apoptosis is essential for 
normal development (6). Apoptosis is thought to have many 
regulatory points within the apoptotic cascade between pro- 
apoptotic and anti-apoptotic events: thus, improper regula- 
tion is now believed to lead to disease states such as hepatic 
disorders (7) and neoplasia (8). 

Therapeutics that modulate the regulation of apoptosis 
provide an opportunity for the treatment of certain diseases. 
Inhibition of apoptosis may aid the process of tissue repair 
by promoting cellular proliferation and tissue regeneration 
and influence diseases caused by apoptotic cell death. Ap- 
optosis induction may prove useful in treating malignant 
neoplastic cells and autoimmune diseases by causing de- 
struction of tumor cells (9). A direct link of apoptosis to 
specific disease states. such as lymphoproliferation and lu- 
pus-like disease (10) and cancer due to loss of p53 function 
or gain of Bcl-2 (8) has been established. This continues to 
be an exciting area of research as we identify genes that 
regulate apoptosis and various diseases. Before discussing 
the many agents shown to inhibit apoptosis, we will briefly 
review the main genetic regulators of apoptosis. The role of 
these agents has become important in the investigation of 
the inhibitory effects of agents on apoptosis. 

Genetic Regulators of Apoptosis 
Some components of cell death machinery appear to be 

shared by most cell types. Regulation can be conceptualized 
as involving the signaling pathways initiating apoptosis, the 
processing machinery executing the apoptotic process, and 
the molecules that inhibit apoptosis (1 1). Different signaling 
pathways ultimately may converge to activate a common 
apoptotic path, and hence genes and proteins involved in 
apoptosis are signal sensors, signal transducers, regulators, 
and adapters. We will discuss briefly the main players in 
apoptosis regulation. 

The NGF-TNF Receptor Family, and FadFas L 
Genes. Signal sensors are devoid of catalytic activity, but 
they recruit catalytic enzymes (protein kinases) that trans- 
duce the death signal. Some examples of signal sensors are 
members of the nerve growth factor/tumor necro5is factor 
receptor family and include Fas, TNF-R1, or CD30 (12). 
The cell surface receptor Fas is the best-understood com- 
ponent in the pathway of apoptosis. The Fas ligand (FasL). 
produced by the immune system, binds to Fas and activates 
a death program (10). 

Ced Genes and the ICE Family of Cysteine Pro- 
teases. The genes regulating apoptosis were initially dis- 
covered in the nematode Caenorhabditis elegnns. During its 
development, the generation of 959 somatic nuclei is ac- 
companied by the generation and eventual death by apop- 
tosis of 13 1 cells (13). Apoptosis is controlled by two genes 
(ced-3 and ced4),  and the cloning of the former shows a 
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strong homology to human interleukin-lp converting en- 
zyme (ICE), a cysteine protease enzyme (2). Many cysteine 
proteases have been identified in mammals. The activity of 
one or more is increased by apoptosis (14, 15). Members of 
the ICE protease family continue to be identified; recently 
c d - 9  has been shown to protect cells from apoptosis in C. 
elegnns (1). The mechanism for mammalian apoptotic cell 
death is thought to require specific proteolytic degradation, 
since inhibitors of the ICE family inhibit apoptosis (for 
example, cowpox serpin) (1 6). 

Bcl-2 Family of Genes. There are two sources of 
apoptosis inhibitors: genes present in the genome that be- 
come improperly regulated during oncogenesis and genes 
derived from viruses (2). One of the oncogenic genes, Bcl-2, 
functions by inhibiting apoptosis (17). This gene is the 
founding member of a multigene family whose members 
have one of two functional properties: either inhibition of 
apoptosis or promotion of apoptosis. Inhibitors of apoptosis 
include Bcl-L (18), adenovirus E1B 19K (19), Mcl-1 (20), 
and A1 (21). Inducers of apoptosis include Bax (22), Bak 
(33 )  and Bcl-xS (18). Bcl-2 family members interact and 
can form both homodimers and heterodimers. Apoptosis 
inhibitors associate with the apoptosis promoters, suggest- 
ing an antagonistic relationship (22). It has been shown that 
Bcl-2 interacts with Bax, thus excess of Bax relative to 
Bcl-2 promotes cell death whereas excess of Bcl-2 relative 
to Bax promotes survival (22). A similar relationship has 
been observed between Bcl-2 and the other promoters of 
apoptosis in this family (18, 23). Some evidence suggests 
that Bcl-2 family members can also interact with classical 
signal transduction molecules such as rus (24). 

p53. One of the most important regulators of the cell 
cycle is the tumor suppressor protein p53. A large body of 
evidence suggests that it also plays a role in the apoptosis 
process. DNA damage induces p53 (25). Thymocytes from 
animals lacking the p53 gene, however, do not undergo 
apoptosis in response to DNA-damaging agents such as ir- 
radiation or etoposide (26, 27). p53 is a regulator of Bcl-2 
and bax gene expression in vitro and in vivo (28), and ap- 
pears to be a transcriptional silencer for the Bcl-2 gene (29). 

c-myc Gene. Another transcription regulator, c-myc, 
has been shown to cause apoptosis. The gene is similar to 
the p53 gene but is also cell-type and stimulus specific (30). 
Generally, expression of c-myc induces cells either to pro- 
liferate or undergo apoptosis, depending on the presence of 
other survival factors (31, 32). Several studies have dem- 
onstrated that Bcl-2 can prevent c-myc induced cell death 
(31. 33). 

