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Two-dimensional gel electrophoresis (2DE) is an indispensable

tool in proteomics for the analysis of protein expression in

complex biological systems such as cells and tissues. However,

the automatic extraction of information from gel images is still a

challenging task. In this paper we propose a strategy that

represents a computational procedure of support to the

discrimination of different clinical conditions associated with

the samples. The analyzed gel images were acquired within the

framework of a study of peripheral neuropathies: twenty-four

2DE maps generated from cerebrospinal fluid (16 pathologic and

8 control subjects) were processed. Quantitative features were

defined to describe each image and treated with a method of

dimensionality reduction. The informativeness of the descrip-

tors allowed us to see the gel of the data set as items in a three-

dimensional space, segregating according to the clinical con-

ditions. Moreover, information with prognostic value was

obtained for a single outsider gel of a patient who was included

in a clinical subgroup at the first diagnosis but whose disease

progressed with clinical features belonging to a different clinical

subgroup. The method developed may represent an effective

tool of classification that can be used repeatedly to capture the

essential impression from separation images. Exp Biol Med

233:483–491, 2008
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Introduction

Two-dimensional electrophoresis (2DE) is the tech-

nique of choice that provides the separation of the proteins

contained in a biological sample (1). The maps obtained

from protein migration are acquired as gray level images

that can be processed to allow the analysis and the

comparison of the experimental outcome for different

samples. However, the complexity of the maps makes this

task difficult and time-consuming. The result of the

separation, indeed, still suffers from a low degree of

reproducibility as a result of both local and global alterations

of the migration in the gel. In the case of clinical studies,

reproducibility is also affected by the fact that samples are

collected sequentially along 1 or 2 years, and consequently

electrophoresis is performed at different times, introducing

heterogeneity into the experimental outcomes. Furthermore,

there is often a limited amount of specimen that can be

obtained from patients, and this limited quantity does not

allow one to generate replicates of the gels. Thus, it is

mandatory to include in the analysis suboptimal 2DE gels;

otherwise, subjects would be excluded from the study.

Consequently, the comparison and the classification of the

gel images, which are usually based on the matching of the

maps, may be a difficult task, especially if an automatic and

objective procedure is needed.

The computational aspects of image processing play a

central role in the analysis of 2DE gels (2). This step is very

labor-intensive and involves considerable expertise to

properly extract information. The process, in general, takes

advantage of dedicated software packages for quantitative

analysis and comparison of the gels considered as

collections of identified spots (3). An automatic strategy in

which the classification is done in a repeatable fashion but is

not dependent on the choices of the operator can be a useful

complement to the routine differential proteomic analysis.

In the present study, gel images obtained from
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cerebrospinal fluid samples acquired in a study of peripheral

neuropathy were considered. Results of proteomic differ-

ential analysis have been published (4); here we followed a

complementary approach aimed at discriminating the

categories involved and avoiding the step of matching

through the application of a strategy that considers the

overall impression of the gel.

In recent years a similar classification approach that

considers the overall pattern that emerges from gel images

without spot detection has been explored for many different

data sets (5–8). This method tries to capture the essential

information of a gel image through the use of a set of

descriptors obtained from the assessment of the pixel values

in different quadrants of the image obtained by a regular

grid. In this way the gel is described by a vector of values

that can be treated with the approaches of multivariate

statistics with the aim of discriminating the samples

corresponding to different biological conditions. The

dimensionality of this kind of representation is effectively

reduced in most of the cases through the use of principal

component analysis (PCA) that allows one to see the gels as

positions in a useful space where clustering of biologically

homogeneous items can be appreciated. This approach

allows a person to discriminate between the classes of the

data set, and this discrimination leads to the correct

classification of each sample.

Starting with this kind of approach, we developed an

integrated strategy with the aim of implementing a

classification tool that is able to show discriminating

patterns within a pool of gels from a clinical study in

which quality and reproducibility are challenged by the

presence of samples not obtained ad hoc. We acted on the

definition of the descriptors of the gel, and then the features

extracted for the experimental subregions of the separation

image were analyzed through the use of PCA (9) as the

dimensionality reduction technique.

The adopted computational strategy is a useful comple-

ment to the experimental routine and is capable of

automatically capturing the essential information from the

images, often saving low-quality samples.

