

B. Melitensis and B. Abortus Agglutinins in Dispensary Patients.

LLOYD ARNOLD AND W. E. MILLER.

From the Department of Bacteriology, University of Illinois College of Medicine.

Sera obtained from routine Wassermann test were tested for agglutinins, for *B. melitensis* and *B. abortus* in the average outdoor dispensary population in Chicago. *Brucella melitensis* variety *Melitensis* (A) No. 428, and variety *abortus* No. 456 were sent to us by Alice C. Evans and were used as our antigen. The technic recommended by Evans¹ was rigidly carried out. Up to the present, 200 sera have been tested; dilutions have been 1:10, 1:20, 1:40, 1:80, and 1:160. Fourteen sera have been positive within this range of dilutions. All positives were retested and found in each case to check with the previous tests.

Table I gives our results.

TABLE I.

Serum No.	Antigen	
	<i>B. melitensis</i>	<i>B. abortus</i>
1.	1:40	1:20
2.	1:20	1:20
3.	1:10	1:20
4.	1:40	1:40
5.	1:40	1:20
6.	1:20	1:20
7.	1:10	1:10
8.	1:40	1:40
9.	1:20	1:20
10.	1:40	1:20
11.	1:10	1:20
12.	1:10	1:10
13.	1:10	1:20
14.	1:20	1:40

Evans² has reviewed the literature. She found 58 sera in 500 from patients suffering with a variety of diseases to be positive in dilutions of 1:5 to 1:40, and suggests that these were produced as a specific response to *Br. melitensis* ingested in cow's milk, although such an infection may not necessarily have caused a notable illness. Three of our positives in 1:40 dilution were normal pregnant women. The others were in a variety of non-febrile cases. A milk-drinking history can always be ascertained from a patient. If the explanation of the occurrence of these agglutinins in the serum of-

ferred by Evans is correct, we have found so far 7.0 per cent of the average dispensary population have a specific response to *B. melitensis* and *B. abortus*.

This is a preliminary report.

¹ Francis, E., and Evans, Alice C., *U. S. Pub. Health Reports*, 1926, xli, 1273.

² Evans, Alice C., *U. S. Pub. Health Reports*, 1924, **xxxix**, 501.

3593

On Bile Stimulation of Pancreatic Secretion.

A. C. IVY AND H. C. LUETH.

From the Department of Physiology and Pharmacology, Northwestern University Medical School.

Mellanby¹ has found that the injection of bile of an adequate reaction into the duodenum of the cat stimulates the pancreas. This also occurs after ligation of the pylorus and bile ducts, and after atropine and ergotamine. He suggests that bile is the alimentary stimulus of pancreatic secretion, functioning by causing the elaboration and absorption of secretin. However, in Mellanby's experiments bile may have caused stimulation by a local nervous mechanism that is not acted on by atropine or ergotamine.

Our work has been confined entirely to dogs. We have found that bile by stomach tube stimulates pancreatic secretion, but not invariably and to the extent that N/10 HCl does. Two dogs with a pancreatic fistula and the common bile duct doubly ligated, have responded to a meal of ground meat (half lean and half fat) as well as pancreatic fistula dogs without the bile duct ligated. Two dogs with a pancreatic transplant responded as well to a meal of meat after double ligation of the bile duct as they did before the ligation. Bile, when applied to the Thiry fistula of a pancreatic-transplant-Thiry-fistula preparation, stimulates the transplant occasionally, but not uniformly. Bile applied to a pancreatic-transplant-jejunal-transplant preparation does not stimulate, whereas N/10 and N/20 HCl do.

Our observations cause us to conclude (1) that bile stimulates pancreatic secretion, but is not as potent as N/20 HCl, and (2) that bile is an adjuvant, but not an essential alimentary stimulus of pancreatic secretion in the dog. This is an abstract.

¹ Mellanby, *J. Physiol.*, 1926, **lxi**, 419; *Lancet*, 1926, **cxi**, 215.