Inhibiting Agents of Apoptosis 
A wide variety of inhibitors of apoptosis are now iden- 

tified. and new ones continue to be studied. Identification of 
these agents is very important in advancing our understand- 
ing of the role between malignancykhease and apoptosis. 
Many of these inhibitors under differing conditions can act 
as inducers. Table I highlights several known inhibitory 



agents; these are not cytokines/growth factors and are men- 
tioned here for general interest; the reader is referred to the 
references provided for additional information. 

It is well known that growth factors can function to 
prevent apoptosis, primarily due to the fact that growth 
factor withdrawal induces apoptosis (6). Figure 1 below 
outlines the apoptotic pathway with and without growth 
factor presence. Work has progressed, and now certain 
growth factors and cytokines have been shown to induce 
true anti-apoptotic signals. An overview of some of these 
cytokines and their anti-apoptotic abilities follows. 

Insulin-Like Growth Factor Family (IGF). IGF-I 
and the family to which it belongs exert multiple biological 
actions in cells. Tissue development and growth require a 
balanced regulation of cell replication and death; inhibition 
of apoptosis by IGF-I is thought to play an important role in 
maintaining cell survival. Several studies have demon- 
strated the role of the IGF-I receptor and its ligands IGF-I 
and IGF-II in modulating apoptosis. Hanington et al. (32) 
studied inhibition of c-myc induced apoptosis in fibroblasts 
by IGF-I and IGF-II. Rat fibroblasts constitutively express- 
ing a c-myc chimera, myc-ER was induced into apoptosis by 
the activation of c-myc with oestradiol in serum-free media. 
Addition of IGF-I and IGF-I1 significantly suppressed ap- 
optosis. A later study with IGF-I showed that the suppres- 
sive effect on c-myc induced apoptosis in fibroblasts was 
not linked to the growth status of the cells. The anti- 
apoptotic signal persisted in the presence of protein synthe- 
sis inhibitors. This indicates that the IGF-I effects are not 
dependant upon induction of apoptosis repressor genes (32). 

Inhibition of apoptosis by IGF-I and IGF-I1 has been 
shown in human colonic epithelial cells (61). The study 
used an adenoma cell line RG/C2 and tested IGF-I and 
IGF-I1 in serum-and growth factor-deprived conditions. 
Both IGF-I and IGF-I1 protected against apoptosis induced 
by serum withdrawal; IGF-I was more potent. This response 
was independent of c-myc since serum and growth factor 
withdrawal from RG/C2 cultures resulted in a rapid reduc- 
tion in levels of c-myc. 

The effect of IGF-I and IGF-I1 on osteoblast survival 
has also been reported (62). Mouse osteoblasts were cul- 
tured in the presence of IGF-I and IGF-11, and cell survival 
was assessed. Both IGFs enhanced the survival of osteo- 
blasts by inhibiting apoptosis. IGF-I effects were more po- 
tent than those of IGF-11. Effects were mediated through the 
IGF-I receptor. The role of the IGF-I receptor in apoptosis 
has also been demonstrated in other studies (63, 64). Ap- 
optosis is induced by the expression of a dominant negative 
mutated IGF-I receptor (63), and suppressed in cell lines 
that overexpress the IGF-I receptor (64). The IGF-I receptor 
has shown anti-apoptotic action in BALBk3T3 cells in- 
duced into apoptosis by a topoisomerase I inhibitor etopo- 
side (65). Both IGF-I and its receptor have inhibited TNF- 
induced apoptosis in these cells; this action was shown to be 
reversed by ethanol administration (66). 

An early study showed that IGF-I prevented DNA frag- 
mentation and apoptotic cell death in interleukin-3 (IL-3)- 
dependent hemopoietic cells (67). Apoptosis of human ery- 
throid progenitor cells is also inhibited by IGF-I. A reduc- 
tion in the amount of DNA breakdown occurred to 38%- 
46% (68). 

Apoptosis in response to acute injury by ischemia/ 
reperfusion has been inhibited by IGF-I in several studies. 
Buerke et al. (69) examined the cardioprotective effects of 
IGF-I in a murine model of myocardial ischemia reperfu- 
sion. IGF-I significantly weakened the incidence of myo- 
cyte apoptosis after myocardial ischemia and reperfusion. 
Similarly, two studies showed the inhibitory effects of IGF-I 
in stroke-prone, spontaneously hypertensive rats (SHRSP) 
(70, 71). In the first study cortical neurons from SHRSP 
were isolated and assessed for apoptosis after nitric oxide 
and N-methyl-D-aspartate neurotoxic agent treatment. Both 
agents caused apoptosis in these cells; however, treatment 
with IGF-I rescued neurons from cell death (70). In addi- 
tion, a P13-kinase inhibitor (wortmannin) lessened the pro- 
tective effect of IGF-I; the authors suggested that this re- 
flected inadequate activation of signaling pathways down- 
stream of protein tyrosine kinases (70). 