Materials and Methods

Patients and Two-Dimensional Electrophore-
sis. We analyzed twenty-four 2DE maps generated from

cerebrospinal fluid (CSF) obtained from three groups:

patients with neuropathy and pain (PN, n ¼ 8), patients

with neuropathy but without pain (NPN, n¼ 8), and healthy

controls (CN, n ¼ 8). Patient features and 2DE gel

generation were described previously (4). Eligibility criteria

included the classic diagnostic methods used for disease

identification. All patients were initially hospitalized and

drug-free. Quantitative evaluation for disability was calcu-

lated according to the method of Appel et al. (10). All

patients underwent the normal procedure of differential

diagnosis including hematologic examination (serum im-

munoelectrophoresis, vitamin B12, folic acid, rheumatoid

factor, immunocomplexes, cryoglobulins, extractable nu-

clear antigen ENA, and anti-mitochondria, anti–smooth

muscle and anti-DNA antibodies), electroneurographic

(ENG) and electromyographic (EMG) evaluations based

on standard criteria (11), and lumbar subarachnoid CSF

collection and examination. At neurologic examination all

patients showed neurogenic changes and no motor or

sensory conduction abnormalities (as revealed by EMG and

ENG studies, respectively). The disease course was chroni-

cally progressive in all cases.

Patients submitted to neurologic examinations in which

strength evaluation (MRC grading system) and Verbal -

Numerical Pain Rating Scales were performed at the time of

the first hospitalization and 6 and 12 months later by the

same neurologist. CSF was collected by lumbar puncture by

using a procedure typically done for diagnostic purposes.

Exclusion criteria included the following: human immuno-

deficiency virus- or hepatitis C virus-positive, neurodegen-

erative disease or previous cerebral ischemic event, and

deep metabolic deficit. Control CSF was obtained from age-

matched and gender-matched patients for whom neurologic

disease was suspected but who were later shown by testing

to be free of pathologic alterations. For each sample a 2DE

map was generated, and corresponding images were

analyzed.

Image Analysis and Descriptors. Gel images

were acquired at a resolution of 100 lm by using a

Molecular Dynamics Personal SI Laser Densitometer

(Molecular Dynamics, Sunnyvale, CA) and saved as 12-

bit gray-level images in ‘‘.tif’’ format (12). The migration

maps covered the ranges from 3.2 to 10.4 in pI and from 10

to 150 kDa in molecular weight (MW).

Spot detection was performed by using Progenesis

Workstation v2004 software (Nonlinear Dynamics, New-

castle, UK; Ref. 13). The procedure was standard and left at

default settings to limit user intervention. This software

implemented the most recent strategies of image processing

exploited in the analysis of gels and gave back for each

analyzed image the collection of the identified protein spots

provided with a set of quantitative parameters such as

volume, area, maximal intensity, and position. The option of

‘‘total spot volume normalization’’ was adopted to make

quantitation comparable despite possible fluctuations in

signal intensities between gels, and the automatic ‘‘back-

ground subtraction’’ was included in the process of

quantitation. The step of spot detection was included in

the adopted strategy to improve the signal-to-noise ratio and

to allow the emergence of only the useful signal; the idea is

that the descriptors that are then derived refer only to areas

of the image that are segmented as spots but lack

quantitative description artifacts and background signal.

Conversely, the extraction of features directly from the

images, meant as matrices of pixel intensity without the step

of spot detection, could include information from areas that

do not correspond to areas that contain real spots. The
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quantitative features obtained on the basis of this standard

protocol were used in the successive exploratory data

analysis. Gels were calibrated, in the Progenesis environ-

ment, to obtain the position of each identified spot in terms

of the experimental coordinates: apparent relative molecular

mass (Mr) was estimated by comparison with MW reference

markers (Precision, Bio-Rad, Hercules, CA), and pI values

were assigned to detected spots by calibration as described

in the GE-Healthcare guidelines. This crucial step was

obtained separately for each gel; the position of the detected

spots was expressed in terms of pI and MW by using some

reference markers and interpolating (by means of a cubic

spline) these values to obtain the calibration curve that

empirically defines the relation between geometrical and

physicochemical coordinates for every gel image. We used

8 markers of MW (10, 15, 25, 37, 50, 75, 100, and 150 kDa)

