

8256 P

Vitamin B₁ and Thyroxin.*

BARNETT SURE AND K. S. BUCHANAN.

From the Department of Agricultural Chemistry, University of Arkansas.

Sure and Smith¹ reported on the protective action of vitamin B against the toxicity of thyroxin administered subcutaneously or orally to the albino rat.

In this investigation attempts were made to balance quantitatively the toxic influence of thyroxin given orally to the rat with a much more concentrated vitamin B₁ extract; also with Williams' crystalline vitamin B₁ (manufactured by Merck).

The vitamin B₁ concentrate was furnished by the Eli Lilly Research Laboratories and is a product that is being tested clinically. This preparation is indicated for parenteral use, each cc. containing 150 Sherman units of vitamin B₁.

Seventy sets of animals in groups of 4 were used for this study, which were litter mates of the same sex. In each set, animal A received a diet deficient only in vitamin B₁, which represented the negative control; animal B received the diet of animal A, and in addition a daily dose of thyroxin; animal C received the same diet, a daily dose of thyroxin, and a daily dose of either the Lilly concentrate or crystalline vitamin B₁; animal D received the same diet, a daily dose of either source of vitamin B₁, but no thyroxin, which represented the positive control. The thyroxin was given daily in doses ranging from 0.05 mg. to 0.2 mg. The Lilly vitamin B₁ concentrate was furnished in doses supplying 1.5 to 30 Sherman units daily. The crystalline vitamin B₁ was administered daily in amounts ranging from 1γ to 300γ or 0.001 mg. to 0.3 mg.

The criterion of complete protection against thyroxin poisoning was not only the ability of the animal to survive but also to make as good a growth as if thyroxin were not introduced as a supplement to the experimental diet.²

Lilly Vitamin B₁ Concentrate. The best protection (75 to 100%) was obtained on a daily dose of 0.05 mg. thyroxin. This was afforded by 7.5 to 15 Sherman vitamin B₁ units daily. About two-thirds protection, as judged by gains in body weight, was possible with a daily allowance of 15 units of vitamin B₁, when the daily

* Research paper No. 381, Journal Series, University of Arkansas, Fayetteville.

¹ Sure, B., and Smith, M. E., *J. Nutr.*, 1934, **7**, 547.

² Sure, B., *Proc. Soc. EXP. BIOL. AND MED.*, 1933, **30**, 779.

thyroxin dose was 0.1 mg. A daily dose of 30 vitamin B₁ units prevented loss of weight but permitted only little growth when the daily thyroxin allowance was 0.2 mg.

Crystalline Vitamin B₁. While 10γ (0.01 mg.) of crystalline vitamin B₁ seems to antagonize satisfactorily a 0.05 mg. thyroxin dose, complete protection against 0.1 mg. and 0.2 mg. thyroxin has not as yet been reached by as much as a 300γ (0.3 mg.) daily dose of crystalline vitamin B₁.†

Since 1 Sherman unit is equivalent to 2.5γ of crystalline vitamin B₁,³ it has been possible for us to make observations on the biological value of the Lilly vitamin B₁ concentrate and the Merck's crystalline vitamin B₁, as indicated by unit doses. Since we are unable to secure the same increments of growth on higher doses of crystalline vitamin B₁ on our vitamin B₁ deficient diet¹ as Waterman and Ammerman,³ and since there seems to be a supplementary relationship between the Lilly vitamin B₁ concentrate and the Merck's crystalline vitamin B₁, the evidence points to the existence of an essential component of the vitamin B complex for the mammalian organism other than vitamin B₁ and vitamin B₂ (the latter being furnished in abundance in our diet by 15% autoclaved beef),—possibly B₄, as originally suggested by Reader.⁴

8257 P

Enzymic Efficiency in Avitaminosis.*

BARNETT SURE, M. C. KIK, AND K. S. BUCHANAN.

From the Department of Agricultural Chemistry, University of Arkansas.

In previous studies¹ we found that in vitamin B deficiency there is a marked reduction in the efficiency of digestion of pancreatic lipase but no demonstrable disturbance in the activity of either trypsin or erepsin. We have now completed considerable work with other enzymes in vitamin A as well as vitamin B deficiency. A pre-

† Since this material went to press, we have found that a sufficiency of yeast in the diet or administered separately from the ration will antagonize the toxicity of as high a daily dose of thyroxin as 0.2 mg. to the extent of 75 to 100 per cent.

³ Waterman, R. E., and Ammerman, M., *J. Nutr.*, 1935, **10**, 38.

⁴ Reader, V., *Biochem. J.*, 1929, **23**, 689; *Ibid.*, 1930, **24**, 77, 1827.

* Research paper No. 382, Journal Series, University of Arkansas, Fayetteville.

¹ Sure, B., Kik, M. C., and Buchanan, K. S., *J. Biol. Chem.*, 1935, **108**, 19.