The second study looked at apoptosis in neurons from 
SHRSP after cerebral ischemia was followed by reperfusion 
(71 ). Apoptosis was induced, but pretreatment with IGF-I 
reduced the number of apoptotic neurons in SHRSP with 
cerebral ischemia followed by reperfusion. Apoptosis in- 
duced by the protein synthesis inhibitors cycloheximide and 
ricin in MDA-231 cells was inhibited, and cell survival was 
enhanced by addition of IGF-I (72). Tumor progression in 
p53-deficient mice was inhibited by dietary restriction. 
Supplementation with IGF-I abrogated the protective effect 
of dietary restriction on cancer progression due to the 
growth-factor inhibitory effects on apoptosis (73). 

The studies mentioned above demonstrated the ability 
of IGF-I to inhibit apoptosis and hence influence disease 
states and injury. Some studies have elucidated the regula- 
tory genes and signaling pathways involved in IGF- 
suppressed apoptosis. Parrizas et al. (74) showed that IGF-I 
exerts its inhibitory effects on apoptosis using the phospha- 
tidylinositol 3 ‘-kinase and mitogen-activated protein kinase 
pathways in PC12 cells. IL-3 dependent murine myeloid 
progenitor cells showed increased apoptosis after serum 
withdrawal and 80% reduction in the endogenous expres- 
sion of Bcl-2 (75). Addition of IGF-I reduced apoptosis by 
maintaining the levels of Bcl-2Bax heterodimers; this sug- 
gests that Bcl-2 is an important agent in the signaling path- 
way used by IGF-I (75). IGF-I was also shown to reduce 
apoptosis in serum-deprived PC12 cells by upregulation of 
Bcl-xL messenger RNA and protein levels (76). In H9C2 
cardiac muscle cells. IGF-I inhibited apoptosis by weaken- 
ing Bax induction and activating caspase-3 (77). Drug- 
induced apoptosis in HBLlOO human breast cancer cells 
was inhibited by IGF-I, but changes in Bcl-2 or Bax were 
not detected (78). Involvement of interleukin-1 p converting 
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Table I .  Agents with Reported Anti-apoptotic Capabilities 

Agent Cell typeheference Result Comments 

Cerebellar granule Prevented apoptotic neuronal cell Polyamines . .  
neurons (34) death 

Vitamin E homologs 

Peptide inhibitors 

Nitric oxide 

Dexamethasone 

Zinc 

Anti-oxidants 

1,25-Dihydroxy- 
vitamin D, 

Arachidonic acid 
Polyunsaturated fatty 

Calcium channel 
acids 

blockers 

EWSR 
calcium-ATPase 
inhibitors 

Vasoactive intestinal 
peptide and 
pituitary adenylate 
cyclase activating 
polypeptides 

Curry pigment; 
curcumin 

Retinoic acid 

Mutagen; 2-amino-3- 
methylimidazol 
[4,5-flquinoline 

R-Deprenyi 

Rat PC12 cells (35) 

AK-5 tumor cells (36) 

Hepatocytes (37) 

Prevented hyperoxia-induced 
apoptosis 

Inhibited dexamethosone or 
serum factor-induced apoptosis 

Inhibited serum withdrawal- or 
tumor necrosis factor a- or 
anti-Fas antibody-induced 
apoptosis 

Inhibited Fas-induced apoptosis Human leukocytes (38) 

Neonatal rat model (39) 

Human gastric cancer 
TMK-1 cells (40) 

Molt4 leukemia cells (41) 
See also review by 

Fraker and Telford (42) 
Human promyelocytic 

cell line; HL-60 (43) 
Rat thymocytes (44) 

Pretreatment with 
dexamethasone prevented 
apoptosis of hypoxic-ischemic 
encephalopathy 

Delayed apoptosis 

Inhibited apoptosis 

Prevented serum-induced 

Prevented etoposide, 
apoptosis 

thapsigargin-induced apoptosis 

Human leukemia cells; HL60 cells were protected from 
HL60 (45) apoptosis 

Rat W256 Suppressed nordihydroguaiaretic- 
carcinosarcoma cells induced apoptosis 

Human aortic smooth Inhibited 25-hydroxy- 
muscle cells (47) cholesterol-induced apoptosis 

(46) 

Rat seminiferous tubules Protected against methoxyacetic 

Reduced renal apoptosis during 

Suppressed IL-3 deprivation- 

Prevented spontaneous and 
dexamethasone-induced 
apoptosis 

(48) acid-induced spermatocyte 
induced apoptosis 

ischemic reperfusion 
Rat kidneys (49) 

IL-3 dependent cell line 

Rat thymocytes (51) 

(50) induced apoptosis 

Human and rat Prevented dexamethasone- 
lymphocytes (52) induced apoptosis 

cell line; Y6 (53) 
Murine hematopoietic inhibited IL-6-induced apoptosis 

Rat colon (54) 
caused inhibition of apoptosis 

Cerebellar granule Prevented cytosine 
neurons (55) arabinoside-induced aDoptosis 