and 11 markers of pI. The pI markers were positioned

according to the percentage of IPG-strip gel length, as

indicated by GE-Healthcare table of reference for nonlinear

gradients, and then fine-tuned to the experimental electro-

phoretic migration of protein spots clearly visible in all gels,

which were previously identified (4) by mass spectrometry

analysis and matching with CSF reference maps. The pI

values used were 3.2 (beginning of the IPG-strip gel), 4.0

(A1AG1 protein, accession number P02763), 4.8 (A1AT

protein, accession number P01009), 5.3 (RETB protein,

accession number P02753), 5.6 (ALBU protein fragment,

accession number P02768), 6.2 (TRFE protein, accession

number P02787), 6.8 (A1AT protein fragment, P01009), 8.0

(IGLC protein, accession number P99007), 9.2 (CYTC

protein, accession number P01034), and 10.4 (end of the

IPG-strip gel). This calibration was accomplished without

spot matching through the gel collection, which is a critical

and time-consuming step and one in which a considerable

fraction of detected spots are lost and thus excluded from

calibration. Of course, this introduced a certain degree of

approximation, but the coarse resolution at which the

proposed strategy works compensated for it, as the

descriptors referred to macroregions of the gel, not to the

single protein spot. In this way, each gel was treated as a

collection of identified spots whose positions were ex-

pressedin terms of the experimental coordinates of pI and

MW rather than in terms of pixels. Only at this point was the

migration space of 3.2–10.4 in pI and 20–100 kDa ideally

partitioned into subquadrants at a resolution of 0.3 unit in pI

and 3 kDa in MW.

The subdivision was linear in the physicochemical

coordinates but did not correspond to a regular grid on the

gel image. The subquadrants were individuated consistently

and tracked the ideal separation area in the pI and MW

space in each gel image, despite contingent alterations of the

single gel. This step was crucial to make the samples

comparable in the absence of canonical image matching by

means of registration techniques.

For each subquadrant the relative collection of spots

was determined; to this aim the parameters of pI and MW

associated with each spot were approximated at the second

decimal digit, because a greater number of significant digits,

although provided by the commercial tool, were redundant

with respect to the intrinsic accuracy of the technology.

Given the collection of all the spots of a subquadrant, we

were able to determine a cumulative descriptor. By

summation of the spot volumes, the integral of the

intensities of the pixel segmented as useful signal was

obtained and considered to be a quantitative feature of the

single subquadrant. At the established resolution mentioned

above, 648 descriptors, which were equal to the number of

the subquadrants, were extracted for each gel image.

The samples, at that point, were described as vectors of

sorted features, depending on the cumulative spot volumes

in the different gel areas. Thus, they might be explored

through an approach of dimensionality reduction such as

PCA with the aim of visualizing them and verifying the

informativeness of their description with respect to the

corresponding clinical conditions.

Application of PCA. The main purpose of PCA is

dimensionality reduction while accounting for as much of

the variation in the data as possible. To the original data a

transformation is applied that leads to a new space whose

variables (principal components) are not correlated and are

obtained as a linear combination of the original ones. The

weights of the original variables in the principal components

are referred to as loadings. By selecting the first f
components (f � number of descriptors), it is possible to

represent a significant quote of the total amount of

information contained in the data.

To assess the separability of the groups considered in

the pairwise comparisons, standard discriminant analyses

(linear [LDA] or quadratic [QDA]) were applied and

obtained the surface representing the decision region

boundaries. The adequacy of the descriptors was objectively

assessed by resubstitution (i.e., counting the number of

items misclassified with respect to the decision region

retrieved [error rate]). Also, a leave-one-out cross-validation

was performed in which the surface was determined by

excluding one item from the analysis and then verifying the

correctness of its classification; iterating the process for all

the samples of the data set, a measure of the predictive

accuracy was obtained as the percentage of successes.

By looking at the gels in the new three-dimensional

space of the first three principal components, it is possible to

appreciate sample positions that segregate consistently with

the corresponding biological conditions; therefore, we re-

examined the gel images to identify the regions (the

subquadrants that were quantified) that most contributed to

the representation where samples of different clinical

conditions appeared to be separable. Thus, the obtained

loadings may be used to evaluate which original variables

are important (large loadings) and most concur with the new

representation. The loadings of the principal components,

meant as the weight of the original coordinates projected

onto the new dimensions, were measured: the subquadrants
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that had the highest weights were considered. Such an

indication can be a useful clue in the identification of

regions where spots most differ through the clinical

categories.

The method proposed was implemented in Matlab v.

7.0 (The Mathworks, Inc., Natick, MA).