Tumors induced by this agent 

Prevented apoptotic cell death 
through NMDA receptor 
dependent and independent 
mechanism 

a-Tocopherol was the most 
effective inhibitor 

Acidification that occurred during 
apoptosis was also abolished 

Effect was via either directly or 
indirectly inhibiting 
caspase-34ke activity 

Inhibition was via a cGMP- 
independent mechanism 

Inhibited induction of c-fos 
transcription 

Enhanced basal levels of Bcl-x 
gene expression 

Zinc inhibited the apoptotic 
protease caspase-3 

Effect was independent of Bcl-2 
content 

Anti-apoptotic effect occurred if 
cells were pre-incubated with 
ascorbate for 1 hr 

Also caused an increase of 
anti-apoptotic protein Mcl-1 , A1 , 
and RAF-1 and a decrease in 
cytochrome c release 

These reagents may enhance 
tumor growth due to their 
anti-apoptotic effect 

Calcium influx through plasma 
membrane channels was an 
important signal in 
oxysterol-induced apoptosis 

Protective effect via interactions 
with calmodulin or protein 
kinase C 

Anti-apoptotic effect occurred if 
kidneys were pretreated with 
calcium channel blocker 

Anti-apoptotic effect was due to 
induction of IL-4 release 

Neuropeptides may be involved in 
intrathymic T-cell maturation 

Anti-apoptotic effect may involve 
modulation of the AP-1 
transcription factor 

Stopped down regulation of c-myc 
gene by IL-6 

Inhibition was due to increased 
levels of Bcl-2 and decreased 
levels of Bax 

~53-de~endent apopotosis 
May act by preventing 
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Table 1. Continued 

Agent Cell typekeference Result Comments 

Bioflavonoid quercetin Glomerular mesangial cells, Prevented hydrogen peroxide Effect was due to suppression of 
(anti-cancer agent) epithelial cells, and induced apoptosis the tyrosine kinase-c-JunlAP-1 

Thrombo-poietin Murine hematopoietic Inhibited apoptosis Also promoted viability of cells 
fibroblasts (56) pathway 

progenitor cells (57) 

Transcription factors T lymphocytes, human Inhibited apoptosis 

comparable to IL-1 and 
granulocyte colony- 
stimulating factor 

leukemia cells (58, 59, 60) 

A B 

Kh.r Tnrga 

-mw- ulp....d. 
u-amwmt 

Figure 1. Diagrammatic representation of major 
points in the pathway regulating apoptosis. Shown 

-1- wmw~. G d - 2  'a% are schemes hypothesized for (A) growth factor de- 
w-4 privation and (B) growth factor addition. 

[*] 

enzyme like protease (ICE) in cell death and its suppression 
by IGF-I have been demonstrated in mammalian cell lines 
(79) and in cerebellar external granular layer neurons (80). 
Induction of apoptosis by N-myc expression in hepatocytes 
(81) and woodchuck liver epithelial cells (82) has been 
blocked by IGF-11. 

These studies show the diverse inhibitory effects of IGF 
on apoptosis and the regulatory genes involved. Future stud- 
ies will further elucidate the important role of this growth 
factor in the apoptotic process. 

Platelet-Derived Growth Factor (PDGF). PDGF 
is a potent mitogen in v i m  (83), and it also signals other 
cellular responses such as survival (84) and transformation 
(85). This growth factor is present at detectable levels in 
fetal calf serum and hence may exert anti-apoptotic effects 
on cell growth. Few studies to date have evaluated PDGF 
and its anti-apoptotic effects. Harrington et al. (32) exam- 
ined the effect of PDGF on c-myc-induced apoptosis in 
fibroblasts. PDGF suppressed apoptosis in these cultures at 
levels similar to that found by fetal calf serum. PDGF alone 
was not able to suppress apoptosis in c-myc-expressing fi- 
broblasts during prolonged periods of serum deprivation. 
The protection of c-myc-induced apoptosis by PDGF did 
not result in any change of the Bcl-2 protein or in Bcl-2 
post-translational modification (32). PDGF was able to in- 
hibit tumor necrosis factor-induced cell death in conjunc- 

tion with IGF-I in BALBk3T3 cells for up to 5 days, 
whereas in the absence of PDGF, IGF-I was only effective 
for 2 days (86). The effect of PDGF in combination with 
IGF-I and IGF-I1 on osteoblast survival has also been re- 
ported (62). PDGF alone had no effect on osteoblast sur- 
vival; however, PDGF potentiated the survival-promoting 
effects of both IGF-I, IGF-I1 and insulin in mouse osteo- 
blasts (62). PDGF alone has also been shown to have anti- 
apoptotic effects. In human vascular smooth muscle cells 
derived from coronary plaques and normal coronary arteries 
and aorta, PDGF was identified as a potent anti-apoptotic 
survival factor (87). PDGF-BB was shown to enhance cell 
survival and cell cycle progression in skeletal myoblasts in 
culture although this peptide was not able to promote dlf- 
ferentiation in these cells (88). Funa et al. (89) examined a 
mouse neuroblastoma cell line, Nl341, for its response to 
PDGF. NB41 cells showed apoptosis on serum withdrawal, 
which was further enhanced by the addition of neurotoxin, 
6-hydroxy dopamine (6-OHDA), however, addition of 
PDGF-BB prior to 6-OHDA addition resulted in cells res- 
cued from undergoing apoptosis (89). An association be- 
tween PDGF effects and the regulatory gene involved has 
also been demonstrated (90). In liver progenitor cells 
PDGF-mediated cell survival from apoptosis was enhanced 
by BAG-1 due to its association with the PDGF receptor 
(90). Association of the receptor with BAG-1 was shown to 
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be mediated by both the N- and C-terminal domains of 

Epidermal Growth Factor (EGF)/Transforming 
Growth Factor (TGF) Family. EGF is an important mi- 
togenic stimulus in vitro and its role in apoptosis has been 
studied extensively. EGF was able to block the apoptotic 
effects of the inflammatory cytokines tumor necrosis fac- 
tor-a (TNF-a) and y-interferon (INF-y) in human cytotro- 
phoblasts and syncytiotrophoblasts from normal-term pla- 
centa (91). Since EGF is abundantly expressed in maternal 
and fetal tissues. the anti-apoptotic signal shown by this 
growth factor suggests a novel role for EGF in normal pla- 
cental development (9 1 ). Apoptotic cell death has been sug- 
gested as a possible cause of degeneration of ovarian fol- 
licles during atresia. To determine whether EGF could in- 
hibit this cell death, Tilly et a/. (92) evaluated apoptosis in 
ovarian granulosa cells or intact follicles placed in serum- 
free media and found that EGF inhibited the spontaneous 
onset of apoptotic DNA cleavage in cultures by 4 0 9 4 0 % .  
This effect was based on a tyrosine-kinase-dependent 
mechanism. EGF has also been shown to play a role in 
tumorigenicity by reducing apoptosis. In ms-stimulated ep- 
ithelial cells EGF, transforming growth factor+ and hepa- 
rin-binding EGF-like growth factor increased proliferation 
and resistance to apoptosis (93). In human glioblastoma 
cells a mutant epidermal growth factor receptor (de 2-7 
EGFR) enhanced tumorigenicity by increasing proliferation 
and inhibiting apoptosis by virtue of constitutive activation 
of its tyrosine kinase (94). Apoptosis induced by the protein 
synthesis inhibitors cycloheximide and ricin in MDA-23 1 
cells was inhibited, and cell survival was enhanced by ad- 
dition of EGF (72). This effect was blocked by the protein 
kinase C inhibitor staurosporine, suggesting the involve- 
ment of protein kinase C in the MDA-231 cell death path- 
way (72). In an astrocyte progenitor cell line (AP-16), EGF 
deprivation resulted in apoptosis (95). In the absence of 
EGF, AP- 16 cells were prevented from undergoing apopto- 
sis by TGF-a and basic fibroblast growth factor (95). Epi- 
thelial cells from human colon have been shown to undergo 
apoptosis in response to inhibition of intercellular contact 
by anti-integrin antibodies (96). Hague et al. (61) investi- 
gated whether specific cytokines were able to act as survival 
factors for colonic epithelial cells (RGK2). EGF acted as a 
survival factor and protected cells from apoptosis after 
growth factor withdrawal. The apoptosis observed in these 
cells was independent of c-myc and p53 (61). 

Apoptosis in the developing tooth is thought to be re- 
sponsible for anomalies such as cleft lip and palate (97). 
EGF was investigated for its role in apoptosis of cultured 
dental tissues and found to prevent apoptosis on dental mes- 
enchyme (98). 

TGF-P, a physiological inhibitor of epithelial cell pro- 
liferation, has been shown to induce apoptosis in fetal he- 
patocytes in primary culture (99). This effect was blocked 
by the mitogenic stimuli of EGF and thought to occur by the 
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BAG-1 (90). 
prevention of c-fos induction (99). The authors suggest that 
EGF may play an important role during early liver devel- 
opment by acting as an important mitogen and allowing 
cells to overcome apoptosis and differentiate. 

The inhibitory effects of the TGF family on apoptosis 
are also important. In human leukemic HL-60 cells, apop- 
tosis induced by cell densities higher than 106/ml was in- 
hibited by TGF-P1 (100). The apoptosis observed in these 
cells was independent of ICE but was strongly affected by 
signaling events through the TGF-PI receptor and by the 
action of Bcl-2 (100). Apoptosis induced by the membrane- 
permeable second messenger CZceramide in human leuke- 
mic HL-60 cells was inhibited by TGF-P1 by maintaining 
constant levels of Bcl-2 (101). 

The anti-apoptotic effects of TGF-P 1 have been inves- 
tigated in degenerative disorders such as rheumatoid arthri- 
tis (102). Kawakami et al. (102) investigated the mitogenic 
and anti-apoptotic effects of TGF-P 1 on rheumatoid syno- 
vial cells. TGF-P1 suppressed apoptosis of synovial cells 
from rheumatoid patients by inhibiting Fas expression and 
increasing Bcl-2 expression; a similar effect was observed 
in synovial cells from patients with osteoarthritis (102). The 
effect of TGF-PI on Fas antigen expression is achieved at 
the transcriptional level (102). The authors suggested that 
this TGF-P1 effect resulted in the perpetuation of synovial 
hyperplasia in patients with rheumatoid arthritis (102). 