Results and Discussion

In the previously proposed method (5), the image was

divided with a regular grid in many different quadrants, and

for each of them a descriptor was extracted on the basis of

the pixel intensities; eventually a fuzzyfication step was

applied to smooth the signal and consider the imprecision of

the electrophoretic run. In general, this strategy works well

in an ideal case in which images of protein migration in the

different samples cover equivalent pixel areas; otherwise, a

selection of homogeneous samples is necessary. Consider-

ing the entire ensemble of 2D gels of a general experiment

related to real clinical samples may become impractical. In

the data set of our study, even at a visual inspection,

macroscopic differences in the exit of the migration due to

the experimental variability were evident; for example, the

areas covered by protein migration (in terms of pixels) were

not constant. In general the positions in pixels between gels

are not equivalent with respect to the separation, and

proportions are not conserved through the collection of

Figure 1. Comparison of images of multiple samples. (a) The general pattern of the spot separation is recognizable in both gels, but the two
maps are not superimposable (equal distances in terms of pixels do not correspond to the same range in pI and MW). Through the calibration of
each gel image in terms of biochemical coordinates (pI and MW), it is possible to recover the correspondence between equivalent areas (cyan:
5–5.3 units [pI], and 22–25 kDa; magenta: 5.8–6.1 units [pI] and 47–50 kDa). (b) After the calibration step, each identified spot was provided with
coordinates in the pI–MW space (panel on the left); this step allowed the compilation of a virtual linear map of the separation outcome (panel on
the right).
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samples. In Figure 1a, two gel images are reported as an

example: the general pattern of the samples is recognizable

in both images, but it appears evident that the protein

separation covers areas whose proportions are quite differ-

ent (see colored areas in Fig. 1). These same issues make the

comparison step and the implementation of the canonical

differential analysis critical. In general, the application of

registration techniques and warping strategies are needed to

map an image onto another (13) and make comparison

possible. Moreover, some gel images can be definitively

excluded if they lack the necessary homogeneity. This can

be a problem in the case of clinical samples because many

times the amount of biological material available for

laboratory investigations is very limited because of technical

or ethical reasons and it is not possible to perform further

sample collection. From most patients in our study, we

obtained about 0.5 ml of CSF with a protein concentration

of 0.2 mg/ml that was used for a single 2D gel (100 lg).

Thus, it was mandatory to be able to include suboptimal gels

in our analysis.

To bypass these problems, the positions of the detected

spots were considered in terms of pI and MW, after the ad
hoc calibration. Through this simple step, an acceptable

correspondence between different gels was restored (see

Supplemental Material for a collection of representative gel

images provided with the markers positioned to obtain

continuous gradation in pI and MW). For example, in

Figure 1a, the subquadrant of 5–5.3 units (pI) and 22–25

kDa (cyan) and the subquandrant of 5.8–6.1 units (pI) and

47–50 kDa (magenta) are highlighted in both gels. The

positions in pixels are quite different, but the migration

areas are consistent as a result of the calibration. The

outcome of the spot detection can be then visualized in a

linear virtual map of the separation (Fig. 1b), whose

partition yields the subquadrants that contain the spot

ensembles whose integral volumes were adopted as

descriptors.

The procedure was applied to the considered data set.

To allow specific discriminant patterns, we considered

categories that were the most homogenous; subjects with

neuropathy were further classified as those with algic

symptoms and those without pain; with the addition of

control subjects, three categories were considered and the

three possible pairwise comparisons were accomplished.

Figure 2 reports the result of the first comparison,

which was between NPN and CN samples. The visual-

ization of the gels in the space of the first three principal

components showed the samples grouped consistently in

separable regions with their corresponding clinical condition

(specific neuropathy diagnosis). The cumulative percentage

of variance of the original data considered in this

representation was 74%. The decision region obtained by

LDA provided an error rate of 6.25%; the position of the

sample 1 of the NPN group was clearly contained in the

controls’ ‘‘cloud,’’ but supplemental information about this

item of the data set will be provided below. Leave-one-out

cross-validation provided an accuracy of 81.25%.