TGF-P1 inhibition of Fas-mediated apoptosis has also 
been observed in murine bone marrow progenitor cells. 
TGF-P1 may act by protecting these cells from the in- 
creased Fas expression and function normally observed with 
a pro-inflammatory response (103). The anti-apoptotic ac- 
tivity of TGF-f3 has been observed in vascular smooth 
muscle cells isolated from the aorta of transgenic mice and 
is thought to be dependent on the catalytic activity of plas- 
min mediated by urokinase-type plasminogen activator 
( 104). Suspension-induced apoptosis of cultured human ke- 
ratinocytes was also protected by TGF-P1 and resulted in 
the decrease of steady state messenger RNA levels for 
c-mgc (105). 

The oncogene c-myc and TGF-a have frequently been 
co-expressed in human tumors (106). Overexpression of 
TGF-a transgene in c-myc/TGF-a hepatocellular carcino- 
mas has been shown to reduce apoptosis dramatically and 
hence enhance survival of neoplastic cells (107). 

Endothelin (ET). ET-1 is a potent vasoconstrictor as 
well as a mitogen (108). Recent studies describe ET-1 as an 
apoptosis survival factor for cultured rat endothelial cells 
(1 09) and human smooth muscle cells (1 10). Endothelial 
cells from rat aorta underwent apoptosis upon serum star- 
vation. Serum starvation-induced apoptosis was suppressed 
by addition of ET-1 (109). The protective effect of ET-1 
was blocked by the ET, receptor antagonist (BQ788). The 
authors suggested that ET-1 functioned as an apoptosis sur- 
vival factor for endothelial cells via the ET, receptor (1 09). 
In a further study, the effect of ET-1 suppressing apoptosis 



in rat endothelial cells was investigated (110). The anti- 
apoptotic effect of ET-1 in these cells confirmed the role of 
this growth factor as an autocrine/paracrine survival factor; 
however, these effects were shown not to be mediated 
through phospholipase C, tyrosine kinase, MAP kinase, or 
phosphatidylinositol-3 kinase (1 10). In human pericardial 
and prostatic smooth muscle cells, addition of ET-1 was 
shown to decrease paclitaxel-induced apoptosis (1 1 1). ET- 1 
has also been shown as a potent survival factor for c-myc- 
dependent apoptosis (112). Low doses of ET-1 protected 
fibroblasts against apoptosis induced by serum deprivation 
through a c-myc-dependent process and was mediated by 
the ETA receptor (1 12). This effect was abrogated by inhib- 
iting the mitogen-activated protein kinase pathway (1 12). 

Nerve Growth Factor (NGF). NGF is a neurothro- 
phic factor that maintains neuron survival (1 13). Several 
studies have examined the role of this factor in apoptosis. 
Kawamoto et al. (1 14) investigated the anti-apoptotic abil- 
ity of NGF on rat peritoneal mast cells (PMCs). Addition of 
NGF decreased the number of apoptotic cells and prevented 
the characteristic DNA fragmentation. The NGF receptor 
pl4Otrk was expressed on PMCs during the anti-apoptotic 
actions of NGF (1 14). Sympathetic neurons died by apop- 
tosis in culture when deprived of NGF (1 15). This death was 
more rapid in sympathetic neurons isolated from Bcl-2- 
deficient mice after NGF deprivation than in neurons from 
wild-type mice. This suggests that Bcl-2 is an important 
regulator of neuron survival after NGF deprivation (115). 
Katoh et 01. (1 16) have also shown the anti-apoptotic ability 
of NGF in rat pheochromocytoma (PC12) cells accompa- 
nied by an increase in the amount of Bcl-2. When neuro- 
nally differentiated PC 12 cells underwent apoptosis on NGF 
deprivation, actinomycin D and cycloheximide-sensitive 
caspase (ICE-like) activity was induced (1 17). Forced ex- 
pression of Bcl-2 or Bcl-2 binding protein, BAG-1, blocked 
the apoptosis induced by NGF withdrawal by preventing 
caspase activation (1 17). When NGF signaling was blocked 
in human keratinocytes by anti-NGF neutralizing antibody 
or K252 (a specific inhibitor of tyrosine kinase high affinity 
NGF receptor) apoptosis was induced in these cells (1 18). 
The anti-NGF antibody and K252 downregulated Bcl-2 ex- 
pression; the authors suggested that NGF is an important 
survival factor for human keratinocytes in v i m  and acts 
through a high affinity NGF receptor maintaining the levels 

NGF is able to overcome apoptosis induced by other 
agents. NGF withdrawal from PC12 cells results in apop- 
tosis; this type of death increases on exposure of PC12 cells 
to S-100, a calcium binding protein. The presence of NGF 
in the culture medium, however, completely blocked the 
apoptotic effect of S-100 (1 19). In cerebellar granule cells in 
vitro, apoptosis induced by ethanol exposure was signifi- 
cantly reduced by the presence of NGF (120). This neuro- 
protective effect required protein and RNA synthesis (1 20). 

NGF's potential as a therapeutic agent has been de- 
scribed for human diabetic retinopathy (121). Diabetes- 

of Bcl-2 (118). 

induced apoptosis in rat retinal ganglion cells and Muller 
cells was prevented with NGF treatment (121). 