In the second analysis, the PN and CN groups were

Figure 2. Samples from patients with neuropathy but without pain (NPN, cones) and from healthy controls (CN, spheres) visualized in the three-
dimensional space of the first three principal components; their positions allow one to identify a linear decision region to discriminate between
the two classes. A color figure is available in the online version of the journal.
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considered (Fig. 3). The three-dimensional representation

accounted for 70% of the data variance. The positions that

corresponded to the two kinds of subjects were separable in

this case by a quadratic surface. The error rate was 12.5%:

the two samples PN 3 and PN 7 were not consistently

positioned as indicated by the results of the DA analysis;

however, the first one was on the frontier of the decision

region and the second one was the sample that in the spot

detection provided a number of spots sensibly greater than

the rest of the collection (Table 1). Because the descriptors

used as inputs of this multivariate statistics approach were

based on cumulative spot volumes, this problem may alter

the classification. Leave-one-out cross-validation provided

accuracy of 68.75%.

Finally we explored the data in relation to subjects with

neuropathy to assess our approach’s ability to discriminate

between subjects with pain and those without pain.

Effectively the items that corresponded to the two categories

segregated consistently (Fig. 4; percentage of explained

variance, 78%) and were separable by means of a quadratic

surface. The only exception was represented by the sample

NPN 1, which was clearly positioned in the cluster of the

opposite category. What was surprising was that although

the initial information about the condition of this patient

corresponded to an asymptomatic neuropathy (stage 1

according to criteria [14]) and an absence of pain (neuro-

pathic pain scale [NPS] score of 0 [15]), the disease course

led to the development of algic symptoms (NPS score of 7)

and worsening of neuropathy (stage 3 [disabling neuro-

pathy]). What was considered initially as a misclassification

in fact became proof of the robustness of the discrimination

power of the proposed method with prognostic potential.

The information about this particular sample, initially

annotated as NPN but effectively belonging to the PN

group, may explain its mispositioning also in the graph

concerning the first comparison (NPN vs. CN), leading

eventually to a null error rate. For this comparison we

obtained a leave-one-out cross-validation accuracy of

62.5%. The poor results of cross-validation may be due to

the small number of the samples in the data set.

To see whether our approach can properly classify the

samples from multiple conditions, we analyzed all samples

present in the data set (except those that lacked homogeneity

with respect to spot number) in an unbiased fashion. As

shown in Figure 5, the three groups can be correctly

classified. Moreover, the sample NPN1 (indicated by the

arrow), which was clustered with both PN and CN in the

previous comparisons (Figs. 2 and 4), was more closely

related to the PN category, a result that confirmed the

clinical reclassification.

It is worth noting that the samples of our data set are not

technical replicates (i.e., gels obtained from fractions of the

same biological sample, unique or even pooled). In this

work, ‘‘biological’’ replicates were processed (i.e., each gel

image was representative of a different human subject); this

approach increased the level of variability and complexity.

Figure 3. The result of the analysis of samples from patients with
neuropathy and pain (PN, cones) and from healthy controls (CN,
spheres) is reported. There was separation of the two types of
subjects, except PN 3 and PN 7; however, the latter belongs to the
groups of samples that had a greater number of detected spots with
respect to the other gels in the data set. A color figure is available in
the online version of the journal.

Table 1. Data Set: Number of Detected Spots in Each 2DE

CNa No. of Spots PNb No. of Spots NPNc No. of Spots

1 2018 1 1939 1 1517
2 1494 2 1739 2 1443
3 1812 3 1675 3 1447
4 1737 4 1844 4 1547
5 1297d 5 1069d 5 1660
6 2436 6 1945 6 1323
7 2367 7 3158 7 1348
8 2422 8 2018 8 1314

a CN, healthy controls.
b PN, patients with neuropathy and pain.
c NPN, patients with neuropathy but without pain.
d Italic numbers refer to map with a nonhomogeneous number of spots.
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For this reason the results that we obtained are very

significant and robust. Also the numerosity of the data set

supports these considerations. The previously applied fuzzy-

logic approach to compensate for migration variation

between gels works well with largely superimposable

images, as it happens for technical replicates or gels

obtained ad hoc in a unique trial. Our proposed strategy is

different because we used, from the original gel images,

quadrants delimited in the ideal space of pI and MW, not in

terms of pixels as done in previous studies (5–8). This kind

of calibration allowed us to recover correspondence between

gels where the outcome of the migration was very different

(Fig. 1). In such a situation the original method with fuzzy

logic would not be sufficient. Moreover, to improve the

signal-to-noise ratio, we used the optical density volumes of

the spots identified by Progenesis software. In this way we

avoided the need to consider pixel intensities that do not

refer to spot areas but may refer to background.

If the representation in the space of the principal

components shows that the gels belonging to different

categories as having different privileged regions of the

space, it may be interesting to return to the gel images and

identify the different weights of the gel regions, (in terms of

pI and MW) that allowed us to visualize the groups of gels

as ‘‘separable.’’ By associating each of the three PCs to one

of the three channels of the RGB code for color images (red

for PC1, green for PC2, blue for PC3), it was possible to

visualize the linearized maps of the corresponding loadings

for the considered comparisons (CN vs. NPN, CN vs. PN,

PN vs. NPN [Fig. 6]). This kind of information may support

the identification of proteins or groups of proteins differ-

entially expressed in different conditions. At the moment the

chosen resolution (pH ¼ 0.3 and MW ¼ 3000 Daltons)

seems to provide the best results. It represents a good

compromise between the detail at the spot level that may be

subject to fluctuations between gels, also in the calibrated

data, and a more coarse but even more robust information

about the overall pattern.

The discriminant features seen in our previous work (4)

do not belong to the largest loading descriptors, but this

result is not surprising. Indeed, the quadrants of the maps in

Figure 6 correspond to relative large regions of the physical

gel that correspond to areas that generally include many

spots, and the proteins identified in previously published

work are not necessarily in the largest loading quadrants.

The approaches are quite different: the traditional one is

based on the values of a single spot matched through the

different images, whereas the proposed strategy considers

Figure 4. Subjects with disease and pain (PN, dark cones) and those with disease but without pain (NPN, light cones) were compared in terms
of their 3D positioning. Two groups of items were well-separated by a quadratic surface; the exception was the sample from NPN 1 (indicated by
the arrow) that, although initially annotated as NPN, has developed algic symptoms; this results revealed a prognostic potential of the approach.
A color figure is available in the online version of the journal.
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the overall impression of the sample on the gel and

quantified as integral volumes in macroareas; therefore,

there may be no correspondence.

Our method can be very useful and close to the real

proteomics process because it is very reproducible and does

not need any a priori information; thus, it may represent an

effective and rapid classification approach, providing

complementary information and supporting differential

analysis. The information visualized through the application

of this strategy may also highlight the presence of

outsider(s) in the data set or group, as demonstrated at least

with the set of data used in this study.

The results that we obtained are very encouraging,

especially for such a complex data set of gels that was

collected over a long period of time and showed a high

degree of heterogeneity. In particular the separability

Figure 5. Results of the analysis performed on the three groups of subjects (PN, NP, and CN) except those whose gel images did not have a
homogeneous spot number. The data for the three subject groups appeared separable, and the sample NPN was positioned in the ‘‘PN region.’’
A color figure is available in the online version of the journal.

Figure 6. Pseudocolor maps of the loadings that corresponded to the three PCs are shown for the considered comparisons; the evident regions
are the most informative in regards to the discriminant potential between the clinical groups.
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between subjects with or without algic symptoms underlines

the effectiveness of the approach and the informativeness of

the adopted descriptors. If the strategy is applied correctly, it

may lead to important indications for the identification of

specific biomarkers, retrieving the constraints that allow one

to see the groups of samples as ‘‘separable.’’
From the clinical point of view, peripheral neuropathies

are characterized by asymmetric, slowly progressive weak-

ness and can occur either with or without pain. In the

absence of a complete understanding of molecular disease

development, the therapeutic approach to pain neuropathy is

limited to the traditional tricyclic antidepressants and

anticonvulsants (16, 17). In fact, peripheral neuropathies

are not impairing diseases, but the quality of life is seriously

affected in patients with pain. No single pain measure has

sufficient reliability and validity because pain is a multi-

dimensional experience (18); therefore, finding putative

pain biomarkers useful for early diagnosis might be of great

interest for therapeutic strategies.

With the computational strategy proposed, the chance

to distill synthetic information about the protein content of

biological fluids may be a valid support, in particular if the

procedure is rapid and repeatable. It may lead to the

definition of a protocol of automatic classification that

represents a useful complementary analysis in the proteo-

mics laboratory to perform tests capturing the essential

impression of the gel image. Moreover, it may lead to the

identification of samples that present an anomalous pattern

and that can be reasonably excluded from statistical

descriptions.

Accurate information extraction in the processing of gel

images is an important topic in computational biology, and

the treatment of patterns emerging from separation images

intended as fingerprints of the corresponding clinical

conditions may provide an interesting and fruitful point of

view.
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