Fibroblast Growth Factor (FGF) Family. Basic 
FGF (bFGF) is a pleiotropic cytokine that plays a role in 
mesodermal development (122) as well as in malignancy 
(123). Exposure of fibroblasts to bFGF increased cell sur- 
vival by causing an increase in Mdm2 oncoprotein and in- 
hibition of p53 function (124). Ureteric bud cells secrete 
several factors including bFGF, which rescues renal pro- 
genitors (precursors of tubular epithelia, capillaries, and 
cells that are involved in the growth of the ureteric bud) 
from apoptosis (125). In cerebellar granule cells, in vitro 
apoptosis induced by ethanol exposure was significantly 
reduced by the presence of bFGF (1 20). 

Studies also describe bFGF's ability to delay apoptosis 
(126, 127). When human B-cell leukemia cell lines were 
treated with fludarabine alone, apoptosis occurred. In com- 
bination with bFGF, however, the result was prolonged sur- 
vival (126). Bcl-2 protein levels increased upon addition of 
bFGF suggesting a role for this gene in the delay of 
fludarabine-induced apoptosis (126). The NIH 3T3 fibro- 
blast-derived cell line expresses more immunoreactive 
bFGF as compared to the parental NIH 3T3 cells. Such cells 
exhibited delayed apoptosis upon serum withdrawal (1 27). 
This delay also resulted in an increase in cellular Bcl-2 
levels (1 27). 

Fibroblast growth factor-2 (FGF-2) has also been 
shown to inhibit apoptosis. Alanko et al. (128) have shown 
that FGF-2 inhibited apoptosis in human teratocarcinoma 
cells when cells were grown on a collagen substratum. In 
endothelial cells, growth factor and serum deprived- 
induced apoptosis was blocked by FGF-2 (129). Bcl-2 is 
induced by FGF-2 in these cells. Although FGF-2 anti- 
apoptotic actions were dependent on tyrosine phosphoryla- 
tion, it did not result in MAP kinase pathway activation 
(129). The authors concluded that FGF-2 inhibited apopto- 
sis in endothelial cells by Bcl-2-dependent and independent 
mechanisms. 

Several studies have shown the anti-apoptotic effects of 
bFGF in retinal dystrophies (130-133). Retinal ischemia 
was induced in Wistar rats; bFGF and FGF-receptor (FGF- 
R) mRNA was observed in normal sensory retina following 
ischemia suggesting that bFGF has a protective role in the 
retina (130). Desire et al. (131) showed that the role of 
FGF-2 during chick retinal development was to stimulate 
neuron differentiation and protect neurons against cell death 
(13 1). Similarly, FGF-2-stimulated release of endogenous 
FGF-1 in retinal pigmented epithelial cells was shown to 
prolong cell survival due to inhibition of apoptosis in these 
cells (132). Liu et al. (133) have shown that pre- 
conditioning rats with bright light protects these animals 
from photoreceptor degeneration (133). The protective ef- 
fect in rat retina was found to be due to a prolonged increase 
in bFGF and phosphorylation of extracellular signal regu- 
lated protein kinases (Erks) (133). Thus bFGF can serve as 
a therapeutic agent in retinal diseases. 
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Table II. IL Family Members Reported for their Anti-Apoptotic Abilities 

lnterleukin Cell type Result Comments 

IL-1 Immature thymocytes (134) Inhibited T cell Inhibition mechanism may involve 

IL-la and IL-6 
receptor-mediated apoptosis 

Inhibited induction of apoptosis 
by TGF-P1 

protein kinase C activation 
Absence of TGF-p1 made M1 

leukemia cells independent of 
this cytokine for cell viability and 
growth 

IL-1 p Human monocytes (136) Inhibited monocyte death Inhibition only possible if sufficient 
level of cytokine maintained 
continuously in culture. IL-1 p 
exerts autocrine and paracrine 
control of cell survival 

Cytokine plays role in pathogenesis 

Myeloid leukemia (Ml) (135) 

IL-2, IL-4, IL-6, Human leukemic CD5+ B cells Delayed apoptosis by delaying 

displaying reduced levels of 
IL-13 (1 37) the accumulation of cells of B cell malignancies by 

maintaining Bcl-2 levels 
Bcl-2 

IL-2 and IL-15 

I L-2 

IL-2, and IL-4 

IL-3 

I L-3 

I L-4 

IL-4 and IL-10 

I L-5 

IL-6 

I L-7 

Human lymphocytes (138) 

Human antigen-specific T-cell 
clones (1 39) 

Human T cells (140) 

Bone marrow derived Baf-3 
cells (141) 

Myeloid cells (1 42) 

IL-3-dependent cell lines; 
IC.DP (143) 

Peripheral blood B-cell chronic 
lymphocytic leukemia 
(B-CLL) cells (144); IL-4 
inhibition of apoptosis in 
B-CLL cells has also been 
shown by Craig (145), 
Panayiotides (1 46) 

Alveolar macrophages (1 47) 

Eosinophils (148) 

Myeloid leukemic cells (1 49) 

Multiple myeloma (MM) 
derived cell lines; 
RPMI-8226 and IM-9 (150) 

B-CLL cells (B-chronic 
lymphocytic leukemia cells 

Mouse malignant T-lymphoma 
cells (1 52) 

(1 51) 

Inhibited apoptosis 

Inhibited IL-2 deprivation 
apoptosis in THO, Thl , and 
Th2 clones 

Inhibited 
dexamethasone-induced 
apoptosis 

IL-3 deprivation lead to 
apoptosis; IL-3 presence 
inhibited apoptosis 

Suppressed y-irradiation 
induced apoptosis 

Survival from apoptosis induced 
by IL-3 deprivation 

Addition of IL-4 to culture 
medium decreased in vitro 
apoptosis 

Apoptosis reduced by IL-4 after 
apoptosis was induced by 
Lipopolysaccharides (LPS) 

Significantly inhibited apoptosis 
in culture 

Inhibited wild-type p53-induced 

Inhibited Fas-induced apoptosis 

apoptosis 

Inhibited spontaneous apoptosis 

Inhibited apoptosis caused by 
separation of T-lymphoma 
CS-21 cells from CA-12 lymph 
node stromal cells 

When cytokine-specific OL chain 
receptor is blocked anti-apoptotic 
effect of IL-2 decreased 

Inhibition resulted in active 
proliferation and enhanced 
expression of p53, Rb, and 
Bcl-xL proteins 

IK& expression 

Long-term survival correlated with 
induction of Bcl-X gene 
expression and was dependent 
upon MAP-kinase activation 

Action was dependent upon Jak 
kinase activation 

IL-3 stimulated glucose transport, 
which aids suppression of 
apoptosis 

Also showed that IL-4 decreased 
apoptosis from normal B-cells. 
IL-4 exerted anti-apoptotic 
effects by inhibiting loss of Bcl-2 

Inhibition occurred via inhibition of 

Inhibition was possible due to 
upregulation of Bcl-2 protein and 
mRNA expression 

Tumor suppressor gene products 
may be involved in restricting 
precursor cell populations 

IL-6 modulated stress-activated 
protein kinase thought to be 
associated with Fas-induced 
apoptosis 

IL-6 inhibited DNA synthesis in an 
autocrine fashion but prolonged 
cell survival 

IL-7 suppressed CPP32-like 
protease activation resulting in 
Bcl-2 expression 
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Table II. Continued 
~ 

lnterleukin Cell type Result Comments 

I L-8 Human neutrophils (1 53) 

IL-10 T cells (154) 

IL-11 Mice small intestinal mucosa 
(1 55) 

IL-13 and IL-4 Human B lymphocytes (156) 

IL-15 

B chronic lymphocytic 

Human T and B cells (158) 
leukemia cells (B-CLL) (157) 

Inhibited spontaneous and 
tumor necrosis factor 
a-induced apoptosis 

Inhibited apoptosis mediated by 
parainfluenza virus type 3 

Partially suppressed apoptosis 
(PIV3) 

Inhibited spontaneous apoptosis 
of peripheral blood B cells 

Inhibited spontaneous apoptosis 
in vitro 

Inhibited anti-Fas, anti-CD3, 
dexamethasone, and anti-lgM 
induced apoptosis 

IL-8 prolonged neutrophil survival 
by delaying apoptosis; this was 
mediated via the IL-8 receptor 
RII and was Bcl-2 independent 

mononuclear cells to produce 
IL-10 

frequency and proliferating cell 
nuclear antigen expression in 
intestinal crypt cells 

Inhibition by IL-13 was possible 
when combined with CD40 
ligand and resulted in 
upregulation of Bcl-xL and Mcl-1 . 
IL-4 alone was able to inhibit 
apoptosis 

Inhibition of IL-13 was not as 
potent as IL-4 

In vivo lethal multisystem apoptosis 
in mice induced by anti-Fas was 
suppressed by 11-1 5-lgG2b 
fusion protein. IL-15 was a 
general inhibitor of apoptosis in 
vitro and in vivo 

PIV3 induced peripheral blood 

IL-1 1 also increased mitosis 

lnterleukin Family. There are many reports on the 
anti-apoptotic effects of various members of the interleukin 
(IL) family. These are described in Table 11. 

Concluding Remarks 

Apoptosis is now widely recognized as an important 
mode of cell death. The goal of this article was to review the 
anti-apoptotic actions of specific cytokines on mammalian 
cells from 1991 to 1998. Many cytokines have now been 
studied for their anti-apoptotic actions in the hope of their 
use in therapeutic modalities. Progress continues in the ef- 
fort to identify inhibitory agents of apoptosis and the regu- 
latory molecules involved. Important advances include the 
role of cytolunes in cancer therapy. Many neurodegenera- 
tive diseases are characterized by a loss of specific cells or 
cell populations. Thus, in disorders such as amyotrophic 
lateral sclerosis (ALS), Huntington’s disease, Parkinson’s 
disease, and Alzheimer’s disease, cells are assumed to be 
lost via apoptosis. Inhibition of apoptosis by growth factors, 
such as NGF, the TGF-P family, and the IGF family, may 
be important in these disorders since all have been shown to 
influence neuronal survival (159, 160). Similarly, impaired 
development of the immune system, such as changes oc- 
curring in AIDS or leukemia due to excessive cell death by 
apoptosis, may benefit by manipulations of the apoptosis 
pathway with cytokine intervention such as the interleukin 
family (161). Studies of anti-apoptotic agents are also valu- 
able because they add insight into the potential regulatory 
mechanisms of apoptosis. 

We thank Deborah Verne for assistance in manuscript preparation. 
Due to the large body of apoptosis literature, and space limits, we are 
unable to cite and discuss many anti-apoptotic papers; we apologize to 
these authors. 
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